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Abstract

In self-organizing distributed systems in which there is no centralized controller, cooperation
of processes and fault-tolerance are crucial. The former can be formalized by process syn-
chronization, which is one of the fundamental problems in concurrent, parallel and distributed
computing. The latter can be formalized by self-stabilization. A self-stabilizing distributed
algorithm is a class of fault-tolerant distributed algorithms that tolerates a finite number of any
kind of transient faults. It can be considered as a self-organizing system because it does not
need a globally synchronized initialization nor reset, and the system automatically converges to
some legitimate configuration.

In this paper, we propose a self-stabilizing distributed algorithm for a token ring with
the graceful handover on bidirectional ring networks with the message-passing communication
model. The motivation of this work is to design a protocol, by a formal approach, which is useful
for the self-organizing multi-node security camera system that guarantees continuous observa-
tion. More specifically, a system consists of several nodes each of which is equipped with a video
camera, some of the nodes are active in monitoring, and others are inactive to save energy. The
problem is to design an algorithm with the graceful handover of active nodes. That is, at least
one node is active at any time, in other words, there is no time instant at which no node is active.
This problem is formalized as the mutual inclusion problem, which is a process synchronization
problem such that at least one process is in the critical section. To this end, we propose an al-
gorithm for circulating two tokens on bidirectional ring networks under the state-reading model
by extending Dijkstra’s self-stabilizing token ring. We also propose the concept of the model
gap tolerance property for the graceful handover. The proposed algorithm is self-stabilizing,
and it guarantees the graceful handover in message-passing distributed systems.
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1 Introduction

1.1 Background

Process synchronization is one of the fundamental problems in concurrent, parallel and distributed
computing. A section of the algorithm (or program code) that is critical for coordination and
competition of processes is called the critical section. The mutual exclusion problem is a typical
process synchronization problem : at most one process is in the critical section at any time, that is,
no two processes are in the critical section simultaneously. Mutual exclusion is used, for example,
to avoid concurrent updates of a shared object. The mutual inclusion problem is another process
synchronization problem in which at least one process is in the critical section at anytime [6].
Unification of mutual exclusion and mutual inclusion is proposed in [9] as the (`, k) critical section
problem.

A self-stabilizing distributed algorithm (system) is a class of distributed algorithms proposed by
Dijkstra [2]. It tolerates any kind and any finite number of transient faults, for example, memory
corruption by soft error, message loss and/or corruption. Self-stabilization is considered as one of the
theoretical foundations of self-organizing systems because self-stabilizing systems need no globally
synchronized initialization when it starts, nor global reset when some fault occurs. In addition,
it is adaptive to changes of network topology. An important point in self-stabilizing distributed
algorithms is that it is controlled in a distributed manner, that is, there is no centralized controller.

Self-stabilizing mutual inclusion has an interesting application, for example, to environmental
monitoring IoT system which consists of a set of small nodes (physical entities of processes) with
rechargeable batteries. Suppose that a network of nodes equipped with a sensor (e.g., camera), and
each node executes a mutual inclusion algorithm. A node in the critical section actively monitors
the environment, and other nodes are inactive to reduce energy consumption and can charge energy
with solar cells or any energy harvesting device. Then, a (set of) node(s) which actively monitors
the environment changes from moment to moment, however, there is at least one node that monitors
the environment at any time. In other words, there is no time instant at which the environment is
not monitored. The system is self-organizing because it is self-stabilizing.

1.2 Related works

The concept of self-stabilization is proposed by Dijkstra [2] as a framework of fault-tolerant dis-
tributed algorithms, and he proposed self-stabilizing token rings. A token ring can be considered
as a mutual exclusion algorithm because (1) the token can be considered as a privilege to enter the
critical section, (2) the number of tokens is exactly one at any time, and (3) each process eventu-
ally holds the token. Inspired by this pioneering work, self-stabilizing distributed algorithms are
proposed extensively. A self-stabilizing multi-token ring is proposed in [3]. Here, a multi-token
ring means that there are some constant numbers of tokens and they circulate a ring. In a token
system (with single or multiple tokens), there is at least one process that holds a token and mu-
tual inclusion is also achieved. Superstabilizing mutual exclusion algorithm on rings are proposed
in [4, 15], where superstabilizing is an extension of self-stabilization in such a way that, in addition
to the self-stabilizing property, a system recovers from an almost-legitimate configuration (such as a
resultant configuration by a single transient fault at the legitimate configuration, for example), and
the system keeps some safety predicate during convergence from almost-legitimate configuration.

The mutual inclusion problem is proposed by Hoogerwoord in [6] as a complement to the mutual
exclusion problem, and he proposed a solution for only two processes with semaphores. A distributed
algorithm in the fully asynchronous message-passing model with an arbitrary number of processes is
proposed in [8], and a self-stabilizing distributed algorithm is proposed in [10]. In [9], a unification
of the mutual inclusion problem and the mutual exclusion problem is proposed as the (`, k) critical
section problem in which at least ` and at most k processes are in the critical section, where 0 ≤
` ≤ k ≤ n and n is the number of processes. Distributed algorithms for the (`, k) critical section
problem are found in [12–14].

Transformation schemes are often used such as [5, 7, 16] to execute self-stabilizing distributed
algorithms in real sensor networks with message-passing communication. This is why many self-
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stabilizing distributed algorithms, e.g., [2, 3, 10, 14], assume the state-reading model as a commu-
nication model which is a kind of distributed shared-memory such that update of a local variable
(memory) is immediately observed by other processes. Specifically, they transform an algorithm
designed assuming the state-reading model to a program code executable in the message-passing
model. These transformation schemes target a class of self-stabilizing distributed algorithms such
that no process makes a move after the network is stabilized. The development of sensor networks
for self-stabilizing algorithms that fall in this class is found in [17]. Unfortunately, algorithms for
the mutual exclusion and inclusion are not in this class, and some consideration is necessary when
we use these transformation schemes.

Preliminary version of this paper appeared in [11]. The time complexity of the convergence time
is improved to O(n2) in this paper, whereas the conference version is O(n3).

1.3 Our contribution

We tackle a self-stabilizing mutual inclusion in the message-passing model (such as wireless sensor
networks) in this paper. An application of transformation scheme proposed in [5] to token rings
proposed in [2, 3] does not guarantee mutual inclusion in the message-passing model despite what
they do in the state-reading model. So, we need some technique to achieve mutual inclusion in the
message-passing model with a transformation scheme, and it is our motivation for this work.

First, we propose a self-stabilizing mutual inclusion algorithm on bidirectional rings in the state-
reading model for communication and the composite atomicity model for execution. We present a
formal description and proof of correctness of the proposed algorithm. Specifically, it guarantees
that the number of processes in the critical section is at least one and at most two at any time. That
is, it is also a solution to the (1, 2) critical section problem. Then, we discuss how we can guarantee
mutual inclusion in the message-passing model when we use a transformation scheme proposed in [5]
which requires a small overhead at runtime. Unfortunately, the targets of the transformation are
only silent self-stabilizing algorithms, where silence means that no process changes its local state
after convergence. Because a token circulation algorithm is not silent, it is not known whether an
application of the transformation scheme works correctly or not, and we need careful consideration.
To this end, we propose a concept of the model gap tolerance such that mutual inclusion is guaranteed
also in the message-passing model with the transformation scheme. We show that the proposed
algorithm has the model gap tolerant property, and it can be executed in the message-passing
model.

In summary, the algorithm design in this paper is the following three steps. (1) Design an
algorithm with the model gap tolerance in the state-reading model, (2) prove the correctness of
the algorithm in the state-reading model, and (3) apply the transformation scheme to run in the
message-passing model. The benefit of our approach makes design and verification of the algorithm
simple.

1.4 Organization of this paper

In section 2, we present definitions of computational model, self-stabilization, and the mutual inclu-
sion problem. In section 3, we present a formal description of the proposed algorithm. In section
4, we show the proof of correctness and time complexity of the proposed algorithm. In section 5,
we discuss the execution of the proposed algorithm by a transformation scheme proposed in [5], and
introduce the concept of the model gap tolerance property. We show that the proposed algorithm
has this property. In section 6, we give concluding remarks.

2 Preliminary

In this section, we present formal definitions of the network model and the concept of self-stabilization.
Then, we briefly explain Dijkstra’s self-stabilizing token ring algorithm.
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2.1 The network model

A distributed system considered in this paper is a set of processes, which is an abstraction of nodes,
and a set of communication links. Let V = {P0, P1, ..., Pn−1} be the set of processes, where n is
the number of processes. We assume that a network is a bidirectional ring in which each process Pi

has two communication links (Pi−1 mod n, Pi) and (Pi, Pi+1 mod n), that is, the set of communication
links is E = {(Pi−1 mod n, Pi), (Pi, Pi+1 mod n) | 0 ≤ i < n}. For simplicity of presentation, by Pi+1

(resp., Pi−1), we denote Pi+1 mod n (resp., Pi−1 mod n). For each Pi (0 ≤ i < n), we call Pi+1 (resp.,
Pi−1) the successor (resp., predecessor) of Pi.

Let Qi be the finite set of local states of Pi (0 ≤ i < n). It is assumed that Q = Qi for each
0 ≤ i < n, that is, all processes have the same set Q of local states, however, we adopt notation Qi for
simplicity of explanation. A configuration is an n-tuple of process states which represents the whole
state of the network. When qi ∈ Qi is the current local state of Pi for each 0 ≤ i < n, a configuration
of the network is an n-tuple (q0, q1, ..., qn−1). By Γ, we denote a set of all configurations, that is,
Γ = Q0 ×Q1 × · · · ×Qn−1 = Qn.

An algorithm for each Pi is a finite set of guarded commands in the following form.

if 〈guard 1〉 then 〈command 1〉
if 〈guard 2〉 then 〈command 2〉
if 〈guard 3〉 then 〈command 3〉

...

A guard of Pi is a predicate on local states of Pi and its neighbors, that is, the j-th guard of
Pi is a boolean function Gi,j(qi, qi−1, qi+1). We say that a process is enabled if and only if it has a
guard which evaluates to true. A command of Pi is a statement that updates qi according to the
values of qi, qi−1 and qi+1, that is, the j-th command of Pi is a form of qi ← Ci,j(qi, qi−1, qi+1).

Each process Pi can read and write its local variable qi, and it can read its neighbors’ local
variables but cannot write. Reading neighbor’s local variables completes without delay. Such a
communication model is called the state-reading model. It is assumed that each process performs
Read, Compute and Write in an atomic step. Such an execution model is called the composite
atomicity model.

An execution X, starting from γ0 ∈ Γ, is a maximal (possibly infinite) sequence of configurations
X = γ0, γ1, γ2, · · · such that γt → γt+1 for each t ≥ 0, where the binary relation→⊆ Γ×Γ represents
configuration transition and it will be explained shortly. The first configuration γ0 is called an initial
configuration of the execution. Intuitively, an execution is a sequence of configurations by moves of
processes. When there are two or more processes that are enabled in γt, selection scheme of a set of
processes that make a move is called scheduler or daemon. A scheduler which selects an arbitrary
nonempty set of enabled processes at each step is called the distributed daemon. A scheduler that
selects exactly one enabled process at each step is called the central daemon. The distributed (resp.,
central) daemon is called unfair if it never yields an execution in which a process is continuously
enabled forever. In other words, an unfair daemon may not select a process even if it is continuously
enabled forever. Hence an algorithm must be correct for every possible selection by the unfair
daemon. So, the design of self-stabilizing algorithms under the unfair daemon is not trivial. In this
paper, we assume the unfair distributed daemon.

Let us define the binary relation →. Intuitively, we have γt → γt+1 if, in configuration γt,
some processes selected by daemon make move, and γt+1 is the next configuration. For any two
configurations γt, γt+1 ∈ Γ, we have γt → γt+1 if and only if the following three conditions hold.

• Let γt = (qt0, q
t
1, ..., q

t
n−1) and γt+1 = (qt+1

0 , qt+1
1 , ..., qt+1

n−1).

• Let V ′ ⊆ V be a set of processes selected by daemon to move in γt.

• qt+1
i = Ci,j(q

t
i , q

t
i−1, q

t
i+1) for each Pi ∈ V ′ and qt+1

k = qtk for other processes Pk.

So far we defined the case of bidirectional ring. Similarly, we can define unidirectional ring in
such a way that link is one way from Pi−1 to Pi for each 0 ≤ i < n. That is, a command to update
the local state of Pi is a form of qi ← Ci,j(qi, qi−1).
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Algorithm 1 Dijkstra’s K-state token ring SSToken

1: Constant integer K (> n)
2: Variable integer xi ∈ {0, 1, 2, ...,K − 1}
3: For the bottom process P0

4: Rule D1 : if xi = xi−1 then
5: xi ← xi−1 + 1 mod K
6: Token condition : xi = xi−1
7: For the other process Pi (0 < i < n)
8: Rule D2 : if xi 6= xi−1 then
9: xi ← xi−1

10: Token condition : xi 6= xi−1

2.2 Self-stabilization

Let us introduce the concept of self-stabilization proposed by Dijkstra [2]. Let Γ be a set of all
configurations and Λ ⊆ Γ be a set of configurations, and each γ ∈ Λ is called a legitimate config-
uration. A configuration γ ∈ (Γ\Λ) is called an illegitimate configuration. A distributed system is
self-stabilizing with respect to Λ if and only if the following two properties hold.

• Closure : Starting from any legitimate configuration γ ∈ Λ, the next configuration γ′ such
that γ → γ′, we have γ′ ∈ Λ.

• Convergence : Starting from any (possibly illegitimate) configuration γ ∈ Γ, the system even-
tually reaches a legitimate configuration γ′ ∈ Λ.

Intuitively, the closure property means that once the system becomes legitimate, it remains so
forever (as long as no fault occurs). Note that a legitimate configuration and the next configuration
may or may not be the same. Specifically, in cases of mutual exclusion and inclusion, configurations
change forever among legitimate ones after convergence is achieved.

A self-stabilization is preferable, especially for distributed systems. For example, (1) globally
synchronized reset is not necessary to initialize a distributed system, (2) it tolerates any (finite)
number of transient faults, such as soft error in processor and memory devices, message corruption,
loss and duplication. We regard the configuration just after these undesirable events as an initial
configuration of a system, and by the convergence property of self-stabilization, it is guaranteed that
the system is automatically brought to a legitimate configuration again.

Because we assume the unfair distributed daemon as a process scheduler, the convergence prop-
erty implies that, for any scheduling of processes, the system reaches a legitimate configuration.
This property is strong in a sense that there is no execution in which the system is illegitimate
forever.

2.3 Dijkstra’s self-stabilizing K-state token ring

The proposed mutual inclusion algorithm is based on the algorithm of Dijkstra’s token ring [2], and
we briefly review it here. Dijkstra proposed three algorithms for self-stabilizing mutual exclusion as
a token ring, and we adopt so-called the K-state token ring among them shown in Algorithm 1. It
assumes the state-reading model, the composite atomicity model and distributed daemon, as same
as our algorithm assumes.

TheK-state token ring assumes a unidirectional ring network with n processes P0, P1, P2, ..., Pn−1.
Process P0 is a distinguished process called the bottom process, and each process P1, P2, ..., Pn−1 is
called the other process. The bottom process runs its algorithm which is different from the other
processes, and other processes are identical and they run the same algorithm. Each process Pi

(0 ≤ i < n) has a local variable xi and its domain is {0, 1, 2, ...,K − 1}, where K is any constant
such that K > n when the token ring is executed under the distributed daemon.
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Process Pi holds a token, which is a virtual object, if and only if it is enabled. In legitimate
configurations, exactly one token is circulated in the ring, and when a process holds the token, it
may enter the critical section to take a privileged action.

A configuration (x0, x1, ..., xn−1) is legitimate if and only if, for some x ∈ {0, 1, ...,K − 1} and

1 ≤ ` ≤ n− 1, it is a form of (

n︷ ︸︸ ︷
x, x, ..., x) or (

`︷ ︸︸ ︷
x+ 1, ..., x+ 1,

n−`︷ ︸︸ ︷
x, ..., x), where arithmetic is modulo K.

3 The proposed mutual inclusion algorithm

In this section, we first explain the overview of the proposed algorithm SSRmin, then, the technical
detail is presented.

One may think that we can use Dijkstra’s token ring for the application of monitoring systems
because the number of tokens is exactly one at any time. It is true in the state-reading model,
however, it is not true in the message-passing model because token passing is not instant because
of message transmission delay. That is, there is no token in the system between the time a process
releases a token and the time the next process receives it. Furthermore, one may think that we can
use general mutual inclusion algorithm because the number of tokens is at least one at any time. It
is true, however, the number of tokens can be too many and it can be resource-consuming. So, the
requirements to our algorithm is that (1) there is at least one token in the message-passing model,
and (2) the number of tokens is as small as possible. To this end, we first develop an algorithm
under the state-reading model with model gap tolerance (explained shortly) in subsection 3.2, and
verify its correctness in section 4. Then, we transform the algorithm into the message-passing model
in section 5. The model gap tolerance guarantees that there is at least one token by the transformed
algorithm in the message-passing model. Because the transfer of tokens is controlled in such a way
that there is no time instant without a token, the graceful handover is achieved.

3.1 Overview of the algorithm

The proposed algorithm assumes bidirectional ring with two tokens. Each process Pi (0 ≤ i < n)
has access to local variables at Pi−1 and Pi+1, in addition to Pi’s local variables. In legitimate
configurations, exactly two tokens are circulated in the ring, however, a process may hold two
tokens at the same time and, in such a situation, the number of processes that hold a token is
one. Otherwise, there are two processes that hold a token. In our algorithm, different from other
multi-token circulation algorithms, two processes that hold tokens are neighbors (or the same).

It is important to notice that a token is not implemented by a virtual data object in this paper.
It is defined by a predicate on local variables, i.e., a process decides whether it holds a token or not
by evaluating some predicate, what we call a token condition, on the values of local variables of itself
and its neighbors. For simplicity of description, we often use phrases ‘a process sends a token to a
neighbor’ or ‘a token is moved to a neighbor’. Their precise meanings are that a process changes
the values of its local variables so that its token condition becomes false and, at the same time, a
neighbor’s token condition becomes true.

The tokens are named as the primary token and the secondary token. Intuitively, the two tokens
move in a ring like an inchworm. In legitimate configurations, when the primary token is located at
Pi, the secondary token is located at Pi or Pi+1. Two variables rtsi (which means ‘ready to send’
the secondary token) and trai (which means ‘token receipt acknowledged’ for the secondary token)
for each process Pi are introduced to control the movement of two tokens. Specifically, these two
variables are used for handshaking between two processes Pi (the holder of the primary token) and
Pi+1.

• The primary token is maintained by the Dijkstra’s token ring with minor modification for
movement control. This plays the role of the tail of an inchworm. When the primary token is
located at Pi, it moves to Pi+1 if the secondary token is located at Pi+1.
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Algorithm 2 Abstraction of Dijkstra’s K-state token ring

1: Macro
2: For the bottom process Pi (i = 0) :
3: Gi ≡ xi = xi−1
4: Ci ≡ xi ← xi−1 + 1 mod K
5: For the other process Pi (0 < i < n) :
6: Gi ≡ xi 6= xi−1
7: Ci ≡ xi ← xi−1
8: Rule δ :
9: if Gi then Ci

• The secondary token is our extension. This plays the role of the head of an inchworm. When
the secondary token is located at Pi, it moves to Pi+1 if the primary token is also located at
Pi.

The condition such that process Pi holds a token is as follows.

• Pi holds the primary token if and only if Gi is true. Here, Gi is the condition for Pi to have
a token by Dijkstra’s token ring. It is formally defined in Algorithm 2 and will be explained
shortly.

• Pi holds the secondary token if and only if (trai = 1) ∨ (rtsi = 1 ∧ rtsi+1 = 0 ∧ trai+1 = 0) is
true.

The idea of the token movement is controlled by the following abstract actions, explained as
follows. The set of abstract actions are presented here for intuitive understanding only, and the
concrete actions are presented shortly based on the abstract actions.

1. Initially, we assume that Pi holds the primary and the secondary tokens.

2. Abstract action α1 by Pi (Ready to send the secondary token) :
Pi sets rtsi = 1. This means that Pi is ready to send the secondary token to Pi+1.

3. Abstract action β by Pi+1 (Receive the secondary token) :
When Pi+1 observes rtsi = 1, it sets trai+1 = 1. This means that the secondary token is moved
from Pi to Pi+1, and Pi+1 receives the secondary token. Note that primary token remains at
Pi.

4. Abstract action α2 by Pi (Send the primary token) :
When Pi observes trai+1 = 1, it executes a rule of Dijkstra’s token ring algorithm, and sends
the primary token from Pi to Pi+1. At the same time, it sets rtsi = 0.

Now the primary and the secondary tokens are located at Pi+1, and a cycle of token movement
is achieved. By repeating the above (abstract) actions, two tokens move the ring network.

Because, in the Dijkstra’s token ring, the bottom process P0 has a different guarded command
from the other processes Pi (1 ≤ i < n). For simplicity of understanding of the proposed algorithm,
here, we collapse the rules for the bottom process and for the other processes into a single rule “if
Gi then Ci”, where Gi is a guard and Ci is a command as shown in Algorithm 2. Then, with Gi and
Ci, the idea presented above (abstract actions) is described as follows. Rules A1 and B control the
movement of the secondary token, and Rules A2 controls the movement of the primary token. Note
that abstract action β is explained above as an action of Pi+1, however, it is described as an action
of Pi here. We also introduce Rule F to fix inconsistent local state for the convergence property.
For simplicity of description, we implicitly assume the priority of rules A1 > A2 > B > F at each
process (A1 is the highest and F is the lowest). That is, if the guard of a rule is true, rules with
lower priority are ignored. So, a process is enabled by at most one rule.
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Step P0 P1 P2 P3 P4

1 PS − − − −
2 P S − − −
3 − PS − − −
4 − P S − −
5 − − PS − −
6 − − P S −
...

Figure 1: Movement of the two tokens; ‘P’ (resp., ‘S’) represents the primary (resp., secondary)
token

1. Rule A1 (For abstract action α1; Ready to send the secondary token) :
if rtsi = 0 ∧Gi then
rtsi ← 1; trai ← 0;

2. Rule A2 (For abstract action α2; Send the primary token) :
if rtsi = 1 ∧ trai+1 = 1 ∧Gi then
rtsi ← 0; trai ← 0; Ci;

3. Rule B (For abstract action β; Receive the secondary token) :
if rtsi−1 = 1 ∧ trai = 0 ∧ ¬Gi then
rtsi ← 0; trai ← 1;

4. Rule F (Fix inconsistent local state) :
if (locally incorrect) then
rtsi ← 0; trai ← 0;

An example of token movement with five processes in legitimate configuration is illustrated in
Figure 1. Handshaking mechanism between processes Pi and Pi+1 with two variables rts and tra is
illustrated in Figure 2. In this figure, Rules A1, A2 and B are shown, however, Rule F is not because
it is a rule to converge to a legitimate configuration from illegitimate ones.

Let us consider the condition for the secondary token. One may think that a condition trai = 1
will suffice for the secondary token. If we take such a condition, the secondary token disappears
when the primary token moves to the process where the secondary token resides, and it appears
when it moves to the next process. So it extincts when two tokens are virtually located at the same
process. This is not a problem in the state-reading model because there exists at least one token at
any time, however, the proposed condition guarantees what we call the model gap tolerance property
when the proposed algorithm is executed in the message-passing model. We will discuss this issue
in section 5.

3.2 Detail of the algorithm

The concrete and formal description of the proposed algorithm SSRmin is presented in Algorithm 3.
It has five rules and we assume that a rule with a smaller number has priority over rules with a larger
rule number. So, each process is enabled by at most one rule. Rules 1, 2 and 4 are executed when
Gi, the guard of Dijkstra’s token ring, is true, while Rules 3 and 5 are executed when Gi is false.
To make the algorithm self-stabilizing, we relax the conditions of the guards so that the rules can
be applied for illegitimate configurations to converge. For example, when rtsi = 1 and trai = 1, we
continue the token circulation as much as possible or reset these variables. Figure 3 shows possible
rules to execute for each value of 〈rtsi.trai〉, and it may help the readers to follows the proof.

Definition 1 The set of all configuration is Γ = {0, 1, ...,K−1}×{0, 1}×{0, 1}. We use a notation
xi.rtsi.trai to write local state of process Pi for each 0 ≤ i < n. A configuration

(x0.rts0.tra0, x1.rts1.tra1, . . . , xn−1.rtsn−1.tran−1)
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Pi+1Pi

rtsi ← 1; trai ← 0;

P,S
rtsi = 0

trai+1 = 0

P,S -(ready to send 
the secondary token)

(token receipt acked) S

P,S

time

-

P

(exec Dijkstra's algorithm
& send the primary token)

Rule A1

Rule B

Rule A2

trai = 1

rtsi+1← 0; trai+1← 1;

rtsi+1 = 0
token token

rtsi ← 0; trai ← 0; Ci ;

rtsi = 0
trai = 0

trai+1 = 1
rtsi+1 = 0

-

rtsi = 1
trai = 0

trai+1 = 0
rtsi+1 = 0

trai+1 = 1
rtsi+1 = 0

-

γt

γt+1

γt+2

γt+3

γt+4

configuration

-

Figure 2: Handshaking between Pi and Pi+1 to pass tokens

is legitimate if and only if it is one of the following forms for some x ∈ {0, 1, ...,K − 1} (arithmetic
on x is modulo K). For readability, a process with a token is under-waved.

• P0 holds the primary and the secondary tokens :

(x.0.1
::::

, x.0.0, x.0.0, . . . , x.0.0),

(x.1.0
::::

, x.0.0, x.0.0, . . . , x.0.0)

• P0 holds the primary token and P1 holds the secondary token :

(x.1.0
::::

, x.0.1
::::

, x.0.0, . . . , x.0.0)

• Pi (1 ≤ i ≤ n− 1) holds the primary and the secondary tokens :

(x+ 1.0.0, . . . , x+ 1.0.0, x.0.1
::::

, x.0.0, . . . , x.0.0),

(x+ 1.0.0, . . . , x+ 1.0.0, x.1.0
::::

, x.0.0, x.0.0, . . . , x.0.0)

• Pi (1 ≤ i ≤ n− 1) holds the primary token and P(i+1) mod n holds the secondary token :
(x+ 1.0.0, . . . , x+ 1.0.0, x.1.0

::::
, x.0.1
::::

, x.0.0, . . . , x.0.0)

We denote, by Λ, the set of all legitimate configurations. 2

An execution example which starts in a legitimate configuration with five processes is shown in
Figure 4. At each step, status of each process Pi is shown, and the values of local variables are
written in the form of xi.rtsi.trai. In addition to local variables, ‘P ’ (resp., ‘S’) indicates that Pi

holds the primary (resp., secondary) token, and ‘/g’ (1 ≤ g ≤ 5) indicates that the guard of Rule g
evaluates to true at Pi. For example, ‘1.0.1PS/1’ for Pi means that xi = 1, rtsi = 0, trai = 1, Pi

holds the primary and the secondary tokens, and the guard of Rule 1 evaluates to true at Pi.
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Algorithm 3 Mutual inclusion algorithm SSRmin for each process Pi

1: Constant
2: n ≥ 3; // the number of processes

3: K > n; // state space for x

4: Variable
5: integer xi ∈ {0, 1, ...,K − 1}; // state of the Dijkstra’s K-state token ring

6: boolean rtsi; // ready to send a token

7: boolean trai; // token receive acknowledged

8: Macro
9: For the bottom process Pi (i = 0)

10: Gi ≡ xi = xi−1
11: Ci ≡ xi ← xi−1 + 1 mod K
12: For the other process Pi (1 ≤ i < n)
13: Gi ≡ xi 6= xi−1
14: Ci ≡ xi ← xi−1
15: Rule set :
16: Rule 1 : if Gi ∧ (〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉
17: = 〈?.?, 0.0, ?.?〉 or
18: = 〈?.?, 0.1, ?.?〉 or
19: = 〈?.?, 1.1, ?.?〉) then // ready to send the secondary token

20: 〈rtsi.trai〉 = 〈1.0〉;
21: Rule 2 : if Gi ∧ (〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉
22: = 〈?.?, 1.0, 0.1〉) then // send the primary token

23: 〈rtsi.trai〉 = 〈0.0〉; Ci;
24: Rule 3 : if ¬Gi ∧ (〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉
25: = 〈1.0, 0.0, ?.?〉 or
26: = 〈1.0, 1.0, ?.?〉 or
27: = 〈1.0, 1.1, ?.?〉) then // receive the the secondary token

28: 〈rtsi.trai〉 = 〈0.1〉;
29: Rule 4 : if Gi ∧ (〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉
30: 6= 〈0.0, 1.0, 0.0〉) then // fix inconsistent local state when Gi is true

31: 〈rtsi.trai〉 = 〈0.0〉; Ci;
32: Rule 5 : if ¬Gi ∧ (〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉
33: 6= 〈1.0, 0.1, ?.?〉 and
34: 6= 〈?.?, 0.0, ?.?〉) then // fix inconsistent local state when Gi is false

35: 〈rtsi.trai〉 = 〈0.0〉;
36: Token condition
37: the primary token : Gi

38: the secondary token : 〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉
39: = 〈?.?, ?.1, ?.?〉 or
40: = 〈?.?, 1.?, 0.0〉
41:
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=<1.0><rtsi . trai>=<0.0>
Rule 1  (Gi=T)
=<?.?, 0.0, ?.?>

=<0.1>
Rule 3  (Gi=F)

=<1.0><rtsi . trai>=<0.1>
Rule 1  (Gi=T)
=<?.?, 0.1, ?.?>

=<0.0>
Rule 5  (Gi=F)
≠<1.0, 0.1, ?.?>

=<0.0><rtsi . trai>=<1.0>
Rule 2  (Gi=T)
=<?.?, 1.0, 0.1>

=<0.1>
Rule 3  (Gi=F)
=<1.0, 1.0, ?.?>

=<0.0>
Rule 4  (Gi=T)

=<1.0><rtsi . trai>=<1.1>
Rule 1  (Gi=T)

=<0.1>
Rule 3  (Gi=F)

=<1.0, 0.0, ?.?>

≠<0.0, 1.0, 0.0>

=<0.0>
Rule 5  (Gi=F)

=<1.0, 1.1, ?.?>

=<0.0>
Rule 5  (Gi=F)

=<?.?, 1.1, ?.?>

Figure 3: Possible rules for each 〈rtsi.trai〉 values

Step P0 P1 P2 P3 P4

1 3.0.1PS/1 3.0.0 3.0.0 3.0.0 3.0.0
2 3.1.0PS 3.0.0/3 3.0.0 3.0.0 3.0.0
3 3.1.0P/2 3.0.1S 3.0.0 3.0.0 3.0.0
4 4.0.0 3.0.1PS/1 3.0.0 3.0.0 3.0.0
5 4.0.0 3.1.0PS 3.0.0/3 3.0.0 3.0.0
6 4.0.0 3.1.0P/2 3.0.1S 3.0.0 3.0.0
7 4.0.0 4.0.0 3.0.1PS/1 3.0.0 3.0.0
8 4.0.0 4.0.0 3.1.0PS 3.0.0/3 3.0.0
9 4.0.0 4.0.0 3.1.0P/2 3.0.1S 3.0.0
10 4.0.0 4.0.0 4.0.0 3.0.1PS/1 3.0.0
11 4.0.0 4.0.0 4.0.0 3.1.0PS 3.0.0/3
12 4.0.0 4.0.0 4.0.0 3.1.0P/2 3.0.1S
13 4.0.0 4.0.0 4.0.0 4.0.0 3.0.1PS/1
14 4.0.0/3 4.0.0 4.0.0 4.0.0 3.1.0PS

15 4.0.1S 4.0.0 4.0.0 4.0.0 3.1.0P/2
16 4.0.1PS/1 4.0.0 4.0.0 4.0.0 4.0.0
...

Figure 4: An execution example of SSRmin with five processes (local state xi.rtsi.trai is underlined
if enabled)
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4 Proof of correctness and performance analysis

In this section, we show proof of correctness of the proposed algorithm SSRmin and the analysis of
time complexity. The distributed daemon is assumed as a process scheduler.

Lemma 1 (Closure) For any legitimate configuration γ ∈ Λ, the configuration γ′ which follows γ
is also legitimate.

Proof. Let γ0 be a configuration γ0 = (x.0.1, x.0.0, x.0.0, · · · , x.0.0) for some x ∈ {0, 1, ...,K − 1}.
This configuration is defined as legitimate, and we select it as an initial configuration. To prove the
lemma, it is enough to show that (a) every configuration that is reachable from γ0 is legitimate,
and (b) γ0 is reachable from every legitimate configuration. In the proof of part (a) below, observe
that every legitimate configuration (including γ0) defined by Definition 1 is reachable from γ0. So
part (b) is easily verified from the proof of part (a).

In each configuration γ in any execution that starts from γ0, we show below that, by simply
following an execution sequence, (1) there exists exactly one enabled process, and (2) the next
configuration of γ is also legitimate. So, the distributed daemon has no free choice : it must select
the only enabled process. For readability, the local state of an enabled process is underlined in the
configuration shown below. Figure 4 may help the readers.

• In γ0 = (x.0.1, x.0.0, x.0.0, · · · , x.0.0), according to the proposed algorithm, P0 is the only
enabled process (by Rule 1) in this configuration. Hence the possible choice for the distributed
daemon is only P0 (Rule 1). Then, we have the next configuration γ1 which is legitimate shown
below.

• In γ1 = (x.1.0, x.0.0, x.0.0, · · · , x.0.0), P1 is the only enabled process (by Rule 3), and it
executes the rule. The next configuration is γ2 which is legitimate shown below.

• In γ2 = (x.1.0, x.0.1, x.0.0, · · · , x.0.0), P0 is the only enabled process (by Rule 2), and it
executes the rule.

The next configuration is γ3 which is legitimate, and we show below general form of configu-
rations γ3, γ4, γ5, ..., γ3n−4.

• In γ3i = (x + 1.0.0, · · · , x + 1.0.0, x.0.1, x.0.0, · · · , x.0.0), where 1 ≤ i ≤ n − 2, Pi is the only
enabled process (by Rule 1), and it executes the rule. The next configuration is γ3i+1 which
is legitimate shown below.

• In γ3i+1 = (x+1.0.0, · · · , x+1.0.0, x.1.0, x.0.0, x.0.0 · · · , x.0.0), Pi+1 is the only enabled process
(by Rule 3), and it executes the rule. The next configuration is γ3i+2 which is legitimate shown
below.

• In γ3i+2 = (x+ 1.0.0, · · · , x+ 1.0.0, x.1.0, x.0.1, x.0.0 · · · , x.0.0), Pi is the only enabled process
(by Rule 2), and it executes the rule. The next configuration is γ3i+3, and it is easy to see
that it is legitimate.

Above three steps are repeated from i = 1 to n− 2, and we have a configuration γ3n−3 shown
below and it is legitimate. Note that, when i = n− 1, Pi+1 mod n is the bottom process P0 and
we cannot handle it as a general case.

• In γ3n−3 = (x+ 1.0.0, · · · , x+ 1.0.0, x.0.1), Pn−1 is the only enabled process (by Rule 1), and
it executes the rule. The next configuration is γ3n−2 which is legitimate shown below.

• In γ3n−2 = (x+ 1.0.0, · · · , x+ 1.0.0, x.1.0), P0 is the only enabled process (by Rule 3), and it
executes the rule. The next configuration is γ3n−1 which is legitimate shown below.

• In γ3n−1 = (x+ 1.0.1, · · · , x+ 1.0.0, x.1.0), Pn−1 is the only enabled process (by Rule 2), and
it executes the rule. The next configuration is γ3n which is legitimate shown below.
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• Now we have γ3n = (x+ 1.0.1, x + 1.0.0, · · · , x + 1.0.0), and γ3n and γ0 differ only the value
of x, which is incremented by one in every process. It is easy to see that the same observation
applies for initial configuration γ3n with x + 1 mod K. Hence it is verified that the next
configuration of a legitimate configuration is also legitimate. By repeating this observation K
times, γ0 is reached, i.e., γ0 is reachable from γ0. 2

Lemma 2 For each legitimate configuration γ ∈ Λ, the number of the primary token is exactly one,
and the number of the secondary token is also exactly one in γ.

Proof. It is easily verified by the definition of legitimate configurations and the tokens. 2

Lemma 3 For any configuration γ ∈ Γ, there exists Pi such that Gi evaluates to true, that is,
x0 = xn−1 holds or xi 6= xi−1 holds for some i (1 ≤ i < n).

Proof. By definition of Gi, it is the same as the guard of the Dijkstra’s token ring presented in
Algorithms 1 and 2. That is, G0 for P0 is the guard of Rule D1, and for each 1 ≤ i < n, Gi for Pi

is the guard of Rule D2. Hence the proof in [2] applies here and there exists at least one process Pi

such that Gi is true. 2

Lemma 4 (No Deadlock) For any configuration γ ∈ Γ, there exists at least one process Pk such
that Pk has a rule whose guard evaluates to true.

Proof. Let Pj be any process such that 〈rtsj .traj〉 = 〈1.1〉. If Gj evaluates to true, Pj is enabled by
Rule 1. Otherwise, it is enabled by Rule 3 or Rule 5. In the following, we consider configurations
in which no such process exists. Let Pi be any process such that Gi evaluates to true. Recall that
there exists such Pi by Lemma 3.

In case 〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉 = 〈?.?, 0.0, ?.?〉 or 〈?.?, 0.1, ?.?〉, Pi is enabled
by Rule 1. In case 〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉 = 〈?.?, 1.0, ?.?〉, we consider the following
cases:

• Case 〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉 = 〈?.?, 1.0, 0.0〉 : If Gi+1 evaluates to true, Pi+1

is enabled by Rule 1. Otherwise, Pi+1 is enabled by Rule 3.

• Case 〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉 = 〈?.?, 1.0, 0.1〉 : Pi is enabled by Rule 2.

• Case 〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉 = 〈?.?, 1.0, 1.0〉 : Pi is enabled by Rule 4.

Because there exists an enabled process in any configuration, deadlock never occurs. 2

By this lemma, any maximal execution is infinite.

Lemma 5 For any configuration γ0 ∈ Γ, 3n is the maximum length of execution that does not
include any execution of Rule 2 and Rule 4.

Proof. Let us observe an execution γ0, γ1, γ2, ... in which Rules 2 and 4 are never executed. In such
an execution, each process Pj never executes Cj (the command part of Dijkstra’s token ring). As a
result, the value of Gj never changes for each Pj throughout the execution.

Let Pi be any process which executes a rule in γ0. Note that the following discussion holds
any execution under the unfair distributed daemon, i.e., Pi and other process(es) may execute
simultaneously in γ0.

Case Pi executes Rule 1 in γ0. In γ1, we have 〈rtsi.trai〉 = 〈1.0〉 and Gi remains true. Then, Rules 2
and 4 are the rules that make Pi enabled in the next time. However, it is assumed that Pi never
executes these rules, Pi never executes any rule forever. Hence the maximum number of executions
of rules by Pi is one (Rule 1 only) in this case.
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Case Pi executes Rule 3 in γ0. In γ1, we have 〈rtsi.trai〉 = 〈0.1〉 and Gi remains false. Then,
Rule 5 is the only rule that makes Pi enabled in the next time. Since Pi executes Rule 3 in γ0,
〈rtsi−1.trai−1〉 = 〈1.0〉 holds in γ0. For Pi to execute Rule 5 in γt for some t > 0, 〈rtsi−1.trai−1〉 6=
〈1.0〉 must hold in γt. This is possible only if Pi−1 executes Rule 3 or 5 in some configuration γt′

(0 ≤ t′ < t), and, if it occurs, we have 〈rtsi−1.trai−1〉 = 〈0.1〉 or 〈0.0〉 in γt′+1. Since Pi−2 never
executes Rules 2 and 4 and Gi−1 is false forever, the rules that Pi−1 may execute is Rules 3 and
5 in γt′+1 and later configurations. So, we have 〈rtsi−1.trai−1〉 = 〈0.1〉 or 〈0.0〉 in γt′+1 and later
configurations. If Pi executes Rule 5 in γt, we have 〈rtsi.trai〉 = 〈0.0〉 and then, Pi is never enabled
thereafter. Hence the maximum number of executions of rules by Pi is at most two (Rules 3 and 5)
in this case.

Case Pi executes Rule 5 in γ0. In γ1, we have 〈rtsi.trai〉 = 〈0.0〉 and Gi remains false. Then,
Rule 3 is the only rule that makes Pi enabled in the next time. For Pi to execute Rule 3 in some
configuration γt (t > 0), we must have 〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉 = 〈1.0, 0.0, ?.?〉 in
γt. We consider two cases : Gi−1 is true or false.
Case Gi−1 is true. Because it is assumed that Pi−1 never executes Rules 2 and 4, we have
〈rtsi−1.trai−1〉 = 〈1.0〉 in γt and later configurations. Once Pi executes Rule 3 in γt, we have
〈rtsi.trai〉 = 〈0.1〉 and Pi is never enabled in γt+1 and later configurations. Hence the maximum
number of executions of rules by Pi is at most two (Rules 5 and 3) in this case.
Case Gi−1 is false. Rule 1 is the only rule for Pi−1 to yield 〈rtsi−1.trai−1〉 = 〈1.0〉, however,
Pi−1 never executes it since Gi−1 is false. Hence, for Pi to execute Rule 3 in γt, we must have
〈rtsi−1.trai−1〉 = 〈1.0〉 in γ0 and remains so until γt. This means that, after Pi executes Rule 5 in
γ0, we have 〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉 = 〈1.0, 0.0, ?.?〉 in γ1. Then, Pi is enabled by
Rule 3 in γ1, and remains so until γt. After Pi executes Rule 3 in γt, we have 〈rtsi.trai〉 = 〈0.1〉 in
γt+1. Let us consider the following subcases for execution of Pi−1 in γt.

• If Pi−1 simultaneously executes Rule 3 in γt, we have 〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉 =
〈0.1, 0.1, ?.?〉 in γt+1. Then, in γt+1 and later configurations, we have 〈rtsi−1.trai−1〉 = 〈0.1〉
or 〈0.0〉 because Gi−1 is false. This means that Rule 5 is the only possible rule for Pi to execute
in later configurations, and, if Pi executes Rule 5, it is not enabled forever.

• If Pi−1 simultaneously executes Rule 5 in γt, we have 〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉 =
〈0.0, 0.1, ?.?〉 in γt+1. Then, in γt+1 and later configurations, we have 〈rtsi−1.trai−1〉 = 〈0.1〉
or 〈0.0〉 because Gi−1 is false. Hence Rule 5 is the only possible rule for Pi to execute in later
configurations, and, if Pi executes Rule 5, it is not enabled forever.

• If Pi−1 does not execute any rule in γt, we have 〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉 =
〈1.0, 0.1, ?.?〉 in γt+1. Hence, in γt+1, Pi−1 is enabled by Rule 3 or 5 but Pi is not enabled.

If Pi−1 executes Rule 3, we have 〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉 = 〈0.1, 0.1, ?.?〉, and
the same observation applies as above.

If Pi−1 executes Rule 5, we have 〈rtsi−1.trai−1, rtsi.trai, rtsi+1.trai+1〉 = 〈0.0, 0.1, ?.?〉, and
the same observation applies as above.

The maximum number of executions of rules by Pi is at most three (Rules 5, 3, and then 5) in
this case.

According to the observation above, each process executes rules at most three times. Hence 3n
is the upper bound on the maximum length of execution which does not include Rules 2 and 4. 2

Lemma 6 (Convergence) For each configuration γ0 ∈ Γ and any execution that starts from γ0,
eventually legitimate configuration in Λ is reached.

Proof. Let γ0 be any configuration. According to the proof of Lemma 5, some process Pi such that
Gi (the guard part of Dijkstra’s token ring) evaluates to true executes Ci (the command part of
Dijkstra’s token ring) at least once in every 3n steps, and eventually the part of Dijkstra’s token
ring in SSRmin converges.

The followings are the general properties of rules after Dijkstra’s token ring converges.
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• We have 〈0.0〉 by executing Rules 2 and 4 at Pi, and then Gi+1 becomes true at Pi+1.

• There is no rule to yield 〈1.1〉.

• The rule to yield 〈rtsi.trai〉 = 〈1.0〉 is only Rule 1 and it is executed by Pi only if Gi evaluates
to true, and we have 〈rtsi.trai〉 = 〈0.0〉 when Gi becomes false which occurs by execution of
Rules 2 or 4.

Let γ1 be the configuration such that the part of Dijkstra’s token ring is converged and P0 holds
the primary token, i.e., G0 evaluates to true. Because γ1 may not be legitimate, we show below that
configuration eventually becomes legitimate.

Let us observe the configuration, say γ2, just after the primary token circulates the ring once
and G0 becomes true again. From the general properties of rules, the following conditions hold in
γ2.

• For each Pi (0 ≤ i < n), we have 〈rtsi.trai〉 = 〈0.0〉, 〈0.1〉 or 〈1.0〉 regardless the value of Gi.

• For P0, we have 〈rts0.tra0〉 = 〈0.0〉 or 〈0.1〉. This is because 〈rts0.tra0〉 = 〈1.0〉 never occurs
because P0 executes Rule 2 in some configuration from γ1 to γ2. The former case occurs if P0

never executes Rule 3 in any configuration from γ1 to γ2. The latter case occurs if P0 executes
Rule 3 in some configuration from γ1 to γ2.

• For each Pi (1 ≤ i < n), we have 〈rtsi.trai〉 = 〈0.0〉 because 〈rtsi−1.trai−1〉 = 〈1.0〉 never
occurs after Pi−1 executes Rule 2 or 4 in configurations from γ1 to γ2.

In summary, we have γ2 = (x.0.1, x.0.0, x.0.0, · · · , x.0.0) or (x.0.0, x.0.0, x.0.0, · · · , x.0.0) for some
x. For the former case, the configuration is legitimate and convergence is completed. For the latter
case, the configuration is not legitimate and we need more observation for convergence. By simply
following the execution from the configuration, we have the next sequence of configurations (the
enabled process is underlined) :

1. (x.0.0, x.0.0, x.0.0, · · · , x.0.0) = γ2 and P0 executes Rule 1,

2. (x.1.0, x.0.0, x.0.0, · · · , x.0.0) and P1 executes Rule 3,

3. (x.1.0, x.0.1, x.0.0, · · · , x.0.0) and P0 executes Rule 2, then

4. (x+ 1.0.0, x.0.1, x.0.0, · · · , x.0.0) which is legitimate. 2

Theorem 1 The proposed algorithm SSRmin is a self-stabilizing mutual inclusion algorithm on bidi-
rectional ring such that (1) the number of privileged processes is at least one and at most two, (2) the
number of states per process is 4K, where K is a constant such that K > n.

Proof. It is self-stabilizing because the closure property is shown by Lemma 1 and the convergence
property is shown by Lemma 6. By Lemma 2, at least one and at most two processes are privileged
in legitimate configuration. The number of states per process is 4K because xi takes K values, and
rtsi and trai are binary. 2

Lemma 7 Let γ = (x0.rts0.tra0, x1.rts1.tra1, · · · , xn−1.rtsn−1.tran−1) be any configuration such that
the part of Dijkstra’s token ring of SSRmin is converged, i.e., (x0, x1, ..., xn−1) is a legitimate config-
uration of Dijkstra’s token ring. Then, for any execution starting from γ, SSRmin converges within
O(n2) steps.

Proof. By Lemma 5, at most 3n steps are executed before a single step (execution of Ci at some Pi) of
Dijkstra’s token ring is performed. As we observed in the proof of Lemma 6, SSRmin converges after
the token of Dijkstra’s token ring circulates the ring plus four steps. Hence a legitimate configuration
of SSRmin is reached in 3n · n+ 4 = O(n2) steps. 2
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Figure 5: Construction of a bipartite graph H = (W135,W24, F ) from execution X

Lemma 8 For any initial configuration γ0 and for any execution starting from γ0 of SSRmin, the
part of Dijkstra’s token ring of SSRmin converges, i.e., (x0, x1, ..., xn−1) becomes a legitimate config-
uration of Dijkstra’s token ring, in O(n2) steps.

Proof. It is shown in [1] that 3n(n− 1)/2 is the upper bound on the convergence time of Dijkstra’s
token ring under the unfair distributed daemon. So, it is sufficient to show that 3n(n − 1)/2 steps
of Dijkstra’s token ring (Rules 2 and 4) are executed in O(n2) steps of SSRmin.

First, we explain the outline of the proof. Let X = γ0, γ1, γ2, · · · be any infinite execution of
SSRmin. Below we use a notation |Y | for any prefix Y of X to denote the length of Y . Let Y1 be
a prefix of X such that Y1 includes at least 3n(n− 1)/2 executions of the steps of Dijkstra’s token
ring, i.e., executions of Rules 2 and 4 of SSRmin. We denote the length of Y1 by T1, i.e., T1 = |Y1|.
Then, the part of Dijkstra’s token ring is converged in γT1

. Additional 3n2 + 4 steps are sufficient to
reach a legitimate configuration of SSRmin by Lemma 7. We show below that O(n2) is sufficient for
T1, and hence the time complexity of SSRmin is T1 + 3n2 + 4 = O(n2), which completes the proof
of this lemma.

Let us start by defining some symbols used in this proof. For each 0 ≤ i < n and z ≥ 1, let eiz
be the event such that it is the z-th execution of a rule at Pi in Y2, where Y2 is the prefix of X such
that |Y2| = T1 + 3n2 + 4. Below we denote the length of Y2 by T2, i.e., T2 = |Y2|. Let W135 (resp.,
W24) be a set of events such that e ∈W135 (resp., e ∈W24) if and only if e is an event of execution
of Rule 1, 3 or 5 in Y1 (resp., Rule 2 or 4 in X). Note that W135 is a finite set and W24 is an infinite
set, however, vertices in W24 that are not related to the convergence analysis are removed from W24

at the final stage of the proof, and finally W24 becomes a finite set.
We construct a bipartite graph H = (W135,W24, F ) such that (e, f) ∈ F if and only if e ∈W135

is dominated by f ∈W24. We use the concept of domination to show that the number of executions
of Rules 1, 3 and 5 (= |W135|) is within a constant factor of the number of executions of Rules 2
and 4 (= |W24|). Figure 5 is an intuitive illustration of H constructed from X, and its technical
detail is explained shortly. For simplicity, the figure shows a special case of X in which exactly
one event occurs in each configuration, however, one or more events occur in general. We say that
e ∈W135 is dominated by f ∈W24, if e occurs at Pi, f must occur at some Pj for further execution
of Pi in X. Intuitively, if e occurs, Pi is unblocked by f for further executions. Formally speaking,
if we modify the execution X in such a way that the occurrence of f is inhibited, the number of
events that occur at Pi after e is at most some constant in the modified execution. Note that an
event in W135 is dominated by one or more events in W24, and an event in W24 dominates one or
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Figure 6: Possible executions of rules at Pi and related executions at Pi−1 after Pi executes Rule 1

more events in W135. As we will see later that Pj at which a dominating event occurs is limited to
j ∈ {i, i− 1, i− 2} which limits the number of events in domination relation.

Shortly, we present the domination relation of two events, and we also show the followings as
fundamental observations to prove the upper bound on the time complexity:

1. For each event in W135, it is dominated by some event in W24.

2. There exists a constant L such that the degree of each f ∈W24 in graph H is at most L.

3. There exists a constant M such that for any occurrence of event in W135 at any Pi, its
dominating event in W24 occurs before the next M events at Pi occur.

Intuitive interpretations of these three are as follows. Items 1 and 2 claim the bound on dom-
ination size. The bound on the number of events in W135 is a constant factor of the number of
occurrences of events in W24. Item 3 claims the bound on time delay at each Pi. For any occurrence
of event in W135, a dominating event in W24 occurs within a constant number steps at Pi. Note that
the bound on time delay is local to Pi and executions of corresponding events of Pi and dominating
events are interleaved in X with other processes.

By these observations, the prefix Y1 of X includes 3n(n − 1)/2 occurrence of events in W24 if
T1(= |Y1|) is some constant factor of 3n(n − 1)/2. Specifically, T1 = 3(L + 1)Mn2 is sufficient by
the following reason. First, let us count the upper bound on the number of events. We have at most
3(L + 1)n(n − 1)/2 events in Y1 so that 3n(n − 1)/2 events in W24 occur in Y1 because at most L
events in W135 occurs for each event in W24. Next, let us find the upper bound on the number of
steps in X for the 3(L+ 1)n(n− 1)/2 events. For any series of (consecutive) si events at Pi in X, at
least bsi/2Mc events in W24 occur because any series of 2M events contains an interval of series of
M events that starts by an event in W135 and the interval includes an event in W24. For any length
S =

∑
i si, the prefix of X of length S includes at least

∑
ibsi/2Mc > (

∑
i si/2M)−n = S/2M −n

events in W24. For the value of S so that 3n(n− 1)/2 events in W24 to occur, S = 3(L+ 1)Mn2 is
sufficient, and we choose T1 = 3(L+ 1)Mn2.

Now we present the domination relation. Let e1 be any event in W135, Pi be the process at which
e1 occurs, and γt1 is the configuration in which e1 occurs. Let γt2 be the configuration in which
Pi executes a rule in the next time (t1 < t2) and Pi does not execute any rule in γt1+1, ..., γt2−1.
Let e2 be the event that Pi executes a rule in γt2 . We observe executions of processes to make the
occurrence of e2 possible and to find a dominating event of e1.

Case event e1 is an execution of Rule 1.
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Figure 7: Possible executions of rules at Pi after Pi executes Rule 3

Figure 6 illustrates executions of processes to help to understand this case. In γt1 , Gi evaluates
to true to execute Rule 1, and we have 〈rtsi.trai〉 = 〈1.0〉 in γt1+1 and remain so until γt2 . Possible
rules for Pi as event e2 in γt2 are Rule 2, 3, 4 and 5. (See also Figure 3 for possible rules.)

• Case event e2 is an execution of Rule 2 or 4:

Because e2 is in W24 and, by the occurrence of e2, Pi proceeds to execute the next event in
W135, e1 is dominated by e2. An edge (e1, e2) is added to F .

• Case event e2 is an execution of Rule 3 or 5:

The value of Gi changes from true (in γt1) to false (in γt2). This change occurs only if Pi−1
executes Rule 2 or 4 in some configuration γt1 , γt1+1, ..., γt2−1, and let f1 is the corresponding
event by Pi−1. Because Gi must be false to execute Rules 3 and 5 for Pi, e1 is dominated by
f1. An edge (e1, f1) is added to F .

The bound on domination size (each f ∈ W24 dominates at most constant number of events by
Rule 1) and the bound on time delay are shown as follows.

• Each f ∈ W24 dominates at most one event by Rule 1 for each Pi: For any process Pi, let
e be any event by Rule 1 at Pi. Let γt1 (resp., γt2) be the configuration in which e occurs
(resp., the next execution of a rule by Pi occurs). Then f occurs in some configuration in
γt1 , γt1+1, · · · , γt2−1. Hence, the event by Rule 1 at Pi that f dominates is the event e that
occurs in γt1 and f does not dominate other events by Rule 1 at Pi.

• Each f ∈ W24 dominates events by Rule 1 that occur at a constant number of processes: For
each process Pi, let f ∈ W24 be any event which occurs at Pi. Then, for each event e by
Rule 1 which is dominated by f , e occurs at Pi−1 or Pi. Equivalently, each f ∈ W24 at Pi

never dominates any event by Rule 1 which occurs at Pj (j 6∈ {i− 1, i}).

• For each occurrence of e ∈ W135 at Pi, its dominating event occurs before the next event not
in W24 occurs at Pi.

Case event e1 is an execution of Rule 3.
Figure 7 illustrates executions of processes to help to understand this case. In γt1 , Gi evaluates to

false to execute Rule 3, and we have 〈rtsi.trai〉 = 〈0.1〉 in γt1+1 and remain so so until γt2 . Possible
rules for the next execution of Pi as e2 in γt2 are Rules 1 and 5. (See also Figure 3 for possible
rules.)

• Case (1a): Event e2 is an execution of Rule 1.

The value of Gi changes from false (in γt1) to true (in γt2), and this change occurs only if Pi−1
executes Rule 2 or 4 in some configuration γt1 , γt1+1, ..., γt2−1, and let f be the corresponding
event of the execution by Pi−1. Because Gi must be true to execute Rule 1 for Pi, e1 is
dominated by f . An edge (e1, f) is added to F .
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Figure 8: Cycles of executions of Rules 3 and 5 at Pi and related executions at Pi−1 and Pi−2

• Case (1b): Event e2 is an execution of Rule 5.

We have 〈rtsi.trai〉 = 〈0.0〉 in γt2+1 as a result of execution of Rule 5. Then, possible rules for
the next execution of Pi are Rules 1 and 3 as shown in Figure 7. Let e3 be the event for the
next execution, and let γt3 be the configuration in which e3 occurs.

We continue to find a dominating event of e1 by observing events that enable e3 to occur.

• Case (2a): Event e3 is an execution of Rule 1.

A similar observation applies as case (1a). The event e3 occurs only if Pi−1 executes Rule 2
or 4 in some configuration γt2 , γt2+1, ..., γt3−1, and let f be the corresponding event of the
execution by Pi−1. Because Gi must be true to execute Rule 1 for Pi, e1 is dominated by f .
An edge (e1, f) is added to F .

• Case (2b): Event e3 is an execution of Rule 3.

We have 〈rtsi.trai〉 = 〈0.1〉 in γt3+1 as a result of execution of Rule 3. Then, possible rules for
the next execution of Pi are Rules 1 and 5.

Then, the same observation repeats as cases (1a), (1b), (2a) and (2b) as long as Rule 1 is not
executed by Pi. Because we have not found a dominating event yet in the repeated executions of
Rules 3 and 5 by Pi, let us observe the repeated executions in detail. Figure 8 illustrates such
executions to help to understand this case.

When Pi executes Rule 3 in γt1 , we have 〈rtsi−1.trai−1〉 = 〈1.0〉 in γt1 . When Pi executes
Rule 5 in γt2 , we have 〈rtsi−1.trai−1〉 6= 〈1.0〉 in γt2 , which implies that Pi−1 executes a rule in some
configuration in γt1 , γt1+1, · · · , γt2−1. Possible rules for Pi−1 are Rules 2, 3, 4 and 5. Let f1 be the
corresponding event by execution of a rule by Pi−1.

• If Pi−1 executes Rule 2 or 4, f1 is in W24. Because f1 makes e2 to occur (f1 enables execution
of Rule 5 at Pi in γt2), f1 is a dominating event of e1. An edge (e1, f1) is added to F .

• If Pi−1 executes Rule 3 or 5, Pi executes Rule 5 in γt2 . Then, Pi is enabled by Rule 3 in the
next time, and executes it in γt3 as we assumed in this case. When Pi executes Rule 3 in
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Figure 9: Possible executions of rules at Pi after Pi executes Rule 5

γt3 , we have 〈rtsi−1.trai−1〉 = 〈1.0〉. Hence the value of 〈rtsi−1.trai−1〉 need to change from
non-〈1.0〉 (by f1) to 〈1.0〉. This change occurs only by executing Rule 1 by Pi−1, and let f2 be
the corresponding event.

Because the value of Gi−1 changes from false (when f1 occurs at Pi−1) to true (when f2 occurs
at Pi−1), Pi−2 executes Rule 2 or 4 in between. Let g1 be the corresponding event by Pi−2.
In summary, event g1 enables the execution of Rule 1 by Pi−1 (event f2), which enables the
execution of Rule 3 by Pi (event e3). Hence g1 is the dominating event of e1, and an edge
(e1, g1) is added to F .

The bound on domination size (each f ∈ W24 dominates at most constant number of events by
Rule 3) and the bound on time delay are shown as follows.

• Each f ∈ W24 dominates at most one event by Rule 3 for each Pi: For any process Pi, let
e be any event by Rule 3 at Pi. Let γt1 (resp., γt3) be the configuration in which e occurs
(resp., the next execution of Rule 3 by Pi occurs). Then f occurs in some configuration in
γt1 , γt1+1, · · · , γt3−1, where f is equal to the event by Rule 2 or 4 at Pi−1 in case (2a) that
dominates e2 (in Figure 7), f1 by Rule 2 or 4 (in Figure 8), or g1 (in Figure 8). Hence,
the event by Rule 3 at Pi that f dominates is the event e that occurs in γt1 and f does not
dominate other events by Rule 3 at Pi.

• Each f ∈ W24 dominates events by Rule 3 that occur at a constant number of processes: For
each event e by Rule 3 which is dominated by f , e occurs at Pi−2, Pi−1 or Pi. Equivalently,
each f ∈W24 at Pi never dominates any event by Rule 3 which occurs at Pj (j 6∈ {i−2, i−1, i}).

• For each occurrence of e ∈W135 at Pi, its dominating event occurs before the next two events
occur at Pi.

Case event e1 is an execution of Rule 5.
This case is similar to the case of Rule 3 as we observed above. Figure 9 illustrates executions

of processes to help to understand this case. In γt1 , Gi evaluates to false to execute Rule 5, and we
have 〈rtsi.trai〉 = 〈0.0〉 in γt1+1 and remain so so until γt2 . Possible rules for the next execution of
Pi as e2 in γt2 are Rules 1 and 3. (See also Figure 3 for possible rules.)

• Case (1a): Event e2 is an execution of Rule 1.

The value of Gi changes from false (in γt1) to true (in γt2), and this change occurs only if Pi−1
executes Rule 2 or 4 in some configuration γt1 , γt1+1, ..., γt2−1, and let f be the corresponding
event of the execution by Pi−1. Because Gi must be true to execute Rule 1 for Pi, e1 is
dominated by f . An edge (e1, f) is added to F .

• Case (1b): Event e2 is an execution of Rule 3.

We have 〈rtsi.trai〉 = 〈0.1〉 in γt2+1 as a result of execution of Rule 3. Then, possible rules for
the next execution of Pi are Rules 1 and 5 as shown in Figure 9. Let e3 be the event for the
next execution, and let γt3 be the configuration in which e3 occurs.
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Figure 10: Cycles of executions of Rules 3 and 5 at Pi and related executions at Pi−1 and Pi−2

We continue to find a dominating event of e1 by observing events that enable e3 to occur.

• Case (2a): Event e3 is an execution of Rule 1.

The event e3 occurs only if Pi−1 executes Rule 2 or 4 in some configuration γt2 , γt2+1, ..., γt3−1,
and let f be the corresponding event of the execution by Pi−1. Because Gi must be true to
execute Rule 1 for Pi, e1 is dominated by f . An edge (e1, f) is added to F .

• Case (2b): Event e3 is an execution of Rule 5.

We have 〈rtsi.trai〉 = 〈0.0〉 in γt3+1 as a result of execution of Rule 5. Then, possible rules for
the next execution of Pi are Rules 1 and 3.

Then, the same observation repeats as cases (1a), (1b), (2a) and (2b) as long as Rule 1 is not
executed by Pi. Because we have not found a dominating event yet in the repeated executions of
Rules 5 and 3 by Pi, let us observe the repeated executions in detail. Figure 10 illustrates such
executions to help to understand this case.

When Pi executes Rule 5 in γt1 , we have 〈rtsi−1.trai−1〉 6= 〈1.0〉 in γt1 . When Pi executes
Rule 3 in γt2 , we have 〈rtsi−1.trai−1〉 = 〈1.0〉 in γt2 , which implies that Pi−1 executes a rule in some
configuration in γt1 , γt1+1, · · · , γt2−1. A possible rule for Pi−1 is Rule 1 only because it is the only
rule to yield 〈rtsi−1.trai−1〉 = 〈1.0〉. Let f1 be the corresponding event by execution of Rule 1 by
Pi−1. After execution of Rule 1, we have 〈rtsi−1.trai−1〉 = 〈1.0〉, and then, Pi executes Rule 3 as
event e2. Then, by a similar observation as the case of an execution of Rule 3 by Pi in γt1 , we have
an event f that dominates e1, where f is equal to f2 by Rule 2 or 4, or g2 (both in Figure 10). An
edge (e1, f) is added to F .

The bound on domination size (each f ∈ W24 dominates at most constant number of events by
Rule 5) and the bound on time delay are shown as follows.

• Each f ∈ W24 dominates at most one event by Rule 5 for each Pi: For any process Pi, let
e be any event by Rule 5 at Pi. Let γt1 (resp., γt3) be the configuration in which e occurs
(resp., the next execution of Rule 5 by Pi occurs). Then f occurs in some configuration in
γt1 , γt1+1, · · · , γt3−1, where f is equal to the event by Rule 2 or 4 at Pi−1 in case (2a) that
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dominates e2 (in Figure 7), f2 by Rule 2 or 4 (in Figure 10), or g2 (in Figure 10). Hence,
the event by Rule 5 at Pi that f dominates is the event e that occurs in γt1 and f does not
dominate other events by Rule 5 at Pi.

• Each f ∈ W24 dominates events by Rule 5 that occur at a constant number of processes: For
each event e by Rule 5 which is dominated by f , e occurs at Pi−2, Pi−1 or Pi. Equivalently,
each f ∈W24 at Pi never dominates any event by Rule 5 which occurs at Pj (j 6∈ {i−2, i−1, i}).

• For each occurrence of e ∈W135 at Pi, its dominating event occurs before the next two events
occur at Pi.

For completeness of the construction of graph H, we remove every vertex f in W24 if f is not
incident to any edges. Now we have a finite bipartite graph H in which each vertex in W135 and
W24 has an adjacent vertex.

The bounds on domination and time delay:
It is easy to see that there exists a constant L (resp., M) for the bound on domination size

(resp., the bound on time delay) from the observations above. Specifically, it is sufficient that
L = |{Pi−2, Pi−1, Pi}| · |{Rule 1, Rule 3, Rule 5}| = 9 because each dominating event dominates at
most one event for every three rules and every three processes, and M = 2 because a dominating
event occurs before the next two events in W135 occur at the same process.

By construction of H, we can see that the part of Dijkstra’s token ring of SSRmin converges
in O(n2) steps because (1) T1 = O(n2), and (2) 3n(n − 1)/2 events by Rules 2 and 4 occur in
configurations γ0, γ1, · · · , γT1

. 2

Theorem 2 For any initial configuration γ0 and for any execution starting from γ0, SSRmin con-
verges within O(n2) steps under the unfair distributed daemon.

Proof. For any initial configuration γ0, the part of Dijkstra’s token ring converges in O(n2) steps
by Lemma 8, and remains so for any execution thereafter. Then, SSRmin converges in O(n2) steps
by Lemma 7. In total, O(n2) is the worst case time complexity of SSRmin for convergence. 2

5 Execution issue in the message-passing model

We investigate the behavior of the proposed algorithm when it is executed in the message-passing
model by a transformation method of existing work. Below, we use a term node to say a physical
device that emulates a process of the proposed algorithm, and we use a symbol vi for a node which
corresponds to process Pi for each 0 ≤ i < n, however, we use vi and Pi interchangeably. We assume
that each communication link can transmit only one message in each direction at a time. In other
words, a node vi can send a message to its neighbor node vj only if there is no message transiting
on the communication link from vi to vj .

The computational model that the proposed algorithm assumes is the state-reading model for
communication, the composite atomicity model for granularity of execution unit, and the distributed
daemon for execution scheduling. It seems that the computational model assumed is far from the
real environment such as a network of IoT devices with wireless message-passing communication.
Several works exist to fill the gap of computational models, such as [5,7,16,17]. Algorithm 4 shows
the outline of the transformation scheme, called cached sensornet transform (CST), proposed in [5],
and this method is used in this paper. The main idea of the transformation is that (1) each process
has a cache of local variables of neighbors, and (2) the value of a local variable is transmitted to
neighbors when it is updated and periodically. Note that it is important for self-stabilization of real
network that the value of local variables is periodically transmitted to neighbors to fix incorrect
cache contents.
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Algorithm 4 Cached sensornet transform (CST) to execute in the message-passing model for each
vi [5]

1: Constant
2: Ni: a set of neighbor node of vi
3: Variable;.
4: qi — the (set of) local variable(s) of the original algorithm
5: Zi[vk] — a cache of qk for each vk ∈ Ni

6: Action
7: on receipt of message 〈state, q〉 from vk ∈ Ni

8: Zi[vk]← q;
9: Execute a rule and update qi (access the cache Zi[vk] instead of qk);

10: send 〈state, qi〉 to each vk ∈ Ni;
11: on interval timer
12: send 〈state, qi〉 to each vk ∈ Ni;

vi-1 , Pi-1 vi , Pi vi+1 , Pi+1

SSTokenCST SSTokenCST SSTokenCST

time
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Legend
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Figure 11: Token extinction of SSToken in the message-passing model (‘T’ : the token)

The important issue that we must be aware of for the transformed version is that the cache
at each node may not be the latest. That is why an update of the local variable of Pi is not
instantly reflected to cache at every neighbor, the granularity of execution of a node is different from
the composite atomicity model, and the nodes that are executed are different from the distributed
daemon model.

Let us present the notion of cache-coherence.

Definition 2 (Cache-coherence [5]) We say that cache is coherent if and only if each node vi holds
the latest value of local variable qk of each node vk, i.e., ∀vi, vk ∈ Ni : Zi[vk] = qk. 2

An algorithm that reaches a fixed point of configuration (called silent), which means that no
process is enabled in legitimate configuration and the configuration does not change, execution of
CST eventually becomes cache-coherent and remains so thereafter. It is shown that the transformed
version of silent algorithms by CST converges with some randomization factor in execution timing
[5, 17], and once cache becomes coherent it remains so thereafter.

On the other hand, algorithms for token circulation and mutual inclusion and exclusion algo-
rithms, such as the proposed algorithm SSRmin, never reach a fixed point of configuration (called
non-silent). In executions of such algorithms, coherence and non-coherence of a cache may be re-
peated infinitely many times. So, we need careful verification for the proposed algorithm. As we
mentioned above, a token is defined by a predicate on local variables, and it is true even in the
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Figure 12: Concurrent executions of two instances of SSToken in the message-passing model (‘T1’ :
the token by instance 1, ‘T2’ : the token by instance 2)
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message-passing version by CST. So, each process decides whether it holds a token or not by a
predicate on values of local variables of itself and cache of neighbors. A phrase ‘a process sends a
token’ does not mean sending a virtual token object but just updating local variables, and sending
a message is used only to update the cache of neighbors.

Consider Dijkstra’s token ring which is executed in the state-reading model as presented in
Algorithm 1. Suppose that process Pi holds a token, and it executes a rule. Then, Pi releases the
token and its neighbor Pi+1 immediately receives it without any time instant that no process holds
the token. Let us observe a transformed version of Dijkstra’s token ring which is executed in the
message-passing model. Suppose similarly that Pi holds a token, and it executes a rule. Then,
according to Algorithm 4 and as shown in Figure 11, Pi releases the token, however, Pi+1 does
not hold it immediately; there is some time period between the release by Pi and the receipt by
Pi+1. That is, the cache is not coherent during such a time period. Although there is at least one
(specifically, exactly one) token at any time instant in the state reading model, we cannot use the
transformed version of Dijkstra’s token ring as a mutual inclusion in the message-passing model by
CST shown in Algorithm 4. Furthermore, as illustrated in Figure 12, we cannot use two instances
of the transformed version of Dijkstra’s token ring executed independently and concurrently as a
mutual inclusion algorithm because we have a time instant such that there is no token if two nodes
execute the rule at the same time. For the same reason, the algorithm proposed [3] for a ring with
multiple token is not sufficient for our purpose. So we need some kind of control to guarantee mutual
inclusion, and it is the main motivation of current work.

Such phenomena observed in the transformed version is originated in that the transformation
scheme does not exactly simulate the original computational model for the purpose of execution
efficiency or low overhead at run-time. Let us call such difference of behavior as model gap. In our
case of mutual inclusion, a mutual inclusion algorithm which is correct in the state-reading model
is not a correct one in the message-passing model by the transformation scheme CST. Below, let us
show that the proposed algorithm SSRmin is model gap tolerant in a sense that it is also correct in
the message-passing model by the transformation scheme CST. We formally show definitions of the
model gap below. Although it can be defined in a general form for arbitrary networks, we present a
definition of a bidirectional ring for simplicity of description.

Definition 3 (Model gap) For each node vi ∈ V , let hi be a function such that hi : Qi × Qi−1 ×
Qi+1 → Di for some set Di, and let h be a function h : D0 × D1 × · · · × Dn−1 → H for some
set H. Let Zi[vk] be the cache of local variables of vk at node vi. We say that an algorithm is
model gap tolerant with respect to hi (0 ≤ i < n) and h if and only if, for each configuration
γt = (q0, q1, ...qn−1) and cache contents Z·[·] that appear in the execution starting from legitimate
configuration with cache-coherence, the following equation holds.

h(h0(q0, qn−1, q1), h1(q1, q0, q2), ..., hn−1(qn−1, qn−2, q0))

= h(h0(q0, Z0[vn−1], Z0[v1]), h1(q1, Z1[v0], Z1[v2]), ..., hn−1(qn−1, Zn−1[vn−2], Zn−1[v0]))

Otherwise, we say that the algorithm has a model gap. 2

Intuitively, in the case of the proposed algorithm SSRmin, hi is a boolean function such that “vi
holds a token”, and h is a boolean function such that “at least one node holds a token”. The concept
of model gap tolerance formalizes that, despite cache contents may not be coherent temporarily, a
correctness measure is not violated in the message-passing version, e.g., an existence of a token at
any time in case of SSRmin.

Let γ0 ∈ Λ be any legitimate configuration and observe an execution starting from γ0. (Recall
that Figure 4 shows an example of execution starting from a legitimate configuration.) So, we
observe, in the message-passing model, whether at least one node holds a token or not even if an
updated local state is transmitted with a delay as shown in Figure 13.

Theorem 3 Staring from any legitimate configuration with cache-coherence. Then, the transformed
version of the proposed algorithm SSRmin in the message-passing model guarantees that the number
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of nodes that hold a token is at least one and at most two. That is, the proposed algorithm is model
gap tolerant.

Proof. In legitimate configurations, as we observed in the proof of Lemma 1, exactly one process is
enabled. The rules that make a process enabled are Rules 1, 2 and 3. We define a term transient
period as a time duration between (1) an event that a process updates its local state and (2) an
event that its neighbors receive a new local state by receiving a message. We verify the number of
tokens in the transient period for each execution of a rule. We observe, one by one, each execution
of a rule as follows.

• Rule 1 (or A1; Pi sends the secondary token) : When Pi is enabled by the rule, it holds the
primary and the secondary tokens. The local state of Pi is a form of x.0.1 for some 0 ≤ x < K,
and it is changed to x.1.0 by execution of Rule 1. Just after Pi executes a rule, in the transient
period, Pi holds the two tokens.

The local state of Pi is transmitted to Pi+1 by CST, and it is eventually received and cached
at Pi+1. Then, Pi+1 is enabled by Rule 3. Even if a message that contains the local state
of Pi is lost by some fault, CST periodically transmits the local state and eventually, the
local state is successfully received and cached at Pi+1. At the same time, the system becomes
cache-coherent again.

• Rules 3 (or B; Pi+1 receives the secondary token) : When Pi+1 is enabled by the rule, its local
state is a form of x.0.0. Its neighbor Pi has local state x.1.0, and it holds the primary and the
secondary tokens. By execution of the rule, local state of Pi+1 is changed from x.0.0 to x.0.1.
Just after Pi+1 executes the rule, in the transient period, Pi+1 holds the secondary token, and
at the same time, Pi holds the primary and the secondary token because of its local cache.

The local state of Pi+1 transmitted to Pi is eventually received and cached, and then, Pi is
enabled by Rule 2. At the same time, the system becomes cache-coherent again.

• Rules 2 (or A2; Pi sends the primary token): When Pi is enabled by the rule, Pi (resp., Pi+1)
holds the primary (resp., secondary) token. Local state of Pi is a form of x.1.0, and it is
changed to x+ 1.0.0 by execution of the rule. Just after Pi executes the rule, in the transient
period, Pi holds no token, and Pi+1 holds the secondary token. When Pi+1 receives the local
state of Pi, Pi+1 holds the primary token.

The local state of Pi transmitted to Pi+1 is eventually received and cached, and then, Pi+1

holds the primary and the secondary tokens. At the same time, the system becomes cache-
coherent again.

So far, we observed that, in a transient period, the number of processes that hold a token is at
least one and at most two. After the transient period is over, the system becomes cache-coherent
and the hypothesis of the theorem holds again. Hence the proposed algorithm is model gap tolerant.
2

As we observed in the proof of Theorem 3, cache status alternates coherence and incoherence
in an execution that starts from a legitimate configuration with cache-coherence. We classify the
incoherence of cache into two types: good and bad. We say that cache-incoherence is good if it
appears in an execution starting from a legitimate configuration with cache-coherence. Otherwise,
we say that cache-incoherence is bad. The next lemma proves, using the proof technique resented
in [5, 17], that any execution that starts from arbitrary, possibly illegitimate, configuration with
bad cache-incoherence eventually reaches a legitimate configuration with cache-coherence, which
means that the hypothesis of Theorem 3 is satisfied. Then, bad cache-incoherence never appears
thereafter. In the following lemma and theorem, we assume that message loss events occur uniformly
at random. This assumption is a sufficient condition for ease of probabilistic analysis and not a
necessary condition.
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Lemma 9 Assume that events of message loss occur uniformly at random. Starting from an ar-
bitrary configuration and arbitrary cache values, the proposed algorithm SSRmin eventually reaches
legitimate a configuration with cache-coherence.

Proof. There exists a time period in which no message loss occurs enough long time for convergence
of SSRmin. If the local state is transmitted to a neighbor without message loss, the cache value of
the neighbor becomes correct. Hence cache eventually becomes coherent. Because SSRmin assumes
the distributed daemon, execution of two (or more) nodes at the same time does not prevent the
convergence. So, eventually, the configuration becomes legitimate. 2

From Lemma 9 and Theorem 3, we have the following theorem.

Theorem 4 Assume that events of message loss occur uniformly at random. Starting from an
arbitrary configuration and arbitrary cache values, the proposed algorithm SSRmin eventually reaches
a configuration in which the number of nodes that hold a token is at least one and at most two, and
remains so forever. 2

6 Conclusion

We proposed a self-stabilizing token ring algorithm for bidirectional message-passing ring networks
based on the K-state token ring proposed by Dijkstra [2]. It assumes the unfair distributed daemon
which is a general process scheduler but under which algorithm design is difficult. It has interesting
applications, for example, self-organizing IoT monitoring systems with continuous observation : by
mutual inclusion, at least one node is guaranteed to be active to monitor the environment, and by
self-stabilization, it tolerates transient faults and nodes can start in arbitrary initial states without
global reset. To achieve such a distributed algorithm, we designed an algorithm in a higher level
of a computational model, the state-reading model and we applied the transformation scheme.
To guarantee the correctness in the transformed version, we introduced the concept of the model
gap tolerance and proven that the proposed algorithm is model gap tolerant. Future tasks are
design of a self-stabilizing mutual inclusion algorithm with model gap tolerance for general network
topology, and application of the concept of model gap tolerance for other non-reactive algorithms.
Specifically, instead of Dijkstra’s token ring SSToken used as a base algorithm in SSRmin, using the
superstabilizing mutual exclusion proposed in [15] as a base algorithm is an interesting task.
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