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Abstract

The local function of a cellular automaton with binary states can be expressed by a formula
in propositional logic. If a local function is that of any reversible cellular automaton, its inverse
function can also be expressed as a propositional logic formula, and using it as a local function,
we can define the cellular automaton. The multiplication of these formulae in propositional
logic yields the local function of the composition of two cellular automata.

In this paper, we consider logical formulae on a commutative monoid as the local functions
of n-dimensional cellular automata. We discuss the commutativity of the multiplication of
formulae and show some conditions for formulae to satisfy the commutativity of the composition
of n-dimensional cellular automata.

Keywords: Cellular automata, monoid, propositional logic, composition, commutativity.

1 Introduction

Von Neumann and Ulam introduced cellular automata (CAs) as theoretical models capable of self-
reproduction and universal computation [8]. Recently, CAs have been used to mean CAs on groups,
and the mathematical theory of CAs has been developed in relation to the theory of groups [2].
Hedlund, Moore, and Drisko presented some algebraic properties of CAs on semigroups [3, 7]. Ishida
et al. have introduced CAs on monoids using formulae in propositional logic, instead of local
functions [6]. The definition and properties of CAs on monoids are quite different from those of CAs
on groups mainly because of the absence of inverse elements for some elements in a monoid. The
following analogy [5] exists between CAs and propositional logic.

CAs Propositional logic
set of states Q = {0, 1} ⇔ set of truth values Q = {0, 1}

cell space G ⇔ set of propositional variables G
configuration m ∈ QG ⇔ valuation m ∈ QG

local function f : QN → Q (finite set N ⊆ G) ⇔ formula A
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The composition of global transition functions and the multiplication of propositional logic are
related to the reversibility of a given CA [4, 6]. The local function of a composed CA can be
expressed as the multiplication of propositional logic. However, many properties of composed CAs
on monoids have not been clarified.

In this paper, we examine logical formulae on commutative monoids as local functions of n-
dimensional CAs on monoids. We discuss the commutativity of the multiplication of formulae and
describe the conditions for formulae that can satisfy the commutativity of the composition of n-
dimensional CAs on commutative monoids which is commutable for the composition with the CA
of a local function using one cell in its neighborhood, for example, local function f(x, y, z) = ¬x
in elementary CAs. We provide examples of the composition that can satisfy commutativity for n-
dimensional CAs on commutative monoids. Moreover, we present the conditions required to satisfy
the commutativity of the composition of inverse functions of reversible CAs on monoids.

This paper is organized as follows. In Section 2, we review the fundamentals of propositional logic
[1]. In Section 3, we introduce CAs on monoids using formulae instead of local functions [6], and
present the formulae of some n-dimensional CAs. In Section 4, we introduce the multiplication of the
formulae of CAs on monoids and describe the basic properties of the multiplication [6]. Moreover,
we describe some properties of the composition of the formulae on commutative monoids. In Section
5, we discuss some conditions that can satisfy the commutativity of the composition of CAs on
commutative monoids by the multiplication of formulae and provide examples of the compositions
that can satisfy commutativity for n-dimensional CAs on commutative monoids. Furthermore, we
present the conditions that can satisfy the commutativity of the composition of the inverse functions
of CAs on monoids.

2 Propositional logic

First we review the fundamentals of propositional logic to draw an analogy between propositional
logic [1] and the CAs theory [2].

Let X be a set of propositional variables, and ⊥ and → be logical symbols. Formulae on X are
defined by BNF:

A ::= x | ⊥ | A→ A (x ∈ X)

Common abbreviations are used to introduce other logical symbols.

Negation: ¬A = A→ ⊥,
Verum: > = ¬⊥,
Disjunction: A ∨B = ¬A→ B,
Conjunction: A ∧B = ¬(A→ ¬B),
Equivalence: A↔ B = (A→ B) ∧ (B → A),
Exclusive or: A + B = ¬(A↔ B).

In what follows, we assume that Q = ({0, 1},∧,∨,¬) is a Boolean algebra of truth values. The
implication operator⇒ on Q is defined by p⇒ q = ¬p∨q for p, q ∈ Q. Operations⇔ (equivalence), +
(exclusive or (XOR), addition modulo 2) on Q are defined in the same way as the above abbreviations.

Definition 2.1. A valuation (interpretation) m for a set X is function m : X → Q. For all formulae
A on X, truth value m[[A]] ∈ Q of A with respect to m is inductively defined as follows:

• m[[x]] = m(x) for all propositional variables x ∈ X,

• m[[⊥]] = 0,

• m[[A→ B]] = m[[A]]⇒ m[[B]] for all formulae A and B on X. �

For two formulae A and B on X, we write A ≡ B if m[[A]] = m[[B]] for all valuations m : X → Q.
For the valuation m, the three properties m[[¬A]] = ¬m[[A]],m[[a ∨B]] = m[[A]] ∨ b[[B]],m[[A ∧B]] =
m[[A]] ∧m[[B]] hold from

m[[¬A]] = m[[A→ ⊥]] = m[[A]]⇒ m[[⊥]] = ¬m[[A]] ∨m[[⊥]] = ¬m[[A]],
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m[[A ∨B]] = m[[¬A→ B]]

= m[[¬A]]⇒ m[[B]]

= ¬m[[A]]⇒ m[[B]]

= ¬¬m[[A]] ∨m[[B]]

= m[[A]] ∨m[[B]],

m[[A ∧B]] = m[[¬(A→ ¬B)]]

= ¬m[[A→ ¬B]]

= ¬(m[[A]]⇒ ¬m[[B]])

= ¬(¬m[[A]] ∨ ¬m[[B]])

= m[[A]] ∧m[[B]].

Proposition 2.2. Let A,B,C be formulae on X. Then, the following hold:

1. A ∨B ≡ B ∨A, (A ∨B) ∨ C ≡ A ∨ (B ∨ C), A ∨A ≡ A, A ∨ ¬A ≡ >,

2. A ∧B ≡ B ∧A, (A ∧B) ∧ C ≡ A ∧ (B ∧ C), A ∧A ≡ A, A ∧ ¬A ≡ ⊥,

3. A + B ≡ B + A, (A + B) + C ≡ A + (B + C),

4. ¬(¬A) ≡ A, ¬(A ∨B) ≡ ¬A ∧ ¬B, ¬(A ∧B) ≡ ¬A ∨ ¬B,

5. A + A ≡ ⊥, A +⊥ ≡ A, A +> ≡ ¬A,

6. (A ∨B) ∧ C ≡ (A ∧ C) ∨ (B ∧ C), (A ∧B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C),

7. (A ∧B) ∨ (A ∨B) ≡ (A ∨B), (A ∧B) ∧ (A ∨B) ≡ (A ∧B).

For the logical symbol +, there exists the following lemma:

Lemma 2.3. Let A,B,C be formulae on X. Then, the following hold:

1. A + B ≡ (A ∧ ¬B) ∨ (¬A ∧B),

2. ¬(A + B) ≡ ¬A + B,

3. ¬A + ¬B ≡ A + B.

Proof. Let A,B,C be formulae on X. By Definition 2.1 and Proposition 2.2,

A + B ≡ ¬((A→ B) ∧ (B → A))

≡ ¬(A→ B) ∨ ¬(B → A)

≡ (A ∧ ¬B) ∨ (¬A ∧B),

¬(A + B) ≡ ¬((A ∧ ¬B) ∨ (¬A ∧B))

≡ (¬A ∨B) ∧ (A ∨ ¬B)

≡ (¬A ∧ (A ∨ ¬B)) ∨ (B ∧ (A ∨ ¬B))

≡ ((¬A ∧A) ∨ (¬A ∧ ¬B)) ∨ ((B ∧A) ∨ (B ∧ ¬B))

≡ (¬A ∧ ¬B) ∨ (B ∧A)

≡ ¬A + B(≡ A + ¬B),

¬A + ¬B ≡ (¬A ∧ ¬(¬B)) ∨ (¬(¬A) ∧ ¬B)

≡ (¬A ∧B) ∨ (A ∧ ¬B)

≡ A + B.
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By Lemma 2.3 and Proposition 2.2, the following proposition holds:

Proposition 2.4. Let A,B,C be formulae on X. Then

1. A ∧ (B ∨ C) ∨ (B ∧ C) ≡ (A ∨ (B ∧ C)) ∧ (B ∨ C).

2. A ∧ (B ∨ C) ∨ (B ∧ C) ≡ B ∧ (A ∨ C) ∨ (A ∧ C).

3. A ∧ (A ∨B) ∨ (A ∧B) ≡ A.

4. ¬(A + B + C) ≡ ¬A + ¬B + ¬C

5. ¬A + ¬B + C ≡ A + B + C

6. ¬A + B + C ≡ ¬(A + B + C)

Proof. Let A,B,C be formulae on X.

A ∧ (B ∨ C) ∨ (B ∧ C) ≡ (A ∨ (B ∧ C)) ∧ ((B ∨ C) ∨ (B ∧ C))

≡ (A ∨ (B ∧ C)) ∧ (B ∨ C),

A ∧ (B ∨ C) ∨ (B ∧ C) ≡ ((A ∧B) ∨ (A ∧ C)) ∨ (B ∧ C)

≡ ((B ∧A) ∨ (B ∧ C)) ∨ (A ∧ C)

≡ B ∧ (A ∨ C) ∨ (A ∧ C).

A ∧ (A ∨B) ∨ (A ∧B) ≡ (A ∨ (A ∧B)) ∧ ((A ∨B) ∨ (A ∧B))

≡ A ∧ (A ∨B)

≡ A

¬(A + B + C) ≡ ¬(A) + (B + C)

≡ ¬A + ¬B + ¬C.

¬A + ¬B + C ≡ (¬A + ¬B) + C

≡ A + B + C.

¬A + B + C ≡ ¬(A + B) + C

≡ ¬(A + B + C).

3 CA on monoids

In this section, we describe CAs on monoids [6]. Let cell space M = {xa|a ∈ Nn} (n ∈ N) be a
monoid with unit element e, and a neighborhood N = {xa1 , . . . , xam} ⊂ M (a1, . . . , am ∈ Nn). In
what follows, we assume that the set of all formulae on M is denoted by F (M).

Definition 3.1. For a formula A on M and xa ∈ M , the shifted formula xaA on M is defined by
induction on A :

1. xaxb ∈M (monoid multiplication in M) for all xb ∈M ,

2. xa⊥ ≡ ⊥,

3. xa(A→ B) ≡ xaA→ xaB for all A,B ∈ F (M). �
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The following states basic properties of the shifted formulae.

Proposition 3.2 ([6]). Let A and B be formulae on M and xa, xb ∈M . Then, the following hold:

1. eA ≡ A,

2. (xaxb)A ≡ xa(xbA),

3. xa(¬A) ≡ ¬(xaA),

4. xa(A ∨B) ≡ xaA ∨ xaB,

5. xa(A ∧B) ≡ xaA ∧ xaB,

6. xa(A + B) ≡ xaA + xaB. �

Generally, xy 6= yx for a monoid M and elements x, y of M .
A function (valuation) m : M → Q is called configuration on M in the context of CA. We denote

by QM the set of all configurations m : M → Q. For q ∈ Q the constant configuration q̂ ∈ QM is
defined by q̂(xa) = q for all xa ∈M .

Definition 3.3. For a finite subset N ⊆ M and a formula A ∈ F (N), we define a function TA :
QM → QM by TA(m)(xa) = m[[xaA]] for all m ∈ QM and xa ∈M . Function TA is called the global
transition function (or CA), defined by A on M , and A is called the local formula. �

Since the local function of a CA with binary states is a Boolean function with finite variables,
it has a disjunctive normal form. We present some examples of the disjunctive normal form of the
local function of a CA with binary states.

Consider N as the additive monoid of all natural numbers. Nn is the additive monoid. In the
example, M = {xy|y ∈ Nn}, N = {xa, xb, xc, xd} ⊆ M (a, b, c, d ∈ Nn). Let the local function
f : QN → Q be defined according to the following table:

xaxbxcxd 1111 1110 1101 1100 1011 1010 1001 1000
f 0 0 1 1 1 1 1 1

xaxbxcxd 0111 0110 0101 0100 0011 0010 0001 0000
f 0 0 0 0 0 0 1 1

The disjunctive normal form A of f is as follows:

A ≡ (xa ∧ xb ∧ ¬xc ∧ xd) ∨ (xa ∧ xb ∧ ¬xc ∧ ¬xd) ∨ (xa ∧ ¬xb ∧ xc ∧ xd)

∨(xa ∧ ¬xb ∧ xc ∧ ¬xd) ∨ (xa ∧ ¬xb ∧ ¬xc ∧ xd) ∨ (xa ∧ ¬xb ∧ ¬xc ∧ ¬xd)

∨(¬xa ∧ ¬xb ∧ ¬xc ∧ xd) ∨ (¬xa ∧ ¬xb ∧ ¬xc ∧ ¬xd).

The simplified formula for A is as follows.

A ≡ xa ∧ (¬xb ∨ ¬xc) ∨ (¬xb ∧ ¬xc)

The class of the CAs defined by logical formulae contains the class of the binary CAs defined by
local functions.

Proposition 3.4 ([6]). Let xa, xb ∈M,m ∈ QM and A,B ∈ F (M). Then the following hold:

1. Txb(m)(xa) = m[[xaxb]]. In particular, Te is the identity function on QM .

2. T⊥(m) = 0̂,

3. TA→B(m)(xa) = TA(m)(xa)⇒ TB(m)(xa),

4. T¬A(m)(xa) = ¬(TA(m)(xa)),
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5. TA∨B(m)(xa) = TA(m)(xa) ∨ TB(m)(xa),

6. TA∧B(m)(xa) = TA(m)(xa) ∧ TB(m)(xa),

7. TA+B(m)(xa) = TA(m)(xa) + TB(m)(xa),

We define shifted configurations using the monoid action.

Definition 3.5. For a configuration m ∈ QM and xa ∈M , the shifted configuration (xa)◦m ∈ QM

is defined as ((xa)◦m)(xb) = m[[xaxb]] for all xb ∈M . �

We show an example of the shifted configuration. Let N2 be an additive monoid and the cell
space M ′ = {xy|y ∈ N2} be a commutative monoid. For x<a,b>, x<c,d> ∈ M ′, we can calculate
((x<a,b>)◦m)(x<c,d>) as follows;

((x<a,b>)◦m)(x<c,d>) = m[[x<a,b>x<c,d>]] = m[[x<a+c,b+d>]].

The following states the basic properties of the shifted configurations.

Proposition 3.6 ([6]). Let xa, xb ∈M,m ∈ QM , and A,B ∈ F (M). Then the following hold:

1. e◦m = m,

2. (xaxb)◦m = (xb)◦((xa)◦m),

3. ((xa)◦m)[[A]] = m[[xaA]],

4. TA(((xa)◦m) = (xa)◦(TA(m)),

5. A ≡ B implies (xa)A ≡ (xa)B. �

In Table 1, we provide examples of the formulae of the local functions for n-dimensional CAs.
Let the cell space M = {xy|y ∈ Nn} (n ∈ N) be a commutative monoid, and a neighborhood
N = {xa1 , . . . , xak} ⊂M (a1, . . . ak ∈ Nn). Let xa, xb, xc ∈ N , and a 6= b, b 6= c, a 6= c.

Table 1: Formulae of local functions
Type-1 xa

Type-2 ¬xa

Type-3 (xa ∧ (xb ∨ xc)) ∨ (xb ∧ xc)
Type-4 (¬xa ∧ (xb ∨ xc)) ∨ (xb ∧ xc)
Type-5 ¬((¬xa ∧ (xb ∨ xc)) ∨ (xb ∧ xc))
Type-6 ¬((xa ∧ (xb ∨ xc)) ∨ (xb ∧ xc))
Type-7 xa + xb + xc

Type-8 ¬(xa + xb + xc)

For the formulae of Type-3 and Type-6, the following equations hold

(xa ∧ (xb ∨ xc)) ∨ (xb ∧ xc) ≡ (xb ∧ (xa ∨ xc)) ∨ (xa ∧ xc) ≡ (xc ∧ (xa ∨ xb)) ∨ (xa ∧ xb),
¬((xa ∧ (xb ∨ xc)) ∨ (xb ∧ xc)) ≡ ¬((xb ∧ (xa ∨ xc)) ∨ (xa ∧ xc)) ≡ ¬((xc ∧ (xa ∨ xb)) ∨ (xa ∧ xb))

by Proposition 2.2 and 2.4.
The CAs over the cell space M = {xn|n ∈ N} and the neighborhood N = {x0(= e), x1, x2} ⊂M

are called elementary CAs. In Table 2, we provide examples of the formulae of the local function
f ′l for elementary CAs. In the following, the local function f ′l of a number l is the local function
satisfying the following equation:

l =
∑

m∈QN

f ′l (m) · 2(2
2m[[x2]]+2m[[x1]]+m[[x0]]).
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Table 2: Examples of the local functions of each type of elementary CA
Type-1 f ′170, f

′
204, f

′
240

Type-2 f ′15, f
′
51, f

′
85

Type-3 f ′232
Type-4 f ′142, f

′
178, f

′
212

Type-5 f ′43, f
′
77, f

′
113

Type-6 f ′23
Type-7 f ′150
Type-8 f ′105

Let the cell space M ′ = {xy|y ∈ N2} be a commutative monoid and the neighborhood be
N ′ = {x<0,0>, x<0,1>, x<1,0>, x<1,1>} ⊂ M ′. The local function fk of a number k is the local
function satisfying the following equation:

k =
∑

m∈QN′

fk(m) · 2(2
3m[[x<1,1>]]+22m[[x<1,0>]]+21m[[x<0,1>]]+20m[[x<0,0>]]).

For example, we calculate one of the local functions for the formula A = (x<1,1>∧(x<1,0>∨x<0,1>))∨
(x<1,0>∧x<0,1>) of Type-3. In the case of m such that m[[x<1,1>]] = 1,m[[x<1,0>]] = 0,m[[x<0,1>]] =
1, and m[[x<0,0>]] = 1, then

m[[A]] = (m[[x<1,1>]] ∧ (m[[x<1,0>]] ∨m[[x<0,1>]])) ∨ (m[[x<1,0>]] ∧m[[x<0,1>]])

= (1 ∧ (0 ∨ 1)) ∨ (0 ∧ 1)

= 1

By calculating the value m[[A]] for all the other cases of m ∈ QN ′ , the local function f for A is
described by the following table;

x<1,1>x<1,0>x<0,1>x<0,0> 1111 1110 1101 1100 1011 1010 1001 1000
m[[A]] 1 1 1 1 1 1 0 0

x<1,1>x<1,0>x<0,1>x<0,0> 0111 0110 0101 0100 0011 0010 0001 0000
m[[A]] 1 1 0 0 0 0 0 0

The number of f for A is 64704 from

1× 22
3×1+22×1+21×1+20×1 + 1× 22

3×1+22×1+21×1+20×0 + · · ·+ 0× 22
3×0+22×0+21×0+20×0 = 64704.

Thus the local function for A is f64704 and also we have that the local functions for the formulae
(x<1,0>∧ (x<1,1>∨x<0,1>))∨ (x<1,1>∧x<0,1>) and (x<0,1>∧ (x<1,1>∨x<1,0>))∨ (x<1,1>∧x<1,0>)
are the same f64704. By calculating the local functions of other formulae of Type-3 we can show
that there are four local functions f64704, f64160, f61064, f59624 of Type-3. In Table 3, we provide
examples of the local function of each type for 2-dimensional CA over a commutative monoid M ′

and a neighborhood N ′.

4 Multiplication of formulae

In this section, we define the multiplication of the formulae of CA on monoids [6] and its properties.

Definition 4.1. Let A and C be formulae on M and xa ∈ M . The multiplication A ◦ C of A and
C is inductively defined as follows:

1. xa ◦ C ≡ xaC (shifted formula) is already defined for xa ∈M ,
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Table 3: Examples of local functions of each type
Type-1 f43690, f52428, f61680, f65280
Type-2 f255, f3855, f13107, f21845
Type-3 f59624, f61064, f64160, f64704

f36494, f35054, f41210, f49404,
Type-4 f45746, f47906, f44810, f53004,

f54484, f56644, f62800, f62256
f3279, f12531, f2735, f20725,

Type-5 f8891, f17629, f11051, f19789,
f16131, f24325, f30481, f29041

Type-6 f831, f1375, f4471, f5911
Type-7 f38550, f39270, f42330, f49980
Type-8 f15555, f23205, f26265, f26985

2. ⊥ ◦ C ≡ ⊥,

3. (A→ B) ◦ C ≡ A ◦ C → B ◦ C for formulae A,B on M . �

The following states the basic properties of the multiplication of the formulae.

Proposition 4.2 ([6]). Let A,B,C ∈ F (M) and xa, xb ∈M . Then the following hold:

1. A ◦ e ≡ A, A ◦ (xaxb) ≡ (A ◦ xa) ◦ xb,

2. Either A ◦ ⊥ ≡ ⊥ or A ◦ ⊥ ≡ >,

3. (¬A) ◦B ≡ ¬(A ◦B),

4. (A ∨B) ◦ C ≡ A ◦ C ∨B ◦ C,

5. (A ∧B) ◦ C ≡ A ◦ C ∧B ◦ C,

6. (A + B) ◦ C ≡ A ◦ C + B ◦ C,

7. (A ◦B) ◦ C ≡ A ◦ (B ◦ C),

Proof. Let A,B,C ∈ F (M) and xa, xb ∈ M . These propositions are proved by Definition 3.1 and
4.1 and structural induction on A and B.
1 . A ◦ e ≡ A :

xa ◦ e ≡ xa, { e : unit, xa ∈M }
⊥ ◦ e ≡ ⊥.

We assume A ◦ e ≡ A and B ◦ e ≡ B, then

(A→ B) ◦ e ≡ A ◦ e→ B ◦ e
≡ A→ B.

A ◦ (xaxb) ≡ (A ◦ xa) ◦ xb :
xc ◦ (xaxb) ≡ (xc ◦ xa) ◦ xb,
⊥ ◦ (xaxb) ≡ ⊥

≡ (⊥ ◦ xa) ◦ xb.

We assume A ◦ (xaxb) ≡ (A ◦ xa) ◦ xb and B ◦ (xaxb) ≡ (B ◦ xa) ◦ xb, then

(A→ B) ◦ (xaxb) ≡ A ◦ (xaxb)→ B ◦ (xaxb)
≡ (A ◦ xa) ◦ xb → (B ◦ xa) ◦ xb

≡ (A ◦ xa → B ◦ xa) ◦ xb

≡ ((A→ B) ◦ xa) ◦ xb.
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2 . Either A ◦ ⊥ ≡ ⊥ or A ◦ ⊥ ≡ > :

xa ◦ ⊥ ≡ ⊥, { xa ∈M }
⊥ ◦ ⊥ ≡ ⊥.

We assume that either A ◦ ⊥ ≡ ⊥ or A ◦ ⊥ ≡ >, and either B ◦ ⊥ ≡ ⊥ or B ◦ ⊥ ≡ >. Then

(A→ B) ◦ ⊥ ≡ A ◦ ⊥ → B ◦ ⊥
≡ ⊥ or >.

3 . (¬A) ◦B ≡ ¬(A ◦B) :
(¬A) ◦B ≡ (A→ ⊥) ◦B

≡ A ◦B → ⊥ ◦B
≡ A ◦B → ⊥
≡ ¬(A ◦B).

4 . (A ∨B) ◦ C ≡ A ◦ C ∨B ◦ C : By (¬A) ◦ C ≡ ¬(A ◦ C),

(A ∨B) ◦ C ≡ (¬A→ B) ◦ C
≡ (¬A) ◦ C → B ◦ C
≡ ¬(A ◦ C)→ B ◦ C
≡ A ◦ C ∨B ◦ C

5 . (A ∧B) ◦ C ≡ A ◦ C ∧B ◦ C : By (¬B) ◦ C ≡ ¬(B ◦ C),

(A ∧B) ◦ C ≡ (¬(A→ ¬B)) ◦ C
≡ ¬((A→ ¬B) ◦ C)
≡ ¬(A ◦ C → ¬(B ◦ C))
≡ A ◦ C ∧B ◦ C.

6 . (A + B) ◦ C ≡ A ◦ C + B ◦ C :

(A + B) ◦ C ≡ ((A↔ B)→ ⊥) ◦ C
≡ (A ◦ C ↔ B ◦ C)→ ⊥ ◦ C
≡ (A ◦ C ↔ B ◦ C)→ ⊥
≡ A ◦ C + B ◦ C.

7 . (A ◦B) ◦ C ≡ A ◦ (B ◦ C) :

(xa ◦B) ◦ C ≡ xa ◦ (B ◦ C),
(⊥ ◦B) ◦ C ≡ ⊥ ◦ C ≡ ⊥ ≡ ⊥ ◦ (B ◦ C),

The equation (xa ◦B) ◦ C ≡ xa ◦ (B ◦ C) is proved by structural induction on B as follows;

(xa ◦ xb) ◦ C ≡ xa ◦ (xb ◦ C),
(xa ◦ ⊥) ◦ C ≡ ⊥ ◦ C ≡ ⊥ ≡ xa ◦ (⊥ ◦ C),

(xa ◦ (B → B′)) ◦ C ≡ (xaB → xaB′) ◦ C
≡ (xaB) ◦ C → (xaB′) ◦ C
≡ xa ◦ (B ◦ C)→ xa ◦ (B′ ◦ C)
≡ xa ◦ (B ◦ C → B′ ◦ C)
≡ xa ◦ ((B → B′) ◦ C).

Assume that (A ◦B) ◦ C ≡ A ◦ (B ◦ C) and (A′ ◦B) ◦ C ≡ A′ ◦ (B ◦ C) hold. Then

((A→ A′) ◦B) ◦ C ≡ (A ◦B → A′ ◦B) ◦ C
≡ (A ◦B) ◦ C → (A′ ◦B) ◦ C
≡ A ◦ (B ◦ C)→ A′ ◦ (B ◦ C)
≡ (A→ A′) ◦ (B ◦ C).
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In general, A ◦B ≡ B ◦A, (¬A) ◦B ≡ A ◦ (¬B), A ◦ (B → C) ≡ A ◦B → A ◦C and A ◦ (B ∨C) ≡
A◦B∨A◦C do not need to hold. (For example, ¬xa ◦ (xb∨xc) ≡ ¬xaxb∧¬xaxc, (xb∨xc)◦ (¬xa) ≡
¬xaxb ∨ ¬xaxc (xa, xb, xc ∈M).)

Definition 4.3. For a formula A ∈ F (M), the set V (A) of all variables in A is defined as follows:

1. V (xa) = {xa} for all xa ∈M ,

2. V (⊥) = ∅,

3. V (B → C) = V (B) ∪ V (C) for all B,C ∈ F (M). �

The set V (A) is a finite subset of M and serves as the neighborhood of the local formula A. It
is verified that m|V (A) = m′|V (A) implies m[[A]] = m′[[A]] and that V (A ◦ B) = V (A)V (B) holds,

where V (A)V (B) = {xaxb ∈M | xa ∈ V (A) ∧ xb ∈ V (B)}.

Proposition 4.4 ([6]). Let A,B ∈ F (M) and xa ∈M . Then the following hold:

1. If A ≡ xa, then xa ∈ V (A).

2. If A ◦B ≡ e, then there exist xa ∈ V (A) and xb ∈ V (B) so that xaxb = e.

The composition S ◦ T of a function T : QM → QM , followed by a function S : QM → QM , is
defined as usual:

∀m ∈ QM . (S ◦ T )(m) = S(T (m)).

Although the composition of the transition functions of CAs seems to behave awkwardly in
terms of traditional local functions f : QN → Q, the multiplication of formulae directly represents
the composition of global transition functions.

Theorem 4.5 ([5]). For all formulae A,C ∈ F (M), TA ◦ TC = TA◦C .

Definition 4.6. The transition function TA : QM → QM defined by formula A is reversible if it is
bijective, with T−1A = TB for some formula B. Formula A is reversible if there exists some formula
B on M so that B ◦A ≡ e and A ◦B ≡ e.

By the virtue of Theorem 4.5 Proposition 4.5 and Proposition 3.4 (8), A is reversible iff TA is
reversible.

Consider the two reversible CAs with respective formulae A and B on monoid M . There are
formulae A−1, B−1 ∈ F (M) that satisfy A◦A−1 ≡ e,B ◦B−1 ≡ e. Then, (A◦B)◦ (B−1 ◦A−1) ≡ e.
Therefore, TA◦B is reversible, and T−1A◦B = TB−1◦A−1 .

Proposition 4.7 ([6]). Let A,B,C ∈ F (M). Then, the following hold:

1. TA(m)[[B]] = m[[B ◦A]],

2. A ≡ A′ and B ≡ B′ imply A ◦B ≡ A′ ◦B′,

3. If A ◦B ≡ e and C ◦A ≡ e, then B ≡ C.

4. A and B are reversible iff so are A ◦B and B ◦A.

Proof. Let A,B ∈ F (M).
1 . TA(m)[[B]] = m[[B ◦A]] : By Proposition 3.2, Definition 3.3 and Theorem 4.5,

m[[B ◦A]] = m[[e(B ◦A)]]
= TB◦A(m)(e)
= (TB ◦ TA)(m)(e)
= (TB(TA(m))(e)
= TA(m)[[eB]]
= TA(m)[[B]].
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2 . A ≡ A′ and B ≡ B′ imply A ◦B ≡ A′ ◦B′ :
Assume A ≡ A′ and B ≡ B′. Then

m[[A ◦B]] = TB(m)[[A]]
= TB′(m)[[A]]
= TB′(m)[[A′]]
= m[[A′ ◦B′]].

3 . By Proposition 4.2,
B ≡ (C ◦A) ◦B ≡ C ◦ (A ◦B) ≡ C.

4 . Consider the two reversible CAs with respective formulae A and B on monoid M . There are
formulae A−1, B−1 ∈ F (M) that satisfy A ◦A−1 ≡ e,B ◦B−1 ≡ e. By Proposition 4.2,

(A ◦B) ◦ (B−1 ◦A−1) ≡ (A ◦ (B ◦B−1) ◦A−1) ≡ e,

(B ◦A) ◦ (A−1 ◦B−1) ≡ (B ◦ (A ◦A−1) ◦B−1) ≡ e.

Therefore, A ◦B and B ◦A are reversible.
Consider the two reversible CAs with respective formulae A ◦B,B ◦A on monoid M . There are

formulae (A ◦B)−1, (B ◦A)−1 ∈ F (M) that satisfy (A ◦B) ◦ (A ◦B)−1 ≡ e, (B ◦A) ◦ (B ◦A)−1 ≡ e.
By Proposition 4.2,

(A ◦B) ◦ (A ◦B)−1 ≡ A ◦ (B ◦ (A ◦B)−1) ≡ e,

(B ◦A) ◦ (B ◦A)−1 ≡ B ◦ (A ◦ (B ◦A)−1) ≡ e.

Therefore, A and B are reversible.

If all elements x, y of M satisfy xy = yx, M is called a commutative monoid. An element x of M
is right cancellable if yx = zx implies y = z for all y, z ∈M . An element x of M is left cancellable if
xy = xz implies y = z for all y, z ∈M . If all elements x of M is right cancellable and left cancellable,
then M is called a cancellable monoid.

Let N with operator + be an additive monoid , n ∈ N and M = {xm|m ∈ Nn} satisfy

∀x<a1,a2,...,ak>, x<b1,b2,...,bk> ∈M,x<a1,a2,...,ak>x<b1,b2,...,bk> = x<a1+b1,a2+b2,...,ak+bk>.

Then, M is a cancellable monoid and a commutative monoid.

Lemma 4.8. Let M be a commutative monoid and xa, xb, xc ∈M . Then the following hold:

1. xa ◦ xc ≡ xc ◦ xa

2. ⊥ ◦ xc ≡ xc ◦ ⊥

3. (xa → xb) ◦ xc ≡ xc ◦ (xa → xb)

4. (xa ∨ xb) ◦ xc ≡ xc ◦ (xa ∨ xb)

5. (xa ∧ xb) ◦ xc ≡ xc ◦ (xa ∧ xb)

6. (xa + xb) ◦ xc ≡ xc ◦ (xa + xb)

Proof. Let M be a commutative monoid and xa, xb, xc ∈ M . By Definition 3.1, 4.1, and the
commutative monoid action,

xa ◦ xc ≡ xaxc ≡ xcxa ≡ xc ◦ xa,

⊥ ◦ xc ≡ ⊥xc ≡ xc⊥ ≡ xc ◦ ⊥,

(xa ∨ xb) ◦ xc ≡ xaxc ∨ xbxc

≡ xcxa ∨ xcxb

≡ xc(xa ∨ xb)

≡ xc ◦ (xa ∨ xb).

The proofs of the other formulae are similar and omitted.
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Lemma 4.8 shows that if M is a commutative monoid, A ∈ F (M), and xa ∈M .
Then, xa ◦A ≡ A ◦ xa.

Lemma 4.9. Let M be a commutative monoid and xa, xb ∈M . Then the following hold:

1. xa ◦ (¬xb) ≡ (¬xb) ◦ xa

2. (¬xa) ◦ (¬xb) ≡ (¬xb) ◦ (¬xa) ≡ xa ◦ xb

Proof. Let M be a commutative monoid and xa, xb ∈M . By Definition 3.1, 4.1, and the commuta-
tive monoid action,

xa ◦ (¬xb) ≡ xa(¬xb) ≡ ¬(xaxb) ≡ ¬xbxa ≡ (¬xb) ◦ xa,

(¬xa) ◦ (¬xb) ≡ ¬(xa ◦ (¬xb))

≡ ¬(¬xaxb)

≡ xaxb

≡ xbxa

≡ ¬(¬xbxa)

≡ ¬(xb ◦ (¬xa))

≡ (¬xb) ◦ (¬xa).

Proposition 4.10. Let M be a commutative monoid, and xa ∈ M , A,B,C ∈ M ∪ {¬xb|xb ∈ M}.
Then, the following hold:

1. ¬xa ◦ (A ∧ (B ∨ C) ∨ (B ∧ C)) ≡ (A ∧ (B ∨ C) ∨ (B ∧ C)) ◦ ¬xa

2. ¬xa ◦ ¬(A ∧ (B ∨ C) ∨ (B ∧ C))
≡ ¬(A ∧ (B ∨ C) ∨ (B ∧ C)) ◦ ¬xa

3. ¬xa ◦ (A + B + C) ≡ (A + B + C) ◦ ¬xa

4. ¬xa ◦ ¬(A + B + C) ≡ ¬(A + B + C) ◦ ¬xa

Proof. Let M be a commutative monoid, xa ∈M , and A,B,C ∈M ∪ {¬xb|xb ∈M}.

(A ∧ (B ∨ C) ∨ (B ∧ C)) ◦ ¬xa ≡ (A ◦ (¬xa) ∧ (B ◦ (¬xa) ∨ C ◦ (¬xa))

∨(B ◦ (¬xa) ∧ C ◦ (¬xa)))

≡ ¬xaA ∧ (¬xaB ∨ ¬xaC) ∨ (¬xaB ∧ ¬xaC)

≡ ¬xaA ∨ (¬xaB ∧ ¬xaC) ∧ (¬xaB ∨ ¬xaC)

≡ ¬(xaA ∧ (xaB ∨ xaC) ∨ (xaB ∧ xaC)

≡ ¬(xa(A ∧ (B ∨ C) ∨ (B ∧ C)))

≡ ¬xa ◦ (A ∧ (B ∨ C) ∨ (B ∧ C)),

¬(A ∧ (B ∨ C) ∨ (B ∧ C)) ◦ ¬xa ≡ ¬(A ∧ (B ∨ C) ∨ (B ∧ C) ◦ ¬xa)

≡ ¬(A ◦ (¬xa) ∧ (B ◦ (¬xa) ∨ C ◦ (¬xa))

∨(B ◦ (¬xa) ∧ C ◦ (¬xa)))

≡ ¬(¬xaA ∧ (¬xaB ∨ ¬xaC) ∨ (¬xaB ∧ ¬xaC))

≡ (xaA ∨ (xaB ∧ xaC)) ∧ (¬xaB ∨ ¬xaC)

≡ xaA ∧ (xaB ∨ xaC) ∨ (¬xaB ∧ ¬xaC)

≡ ¬(xaA ∧ (xaB ∨ xaC) ∨ (xaB ∧ xaC)

≡ ¬(¬(xa(A ∧ (B ∨ C) ∨ (B ∧ C))))

≡ ¬(xa ◦ ¬((A ∧ (B ∨ C) ∨ (B ∧ C))))

≡ ¬xa ◦ ¬(A ∧ (B ∨ C) ∨ (B ∧ C)),
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(A + B + C) ◦ ¬xa ≡ (A ◦ (¬xa) + B ◦ (¬xa) + C ◦ (¬xa))

≡ ¬Axa + ¬Bxa + ¬Cxa

≡ ¬xaA + ¬xaB + ¬xaC

≡ ¬xaA + ¬xaB + ¬xaC

≡ ¬(xaA + xaB + xaC)

≡ ¬(xa(A + B + C))

≡ ¬xa ◦ (A + B + C),

¬(A + B + C) ◦ ¬xa ≡ ¬(A ◦ (¬xa) + B ◦ (¬xa) + C ◦ (¬xa))

≡ ¬(¬Axa + ¬Bxa + ¬Cxa)

≡ Axa + Bxa + Cxa

≡ xaA + xaB + xaC

≡ ¬¬(xaA + xaB + xaC)

≡ ¬(xa ◦ ¬(A + B + C))

≡ ¬xa ◦ ¬(A + B + C),

by Proposition 2.4, Lemma 4.8 and Lemma 4.9.

5 Commutativity of composition of CAs

In this section, we show the commutativity of the compositions of non elementary CAs on commu-
tative monoids. Consider N as the additive monoid of all natural numbers and Nn as an additive
monoid (n ∈ N). We assume M = {xa|a ∈ Nn}, and a neighborhood N = {xa1 , xa2 , . . . , xak} is
the subset of M . Let xai = x<b1,b2,...,bn>, xaj = x<c1,c2,...,cn> (ai, aj ∈ Nn). The operator of M is
defined by

∀xai , xaj ∈M,xaixaj = x<b1+c1,b2+c2,...,bn+cn>.

Then, M is a commutative monoid.

Theorem 5.1. The composition of any CA and the CA with local formula xa ∈ F (N) is commuta-
tive.

Proof. Let A be a local formula of CA on the commutative monoid. By Proposition 4.8, xa ◦ A ≡
A ◦ xa holds. Then,

Txa ◦ TA ≡ Txa◦A

≡ TA◦xa

≡ TA ◦ Txa

by Definition 4.1, Proposition 4.2 and Theorem 4.5.

For CAs over M = {xa|a ∈ Nn}, and N = {xa1 , xa2 , . . . , xak} ⊂ M , there exist n-dimensional
CAs with the local formula xai ∈ F (N), whose composition of any CA is commutative. In the case
of 2-dimensional CAs over M = {xb|b ∈ N2} and N = {x<0,0>, x<0,1>, x<1,0>, x<1,1>} ⊂ M , the
composition of any CA and a CA with a local function of Type-1 in Table 3 is commutative. Moreover
in the case of elementary CAs over M = {xm|m ∈ N} and N = {x0, x1, x2}, the composition of any
CA and the CA with the local function of number 170, 204 or 240 is commutative.

Theorem 5.2. Let B,C,D ∈ N ∪ {¬xb|xb ∈ N}, xa ∈ N . Each composition of CA with the
local formula ¬xa ∈ F (N) and CA with the local formula ((B ∧ (C ∨ D)) ∨ (C ∧ D)) ∈ F (N) is
commutative.
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Proof. Let B,C,D ∈ N ∪ {¬xb|xb ∈ N}, xa ∈ N . By Proposition 2.4, Proposition 4.7 and Proposi-
tion 4.10,

¬xa ◦ ((B ∧ (C ∨D)) ∨ (C ∧D)) ≡ ((B ∨ (C ∨D)) ∧ (C ∨D)) ◦ ¬xa

≡ ((B ∧ (C ∨D)) ∨ (C ∧D)) ◦ ¬xa.

By Theorem 4.5,

T¬xa ◦ T((B∧(C∨D))∨(C∧D)) ≡ T¬xa◦((B∧(C∨D))∨(C∧D))

≡ T((B∧(C∨D))∨(C∧D))◦¬xa

≡ T((B∧(C∨D))∨(C∧D)) ◦ T¬xa .

For CAs over M = {xa|a ∈ Nn}, and N = {xa1 , xa2 , . . . , xan} ⊂ M , the composition of a CA
with a local function of Type-2 and a CA with a local function of Type-3, a local function of Type-4
or a local function of Type-5 in Table 1 is commutative.

Example 5.3. In the case of 2-dimensional CAs over M = {xb|b ∈ N2} and N = {x<0,0>, x<0,1>, x<1,0>,
x<1,1>} ⊂ M , the composition of the CA with the local formula LFA = ¬x<1,0> and the CA with
the local formula LFB = (x<0,1> ∧ (x<1,0> ∨ x<1,1>))∨ (x<1,0> ∧ x<1,1>) is commutative. Figure 1
shows examples of the transitions of their CA and their composition.

Figure 1: Example of transited configurations

Furthermore, in the case of elementary CAs over M = {xm|m ∈ N} and N = {x0, x1, x2}, the
composition of the CA with the local function of 15, 51, or 85 and the CA with the local function
of 43, 77, 113, 142, 212, or 232 is commutative.

Theorem 5.4. Let B,C,D ∈ N ∪ {¬xb|xb ∈ N}, xa ∈ N . Each composition of the CA with the
local formula ¬xa ∈ F (N) and the CA with the local formula ¬((B ∧ (C ∨D)) ∨ (C ∧D)) ∈ F (N)
is commutative.

Proof. By Proposition 4.10,

¬xa ◦ ¬((B ∧ (C ∨D)) ∨ (C ∧D)) ≡ ¬((B ∧ (C ∨D)) ∨ (C ∧D)) ◦ ¬xa.

By Theorem 4.5,

T¬xa ◦ T¬((B∧(C∨D))∨(C∧D)) ≡ T¬xa◦¬((B∧(C∨D))∨(C∧D))

≡ T¬((B∧(C∨D))∨(C∧D))◦¬xa

≡ T¬((B∧(C∨D))∨(C∧D)) ◦ T¬xa .
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For CAs over M = {xa|a ∈ Nn}, and N = {xa1 , xa2 , . . . , xan} ⊂ M , the composition of
a CA with a local function of Type-2 and a CA with a local function of Type-6 in Table 1
is commutative. For example, in the case of 2-dimensional CAs over M = {xb|b ∈ N2} and
N = {x<0,0>, x<0,1>, x<1,0>, x<1,1>} ⊂ M , the composition of the CA with the local formula
LFA and the CA with the local formula ¬LFB is commutative for the local formulas in Example
5.3. Additionally, in the case of elementary CAs over M = {xm|m ∈ N} and N = {x0, x1, x2}, the
composition of the CA with the local function of 15, 51, or 85 and the CA with the local function
of 23 or 43 is commutative.

Theorem 5.5. Let B,C,D ∈ N ∪ {¬xb|b ∈ Nn}, xa ∈ N . Each composition of the CA with
the local formula ¬xa ∈ F (N) and the CA with either local formula (B + C + D) ∈ F (N) or
¬(B + C + D) ∈ F (N)is commutative.

Proof. By Proposition 4.10,

¬xa ◦ ¬(B + C + D) ≡ ¬(B + C + D) ◦ ¬xa.

By Theorem 4.5,

T¬xa ◦ T¬(B+C+D) ≡ T¬xa◦¬(B+C+D)

≡ T¬(B+C+D)◦¬xa

≡ T¬(B+C+D) ◦ T¬xa .

By Proposition 4.10,
¬xa ◦ (B + C + D) ≡ (B + C + D) ◦ ¬xa.

By Theorem 4.5,

T¬xa ◦ T(B+C+D) ≡ T¬xa◦(B+C+D)

≡ T(B+C+D)◦¬xa

≡ T(B+C+D) ◦ T¬xa .

For CAs over M = {xa|a ∈ Nn}, and N = {xa1 , xa2 , . . . , xan} ⊂ M , the composition of a
CA with a local function of Type-2 and a CA with a local function of Type-7 or a local function
of Type-8 in Table 1 is commutative. For example, in the case of 3-dimensional CAs over M =
{xb|b ∈ N3} and N = {x<0,0,0>, x<0,0,1>, x<0,1,0>, x<0,1,1>, x<1,0,0>, x<1,0,1>, x<1,1,0>, x<1,1,1>} ⊂
M , the composition of the CA with the local formula ¬x<1,0,1> and the CA with the local formula
x<0,1,0> + x<1,0,0> + x<1,1,1> is commutative and it is the composition of the CA with the local
formula ¬x<0,0,1> and the CA with the local formula x<0,0,1> + x<0,1,1> + x<1,1,0>. Furthermore,
in the case of elementary CAs over M = {xm|n ∈ N} and N = {x0, x1, x2}, the composition of the
CA with the local function of 15, 51, or 85 and the CA with the local function of 77, 133, 142, 212,
or 232 is commutative.

Assuming M is a monoid not confined to a commutative monoid, the following proposition holds.

Proposition 5.6. Let CAA and CAB with local formulae A and B on monoid M be reversible. If the
multiplication of A and B is commutative, then the multiplication of B−1 and A−1 is commutative.

Proof.

(A ◦B) ◦ (B−1 ◦A−1) ≡ e

(A−1 ◦B−1) ◦ (A ◦B) ≡ (A−1 ◦B−1) ◦ (B ◦A)

≡ e

By Proposition 4.7, (A−1 ◦B−1) ≡ (B−1 ◦A−1).
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6 Conclusion

In this paper, we examined the logical formulae on a commutative monoid as the local functions of
n-dimensional CAs. We discussed the commutativity of the multiplication of formulae and described
the conditions for formulae that satisfy the commutativity of the composition of CAs of local func-
tions using one cell in its neighborhood on commutative monoids. We also provided the examples of
the compositions that satisfy the commutativity for n-dimensional CAs on commutative monoids.

We focused on M = {xa|a ∈ Nn} in this paper. We guess that some of those properties hold
for CAs on other monoids. One of the future works is to check them. Furthermore questions
concerning CAs on monoids remain to be answered in future research. First, we need to formulate
more computational laws of formulae on monoids. Second, we should clarify conditions for CAs that
cannot be created by compositions of CAs. Finally, we need to study which of reversible CAs on
monoids exist. It is also necessary to determine whether well-known theorems and properties of CAs
on groups apply for CAs over monoids.
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