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Abstract

In distributed deep neural network using remote GPU nodes, communication occurs itera-
tively between remote nodes for gradient aggregation. This communication latency limits the
benefit of distributed training with faster GPUs. In this paper, we therefore propose to of-
fload the gradient aggregation to a DPDK (Data Plane Development Kit) based network switch
between a host machine and remote GPUs. In this approach, the aggregation process is com-
pleted in the network using extra computation resources in the network switch and efficiently
overlapped without increasing workload on remote nodes. The proposed DPDK-based switch
supports reliable communication protocols for exchanging gradients data and can handle a part
of MPI over TCP-based communication. We evaluate the proposed switch when GPUs and
the host communicate with a standard IP communication over 40GbE, a PCI Express (PCIe)
over 40Gbit Ethernet (40GbE) product and MPI communication over 10GbE, respectively. The
evaluation results using a standard IP communication show that the aggregation is accelerated
by 2.2-2.5x compared to the aggregation executed by a host machine. The results using the
PCIe over 40GbE product show that the proposed switch outperforms the aggregation done by
the host machine by 1.16x. The evaluations using MPI communication using Jetson Xaviers
cluster show that the proposed switch provides up to 5.5-5.8x faster reduction operations than
the conventional method.

1 Introduction

Distributed deep learning using multiple GPUs is widely used to reduce the training time. In
data parallel training, training process has 1) GPU computation phase for back-propagation and 2)
communication phase for parameter aggregation. The computation phase is efficiently accelerated by
using GPUs. However, the communication phase is not accelerated, and its overheads increase with
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GPU worker count. The performance of modern GPUs has improved significantly, the aggregation
overheads limit the benefit of distributed training with remote GPUs [13]. This paper focuses on
gradient aggregation in the communication phase of distributed training.

In this paper, we assume remote GPU environments using network-attached GPU technologies,
where a host machine and GPUs are connected via Ethernet. In these remote GPU environments,
since the aggregation process is performed on the host machine, the workload is imposed on the
host machine. Moreover, the aggregation throughput depends on the performance of the host ma-
chine. We therefore propose a DPDK (Data Plane Development Kit) [1] based network switch which
performs the aggregation in the network. The parameter aggregation is offloaded to the software
network switch and executed by using its extra computing resources. The proposed DPDK-based
switch supports a part of reliable MPI protocols over TCP-based communication for exchanging
gradients. We evaluate the switch when GPUs and the host machine communicate with a standard
IP communication over 40GbE, ExpEther 40G (a PCIe over 40GbE product) [15] and MPI com-
munication over 10GbE, respectively. The evaluation results using 40GbE show that the proposed
switch provides a higher throughput compared to the aggregation performed on the host machine.
The evaluations using MPI communication in embedded GPU cluster consisting of power-efficient
Jetson Xaviers [2] show that the aggregation throughput is accelerated by the proposed switch.
These three case studies demonstrate that the proposed approach can be applied to the performance
improvement of distributed training with multiple GPUs. 1

This paper is organized as follows. Section 2 introduces distributed training approaches and
remote GPU extension technologies. Section 3 proposes the DPDK-based network switch that
performs the gradient aggregation. Section 4 describes the remote GPU configuration and the
implementation. Section 5 evaluates the aggregation performance using the proposed switch. Section
6 concludes this paper.

2 Related Work

2.1 Distributed Training

The training process is divided into three phases: forward pass, backward pass, and optimization.
In the forward pass, a prediction is performed for an input data. In the backward pass, the gradient
for each parameter is calculated based on the prediction error. In the optimization, parameters are
updated using these gradients so that the error becomes smaller. Generally, these calculations are
performed on a GPU and can be parallelized by using multiple GPUs.

There are two approaches to parallelize the training using multiple GPUs: data parallel and
model parallel [5]. In the data parallel, the same network is prepared for each GPU, and the training
dataset is divided and applied to the neural network model of each GPU. On the other hand, in the
model parallel, training is performed by dividing parameters on the network into each GPU. This
paper employs the data parallel training approach, which is currently common in industry. The
distributed training using multiple GPUs requires an aggregation process called All-Reduce. Figure
1 shows the flow of a single training iteration in the distributed training. In the distributed training,
the gradients calculated by each GPU need to be aggregated between the backward pass and the
optimization. By performing this All-Reduce process, a large-scale distributed training using a huge
minibatch becomes possible. Then, the model parameters are updated based on these aggregated
gradients in the optimization phase.

Several variants of the gradient descent optimization algorithm have been proposed. The com-
monly used basic optimization algorithm is SGD (Stochastic Gradient Descent). Here, it is assumed

that minibatch βi is assigned to corresponding GPUi and it calculates a local gradient gi =
∂lβi
∂w ,

where lβ denotes the loss function for minibatch β. Thus, in SGD, the weights are updated as

1This work is an extended version of our previous work appeared in [9] by redesigning the proposed switch to
support MPI over TCP-based communication and adding its case study using the Jetson Xavier cluster.
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Figure 1: Single iteration in distributed training
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where w(t+1), w(t), g(t), and η denote the next updated weights, the current weights, the current
gradients, and the learning rate, respectively. Then, the next minibatch is trained. This paper
focuses on the gradient aggregation process. We employ synchronous training, which is superior
in terms of learning accuracy and convergence speed [7], but our proposal below is also useful for
asynchronous training.

2.2 Network-Attached GPU Technology

Due to limitations such as the number of PCIe slots and power supply, the number of GPUs that
can be equipped on a single machine is limited. To mitigate these limitations, there is an approach
to connect GPUs remotely via networks. This approach is also effective in terms of GPU utilization
and power efficiency. In this approach, such network-attached GPUs can be used transparently
as well as directly-connected GPUs. The following describes two representative remote extension
technologies.

ExpEther

ExpEther [15] [16] is a PCIe over Ethernet technology that makes GPUs available via Ethernet.
Each GPU and a host machine are connected to Ethernet using a hardware ExpEther bridge. PCIe
packets for GPUs are encapsulated into Ethernet frames by this bridge and transmitted to remote
nodes. We employ the ExpEther 40G product as one case of remote GPU environment in this paper.

rCUDA (remote CUDA)

rCUDA [8] is widely used as a software service to use GPUs via networks. rCUDA is based on
client-server model. In this approach, GPUs are connected to server machines via PCIe slots, and
the server machines are connected to networks. Clients request the server machines for GPU tasks
via TCP/IP communication. Then, the server machines instead of the clients perform the requested
tasks using GPUs.

2.3 Communication Bottlenecks

In distributed training using remote GPUs, communication between multiple remote GPUs is re-
quired to aggregate gradients. The gradient aggregation is a sequential process. Moreover, as the
number of GPUs increases, parallel computation parts become faster, but overheads of the aggre-
gation process increase. Communication latency of the aggregation process therefore is one of the
bottlenecks in distributed training. In [12], state-of-the-art DNN (Deep Neural Network) models
are trained using a five-node GPU cluster with 10GbE connections. In this case, it is reported that
the communication time is a significant part of the total training time. In [11], four parameter
optimization algorithms, such as SGD and Adam, are accelerated in 10GbE FPGA-based network
switch.
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In addition, some methods to accelerate large-scale distributed DNN using GPU clusters are
proposed [6] [14]. In [6], a GPU cluster consisting of 128 nodes with 1,024 Tesla P100 GPUs
completed a training of ImageNet in 15 minutes. The nodes are connected with Infiniband FDR as
a high-speed interconnect. As the underlying communication libraries, they use NCCL (NVIDIA
Collective Communication Library) and MPI. Although these collective communication algorithms
perform the aggregation efficiently, the communication overheads increase as the number of GPUs
increases. In [6], it is reported that approximately 20% of the training time with 1,024 GPUs is
spent for the communication.

Mellanox SHArP (Scalable Hierarchical Aggregation Protocol) technology [10] is known as a
reduce communication offload technology. Reduction operations based on SHArP can be offloaded
into Mellanox’s Switch ASIC over the Infiniband network, which provides for low communication
latency between machines equipped with GPUs. This paper targets communication of the network-
attached GPUs cluster over Ethernet represented by ExpEther.

Computing node products each consisting of several GPUs (e.g., NVIDIA DGX series) have
been used for high-performance computing purposes. This paper rather focuses on building low-
cost clusters, where several GPUs and host CPU with limited PCIe slots are loosely-coupled with
commodity technologies such as Ethernet.

3 DPDK Switch-Based Aggregation

3.1 Remote GPU Environment

This section proposes a DPDK-based acceleration of gradient aggregation in distributed deep learn-
ing. First, an assumed remote GPU configuration and bottlenecks in this configuration are described
here. The remote GPU environment consists of a host machine, an Ethernet switch, and multiple
remote GPU workers, and each component is connected via 40GbE / 10GbE network cables. As
mentioned in Section 2.2, general-purpose machines cannot mount many GPUs directly at the same
time due to the limited number of PCIe slots. In the remote GPU environments, the number of
available GPUs is increased by introducing Ethernet switches between the host machine and GPU
workers (please see Figure 3).

In this case, gradients data are aggregated by a CPU on the host machine for several reasons.
First, the approach of using a GPU for aggregation causes unbalanced workload among GPUs. Sec-
ond, the GPU does not have enough memory to hold all gradients data. Third, since the aggregation
calculation is done by simple vector additions, the overhead of copying gradients to the GPU for
the aggregation cannot be ignored. Communication latency between remote nodes during the ag-
gregation limits the benefit of faster GPUs. Figure 2 shows a breakdown of the execution time using
two ExpEther I/O boxes each equipped with a GPU (GeForce GTX 1080Ti). In this measurement,
Pytorch is used as a deep learning framework, ResNet 152 is used as a DNN model, and SGD is
used as an optimization algorithm. Gradient computation and Optimization are executed by two
GPUs, while gradient aggregation is executed by a CPU on the host machine.

0.0 0.2 0.4 0.6 0.8 1.0

Data Preparation
Gradient Computation

Gradient aggregation
Optimization

Figure 2: Breakdown of execution times in training phase

As shown in Figure 2, the gradient aggregation accounts for approximately 9% in this case.
Although GPU computation is dominant with a few GPUs, the proportion of this communication
increases with the number of GPU nodes, which lowers the training throughput.
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3.2 Gradient Aggregation using Network Switch

In recent years, the parameter size of DNN models has been increasing with the benefit of faster
GPUs. As the model size and the number of connected GPUs increase, aggregation throughput is
limited by the network bandwidth, especially between an Ethernet switch and a host machine. We
simply estimate the minimum transmission time in the network for each iteration as follows. Given
a model size of M , with N GPU workers participating, and with B bandwidth interconnection,
assuming gradients data from all GPU workers arrive at once. In this case, the minimum transmission
time between the switch and each GPU is 2M/B, while that time between the switch and the host
machine is 2MN/B. This means that the available bandwidth between the switch and each GPU
is limited to B/N .

In this paper, we therefore propose to offload the gradient aggregation to the network switch in
the network. Figure 3 illustrates the proposed system, where gradients are aggregated by the network
switch that connects the host machine and each GPU. This approach prevents the transmission time
from increasing proportionally to the number of GPUs. The aggregation using the network switch
enables the wide bandwidth to be used efficiently. In addition, since the aggregation is done by the
network switch, the saved compute resources at the host machine can be used for other computation
tasks. In Section 4, we will implement the proposed switch by considering two GPU cluster cases:
one with GTX 1080Ti GPUs and another with Jetson Xaviers that are power-efficient embedded
GPUs. In Section 5, we will evaluate it in these cases.

GPU GPU GPU

Ethernet
Switch DPDK

GPU GPU GPU

Switch

Host

Gradient
Aggregation

Host

Conventional System Proposed System

Figure 3: System overview. Gradients are computed by GPUs, then transmitted to a host machine.
In our proposed system, gradient aggregation is done by DPDK-based intermediate switch.

3.3 DPDK-Based In-Network Aggregation

We offload gradient aggregation to a software network switch. Software switches are typically pro-
grammable and can add memory modules; so they are useful for the aggregation task that needs
to synchronize gradients data. There are many ways to implement the software network switch. In
this paper, we employ DPDK [1], which enables high-speed packet processing. Figure 4 shows an in-
network aggregation using DPDK. In DPDK, the dedicated thread occupying a CPU core constantly
polls NIC (Network Interface Card), and an application controls the NIC directly. In distributed
training with remote GPU environments, all gradients data transmitted from each GPU node pass
through the intermediate switch. Then, the gradients data are routed and aggregated at the same
time by the proposed switch. By performing the aggregation in the switch, the gradients data are
reduced by 1/N in the network, where N is the number of participating GPUs. Furthermore, the
intermediate switch can structurally receive gradients data from remote GPUs all at once. This
structural advantage is also beneficial in overlapping reduction operations with inter-node commu-
nication, which helps to reduce the aggregation time without increasing workload on remote nodes.
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In this paper, the proposed switch is applied to the following three communication protocols for
exchanging gradients: 1) UDP/IP communication, 2) a proprietary protocol for PCI Express over
Ethernet and 3) MPI over TCP-based communication.

Our proposed method can be implemented at both the following: 1) a Linux-based software
switch and 2) a host machine. In this paper, the proposed method is implemented at the software
switch as one case of the above two implementation methods. When assuming that a host machine
has an enough number of PCIe slots and each remote GPU is directly connected to the host machine,
our proposed function would be implemented at the host machine.

Ethernet

User Space

Hardware

Kernel Space

M
N

MN

M

M

NICNICNIC

Proposed Network Switch

Aggregation

DPDK

Network

Polling

Figure 4: In-network aggregation using DPDK. N : GPU count, M : gradient size, → : Gradients,
→ : Aggregated gradients

4 Implementation

4.1 Remote GPUs Environment Setup

In this paper, we consider the following three cases as remote GPU environments:

Case 1) remote invocation of GPU tasks over a network, inspired by rCUDA, where the proposed
system is verified using a standard TCP/IP communication.

Case 2) ExpEther 40G, where the proposed switch is applied to an actual remote GPU technol-
ogy.

Case 3) an embedded GPU cluster consisting of Jetson Xavier, where the proposed switch is
applied to the low-cost GPU cluster using MPI communication.

In Case 1, the proposed system using the proposed DPDK-based aggregation switch is implemented
and verified using TCP/IP communication as a prototype implementation. In Case 2, we apply
the proposed switch to the actual remote GPU technology using ExpEther 40G products. 40GbE
network is used as an interconnect between a host machine and GPU nodes in these two cases. In
Case 3, the proposed switch is extended and additionally evaluated for the power efficient embedded
GPU cluster using MPI communication that is commonly used in practice. We employ 10GbE
network for the interconnect in Case 3. We implement the environments using Pytorch as the deep
learning framework.
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4.2 Implementation Overview

4.2.1 Case 1

Figure 5 shows the configuration of Case 1 and its data flow. This environment consists of a host
machine, worker machines equipped with a GPU, and the proposed DPDK-based aggregation switch.
In Case 1, each learning iteration proceeds as follows: 1) The host machine extracts minibatches
from a training dataset and distributes them to each GPU. 2) The GPU of each worker machine
calculates gradients by applying the minibatch assigned by the host machine to its own DNN model.
3) The calculated gradients data are sent to the host machine. Please note that our proposed switch
is implemented based on layer-2 switches, thus the destination IP address of gradients packets sent
from each GPU devices is set to the host machine IP address. 4) These gradients are aggregated on
the network switch instead of the host machine. 5) These target gradient packets are kept in the
packet buffers and the local gradient values of payloads are overwritten to the aggregated gradients
values. 6) The aggregated gradient packets are multicasted by the switch to each GPU, not to the
host machine. 7) Instead of receiving the gradients from each GPU, the host machine receives a
signal indicating completion of the aggregation from the switch. These steps can be overlapped to
mitigate communication latency. In this implementation, we employ UDP/IP communication for
the gradients data communication from the perspective of simplicity of implementing the protocol
stack at user space of the proposed switch. TCP/IP communication is used for other communication.
Considering the transmission efficiency and packet buffer size in DPDK libraries, the packet length
containing gradients data is 1516 bytes, which include additional headers indicating the type of data
and the sequence number of gradients. Packet loss is detected by checking the additional headers
information. Please note that no packets loss occurs in our evaluation in this paper.

DPDK
Switch NIC

OS

Application

Host

CPUGPU NIC

 Machine

CPUGPU NIC

 Machine

(1) Mini-Batch(2) Gradient computation

(3) Send

(4) AllReduce

(5) Aggregated gradient

(6) Signal

Figure 5: Configuration of Case 1 using remote invocation of GPU tasks

4.2.2 Case 2

Figure 6(a) shows the configuration of Case 2 and its data flow. This environment consists of a
host machine, I/O boxes equipped with GPUs, and the proposed switch. Figure 6(b) shows the
I/O box with one GPU mounted. The host machine and GPUs are connected via 40GbE network
using ExpEther bridges. Figure 6(c) shows the 40G host adapter. The PCIe packets containing the
calculated gradients data are encapsulated into Ethernet frames and transmitted to the host machine
using proprietary protocols (e.g., transmission rate control, retransmission for lost packets). This
reliable communication does not permit any changes to packets. Therefore, when manipulating the
gradients packets, our proposed switch clones the original gradient packets and forwards them to the
host machine in order to prevent communication interruptions and retransmissions with our current
implementation. The flow from (1) to (4) is the same as that in Case 1.
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(3) Send
(4) AllReduce

I / O box

GPU ExpEther

I / O box

GPU ExpEther

DPDK
Switch ExpEther

OS

Application

Host

(1) Mini-Batch(2) Gradient computation

Forward all packet

(a) Configuration of Case 2 using ExpEther

(b) I/O box with one GPU

(c) Host adapter

Figure 6: ExpEther 40G environment. ExpEther I/O boxes with GPUs (b) and host adapters (c)
are connected to each other via DPDK-based 40GbE switch

4.2.3 Case 3

In Case 3, we use an embedded GPUs cluster consisting of Jetson Xavier as an example of low-cost
GPU clusters. This environment consists of a host machine, Jetson Xaviers, and the proposed switch
connecting them via 10GbE connections. Figure 7 shows the GPUs cluster consisting of four Jetson
Xaviers, where a NIC is installed to the PCIe slot of each Jetson Xavier. We employ Open MPI [3]
for gradients data communication, which is one of the most widely used communication protocols for
high performance computing purposes. We run Open MPI using TCP-based communication over IP
interfaces/networks. In this implementation, MPI Send() and MPI Recv() functions in Open MPI
libraries are used for exchanging gradients data between nodes. The gradients calculated on each
Jetson Xavier are transmitted to the host machine all at once using MPI Send() and aggregated by
the proposed intermediate switch. In our proposed system, the gradients data are manipulated by
the switch in the network and do not reach the host machine. When using reliable communication,
each GPU node and the host machine need to receive pseudo responses from the switch. Thus, the
proposed switch is extended to support a part of TCP and MPI functions for gradients aggregation
in this case. Instead of the host machine, the extended switch returns pseudo ACK responses for
the received gradients packets to each GPU. Then, the switch sends a communication error as a
completion signal to the host machine’s error handler instead of forwarding the gradients data. The
switch aborts communication after receiving the errors and moves to next processes.

4.3 DPDK-Based Aggregation Switch

Figure 8 illustrates an overview of the implemented DPDK-based aggregation switch. Figure 8(a)
and Figure 8(b) show the 40GbE switch used in Case 1-2 and the 10GbE switch used in Case 3,
respectively. DPDK applications receive packets directly in user space via a polling-based receiving
mechanism called PMD (Poll Mode Driver). The received packets are placed in the packet buffer pre-
allocated on Hugepage, and the application obtains the packet pointers using DPDK libraries. The
aggregation switch mainly consists of a sending / receiving thread group and a gradient aggregation
thread group. These threads are implemented as DPDK threads based on the polling mechanism, not
regular Linux threads. The receiving threads guarantee the order of received packets, and perform
packet classification processing using the headers. In the implemented 40GbE switch (Figure 8(a)),
the packets including the gradients data to be aggregated are passed from the receiving threads
to the aggregation threads. Then, the aggregation threads extract the gradients data from the
received packets and temporarily store the data in gradient buffers allocated on Hugepage in advance.
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(a) An embedded GPUs cluster
consisting of four Jetson Xaviers

(b) A Jetson Xavier with 10GbE NIC card

Figure 7: Environment of Case 3 using Jetson Xaviers.

Assuming that the DNN model size isM andN GPU workers participate, an additional memoryMN
is required in the network switch for aggregation. In the implemented 10GbE switch (Figure 8(b)),
the packets including the gradients data are directly stored based on Open MPI protocols by the
receiving threads. This 10GbE switch is redesigned to support MPI over TCP-based communication.
Open MPI modules to support the Open MPI communication for gradients data are implemented
in the receiving threads and the aggregation threads. Note that these MPI modules are only a part
of MPI functions used for gradient aggregation, not full MPI. Packets not to be aggregated are
forwarded based on their header information and MAC address tables held by the threads of each
port.

NICNICNIC

Poll Mode Driver

DPDK Library

Classification

Gradients Pool

Hugepages

User Space

Aggregation Thread

Reduction

Packetization

Sequencing

RX-ringRX-ringRX-Ring RX-ringRX-ringTX-Ring

Poll Mode Driver

DPDK Library

Transmission Control

Rx / Tx Thread
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(a) 40GbE aggregation switch

NICNIC

Rx-Thread Tx-Thread

NIC

Poll Mode Driver

DPDK Library

Classification

Poll Mode Driver

DPDK Library

Gradients Pool

Hugepages

TX-ringTX-ringTX-Ring

User Space

Aggregation Thread

OpenMPI Modules

Reduction

Transmission Control
Sequencing

Routing

(b) 10GbE aggregation switch

Figure 8: An overview of the DPDK-based 40GbE / 10GbE aggregation switch. (a): A send-
ing/receiving thread is implemented for each NIC port. (b): A sending thread and a receiving
thread are implemented for each NIC port and run independently. One logical core is assigned to
each DPDK thread. Assuming that the number of NIC ports is P and the gradient reduction is
executed by X aggregation threads, the total number of logical cores required in each switch is
P + 2X and 2P +X, respectively.
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from Node 1

Gradients 
from Node N

Aggregation 
thread 1
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thread 4

Chunk 1 Chunk 4

(a) A way of organizing aggregation threads.

Time

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Receiving Reduction Sending

(b) A way of overlapping processes for gradient chunks

Figure 9: A way of gradient aggregation in the proposed switch. (a): Each gradient array is divided
into chunks. Each aggregation thread works independently on the same chunk in all gradient arrays.
(b): Communication processes and reduction operations for gradient chunks are overlapped each
other.

There are several ways to organize threads to perform aggregation. Figure 9(a) illustrates a way
of gradient aggregation used in this switch for gradient arrays from N GPU nodes. In this way,
each gradient array obtained by each NIC port is divided into chunks of a predefined size. Each
aggregation thread works on the same chunk in all gradient arrays. When chunks with a specific
index are received from all GPU nodes, the aggregation thread assigned to that chunk starts aggre-
gating. Then, when the aggregation operation is completed for the chunk, the aggregation thread
overwrites the local gradient values with the aggregated gradient values and requests the corre-
sponding sending / receiving threads to send the packets. Figure 9(b) shows a way of overlapping
communication processes and reduction operations for gradient chunks to reduce the aggregation
time. In actual environments, there is a delay in the time until gradient arrays are received from all
GPU nodes. In particular, for larger gradients data, a longer waiting time occurs until the data are
fully received. In this thread organization, data receiving / sending tasks and reduction operations
can be efficiently overlapped with less inter-thread synchronization. Thus, this is a preferable way
to organize aggregation threads.

5 Evaluations

5.1 Packet Processing Throughput

5.1.1 Case 1 and 2: 40GbE Switch

First, the proposed DPDK-based network switch is evaluated in terms of packet processing through-
put. In this evaluation, the proposed switch is directly connected to NIC port of another machine
with 40GbE cables. Each NIC is installed to PCIe 3.0 x16 slot of the machines. Test packets
including gradients data are generated at a line rate of 40Gbps by using DPDK-Pktgen [4] and
sent continuously from the packet generator machine to the proposed switch. The throughput is
measured from the number of packets processed per second by the proposed switch. Table 1 shows
the execution environment used for the proposed 40GbE switch. In our prototype implementation
(Case 1), each packet contains 366 gradients and thus the packet length including a packet header
and the payload is 1516 bytes. In the case of ExpEther, PCIe TLP (transaction layer packet) frames
for GPUs are encapsulated into Ethernet frames. The maximum payload size of the TLP in our
system used is 128 bytes, which is the same size used in [15]. In this case, the payload length of
each gradients packet is 128 bytes (i.e., 32 gradients) and its header length is 64 bytes, and thus the
total packet length is 192 bytes.

As a result of measuring the throughput in both cases, the average throughput of the proposed
switch is 39.41Gbps and 26.01Gbps, respectively. Although test packets are continuously transmitted
at 40Gbps, the 40GbE line rate is lower than 40Gbps when considering the Ethernet preamble and
interframe gap inserted for each packet. Considering these overheads, the theoretical maximum
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throughput in our environment is 39.48Gbps for Case 1 and 36.23Gbps for Case 2. In Case 1, the
measured throughput of gradient aggregation is 99.8% of the maximum throughput, and thus almost
the line rate is achieved. However, in Case 2, the measured throughput is decreased to 71.8% of the
maximum. From these results, ExpEther’s communication bandwidth is limited by the proposed
switch due to the following two factors. First, the packets size used for forwarding the gradients
data between ExpEther bridges is as small as 128 bytes in our environment. Second, our current
implemented switch creates the clone packets of the gradients packets and forwards them to the host
machine in order to prevent communication interruption and retransmission. This unnecessary one-
copy overhead would be mitigated by considering ExpEther’s proprietary protocols. Regarding the
throughput, there is still enough room for improved implementations, such as using RSS (Receive
Side Scaling) and multi-threading the receiving thread, which will be addressed in our future work.

Table 1: 40GbE DPDK-switch execution environment
OS Ubuntu 18.04

CPU Intel Xeon E5-2637 v3 @3.5GHz
Memory 512GB

Hugepages 1GB x4
NIC Intel Ethernet CNA XL710-QDA2

DPDK 18.11.2
Pktgen 19.10.0

5.1.2 Case 3: 10GbE Switch

We evaluate the packet processing throughput of the proposed 10GbE switch used in Case 3. The
proposed switch is directly connected to NIC ports of another machine running DPDK with 10GbE
cables. The packet generator machine generates the packets used for transmitting gradients data in
Open MPI library and sends them to the proposed switch at a line rate of 10Gbps using multiple
DPDK threads. The throughput is measured by counting the number of the packets processed for a
certain period time in the proposed switch. Table 2 shows the execution environment used for the
proposed 10GbE switch.

Figure 10 shows the throughput for several different packet sizes. When Open MPI communica-
tion is used, gradients data are basically transmitted over Ethernet with a packet size of 1518 bytes.
In this case, the measured throughput reaches the theoretical line rate with zero packet loss. Also,
all packet sizes over 128 bytes almost reach the line rate. Note that the throughput with 64 bytes
(gray bar) simply indicates switching throughput for packets that do not contain gradients data to
be aggregated.

Table 2: 10GbE DPDK-switch execution environment
OS Ubuntu 18.04

CPU Intel Xeon E5-2637 v3 @3.5GHz
Memory 512GB

Hugepages 1GB x4
NIC Intel Ethernet Converged Network Adapter X520-DA2

DPDK 19.11.6

5.2 Aggregation Performance

5.2.1 Case 1

In this section, the proposed DPDK-based switch is evaluated in terms of the execution time of
gradient aggregation using remote invocation of GPU tasks. The evaluation environment consists
of three remote GPU worker nodes, one host machine, and the switch connecting them. In this
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Figure 10: Throughput for gradient packets of the proposal switch

measurement, the execution time from when the packet including gradients data is received from
any GPU node to when the aggregated gradients are completely transmitted to each remote GPU is
measured. CIFAR 100 is used as a training dataset, and several state-of-the-art DNN models with
different sizes are used for the evaluation. Table 3 shows DNN models and their gradient sizes used
in our evaluation. To verify the effectiveness of the proposed switch, we compare the aggregation
executed by the switch with the conventional aggregation done in an application layer of the host
machine. Four threads are used for the aggregation task in both measurements. Table 4 shows the
execution environments for the worker and host machines.

Table 3: DNN models
Model Parameter size

GoogleNet 24.7 MB
VGG 19 80.2 MB

ResNet 50 94.0 MB
ResNet 101 170.0 MB
ResNet 152 232.6 MB
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Figure 11: Execution time of gradient aggregation in
Case 1

Figure 11 shows the execution times of the gradient aggregation for each model, which are
average times of 100 iterations. In this graph, X-axis represents DNN models and Y-axis represents
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their execution times. As a result, the aggregation in the network using the proposed switch (red
bar) outperforms the aggregation on the host machine (blue bar) by 2.2-2.5x. These improvements
are achieved by reducing unnecessary communication overheads using DPDK. By performing the
aggregation using the network switch, the transmission time of gradients can be kept constant relative
to the number of nodes. Therefore, it is considered that further benefits can be gained especially
when using more GPUs.

Table 4: Worker and host execution environments
Worker machine Host machine

OS Ubuntu 18.04 LTS Ubuntu 18.04 LTS
CPU Intel Xeon E5-2637 v3 @3.5GHz Intel Core i7-4790 @3.6GHz

Memory 128GB 8GB
GPU GeForce GTX 1080Ti (11GB RAM) -

CUDA 10.0 10.0
Pytorch 1.3.0 1.3.0

NIC Intel Ethernet CNA XL710-QDA2 Intel Ethernet CNA XL710-QDA2

5.2.2 Case 2

We evaluate aggregation execution time when using ExpEther as the actual remote GPU environ-
ment. In ExpEther, sophisticated communications based on proprietary protocols are performed
between ExpEther bridges. These communications contain many shorter packets, which lowers the
processing throughput of the proposed switch. In the proposed switch, the protocols for returning
ACK packets or broadcasting aggregated gradients data to remote GPU devices without ExpEther
hardware bridges are not implemented. Thus, we evaluate our proposed switch in a simple way. In
this simple evaluation, the execution time of the aggregation is measured using 32,000 parameters
consisting of 1,000 packets. This execution time is defined as the time until the addition operation
for all gradients arrays from each GPU is completed. The evaluation environment consists of two
I/O boxes each equipped with a GPU, one host machine, and the proposed switch. Figure 12 shows
the comparison of the aggregation execution time. Note that this time does not include processing
for the aggregated gradients. In this case, the aggregation performed on the switch is 1.16x faster
than that on the host machine. In this evaluation, the parameter size used is small. In addition,
packet forwarding for controlling ExpEther protocols increases unnecessary overheads. Thus, there
is room for improvement in our measurement and implementation, but the evaluation results show
that the proposed switch is useful for the actual remote GPU environment.

In this evaluation, the execution time of the aggregation is improved by approximately 1.16x.
Based on the breakdown of training time shown in Section 3.1, the entire training time is shortened
by approximately 1.25%. In this paper, only a few GPUs are used for the evaluation due to a facility
limitation, but overheads of the aggregation process increase with GPU node count. In this case,
there may be a possibility that the proposed switch would further reduce the entire training time in
distributed training with more GPUs. Please note that since the aggregation is done by the network
switch, the saved compute resources at the host machine can be used for other computation tasks.

5.2.3 Case 3

We evaluate aggregation execution time when using Open MPI in the Jetson Xaviers cluster. This
evaluation environment consists of four Jetson Xaviers, one host machine, and the proposed 10GbE
switch connecting them. In this evaluation, we measure the execution time on Jetson Xavier from
the start of sending gradients data to the receipt of reduce completion responses. We compare the
proposed switch-based aggregation with MPI Reduce() function executed using the host machine.
Table 5 shows the execution environments for the worker and host machines.

Figure 13 shows the average execution times of the aggregation for each model. In this graph, red
bar and green bar represent the aggregation executed by the proposed switch with one aggregation
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Figure 12: Execution time of gradient aggregation in Case 2

thread and that with four aggregation threads, respectively. Blue bar represents the aggregation
executed by the host machine using MPI Reduce() with a single process. As a result, the aggregation
using the proposed switch with four aggregation threads (green bar) outperforms the aggregation
using the host machine (blue bar) by 5.5-5.8x. This evaluation result shows that overlapping reduc-
tion operations with packets receiving by polling in the network switch helps to significantly reduce
the aggregation time. Even when compared with the same number of the aggregation thread (blue
bar and red bar), the proposed switch provides 1.6-1.7x faster aggregation than the conventional
aggregation. Our proposed switch is based on the DPDK-based software switch that sending and
receiving threads poll independently for each NIC port. On the other hand, in the case of the host
machine, gradients data from all remote GPUs is received by a single process with interrupt pro-
cessing for a single port. These differences result in the performance gap between the case of host
machine and the proposed switch (1 aggregation thread).

Table 5: Worker and host execution environments in Case 3
Worker machine Host machine

OS Ubuntu 18.04 LTS Ubuntu 18.04 LTS
CPU ARMv8 Processor rev 0 (v8l) @1.19GHz Intel Xeon E5-2637 v3 @ 3.50GHz

Memory 32GB 128GB
GPU 512-Core Volta GPU with 64 Tensor Cores -

pytorch 1.4.0 1.4.0
CUDA 10.0 10.0

Open MPI 2.1.1 2.1.1

NIC
Mellanox ConnectX-3

EN MCX311A-XCAT
Intel Ethernet Converged

Network Adapter X520-DA2

5.2.4 Discussion

Our proposed switch is a Linux-based software switch, thus it has only several PCIe slots and
several ports per NIC installed to them. In this case, the number of ports that can be scaled with
a single proposed switch is at the most 8 or 16. When scaling the number of remote GPUs beyond
these ports constraints, more than one level of the proposed switches will be required. However,
communication bandwidth between the host machine and the top-level switch would be a bottleneck
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Figure 13: Execution time of gradient aggregation in Case 3

when deep levels of the proposed switches are used. GPU remote extension technologies such as
ExpEther basically require a single host machine to control all remote GPUs as well as directly-
mounted GPUs. Although the amount of gradients data can be reduced by introducing our proposed
switches, communication cost for instructions to each GPU device and mini-batch data increases
with the number of remote GPU nodes. Therefore, our proposed approach would have advantage
for the relatively small remote GPU cluster consisting of up to a few levels of proposed switches.

6 Summary

In distributed training using remote GPUs, communication occurred between remote nodes when
gradients are aggregated. This communication imposes a certain overhead for distributed training
with multiple GPUs. In this paper, we focused on remote GPU environments using network-attached
GPUs. In these environments, aggregation workload is imposed on a host machine, which lowers ag-
gregation throughput. We therefore proposed to offload the gradient aggregation to a DPDK-based
network switch between the host machine and remote GPUs. Our evaluation using UDP communi-
cation showed that the proposed switch-based aggregation outperformed the aggregation executed
by the host machine by 2.2-2.5x. In the evaluation using ExpEther, although there was room for
optimization, aggregation throughput was accelerated by 1.16x with our current implementation.
The proposed switch was extended to support MPI over TCP-based communication for exchanging
gradients data and evaluated using power efficient Jetson Xaviers cluster in Case 3. This additional
evaluation showed that the proposed switch outperformed the conventional reduction operation by
up to 5.5-5.8x.

In this paper, we implemented and evaluated our proposed switch by considering the GPU cluster
using GTX 1080Ti GPUs and that using embedded GPUs, respectively. Although in this work, we
used the limited number of GPUs due to our facility limitation, as a future work we are planning to
evaluate scalability of the proposed switch using more GPUs in remote GPU environment.
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