
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 12, Number 1, pages 204–217, January 2022

An Implementation of a Grid Square Codes Generator on a RISC-V Processor

Jubee Tada

Graduate School of Science and Engineering, Yamagata University
Yonezawa, Yamagata, 992-8510, Japan

and

Keiichi Sato

Department of Information Systems, Yamagata College of Industry and Technology
Yamagata, Yamagata, 990-2473, Japan

Received: February 15, 2021
Revised: May 4, 2021
Revised: July 30, 2021

Accepted: August 13, 2021
Communicated by Hideharu Amano

Abstract

This paper implements an execution unit that generates grid square codes from latitude and
longitude on a RISC-V processor and evaluates its performance. In recent years, a statistical
analysis which uses grid square codes has been focused. Although grid square codes are ob-
tained from latitude and longitude based on several equations, this calculation requires a long
computing time because it needs a lot of floating-point instructions.

In this paper, an execution unit which generates grid square codes from latitude and lon-
gitude is designed, and the instruction which generates grid square codes by using the unit is
implemented on a RISC-V processor. The proposed execution unit can generate the correspond-
ing grid square code from latitude and longitude in one cycle.

As a benchmark, a program that counts the number of times the randomly generated lati-
tude and longitude match the specified grid square code is used. Experimental results show the
in-order RISC-V processor with the proposed unit which implemented on an FPGA achieves
a 36.6% reduction of execution time compared to the original processor. In addition, the per-
formance evaluation of the out-of-order RISC-V processor with the proposed unit by using the
gem5 simulator shows a 23.9% reduction of execution cycles compared to the original processor.

This paper also designs an execution unit which converts grid square codes to latitude and
longitude. We call this conversion ”Grid-to-Degree conversion”. Experimental results show the
in-order RISC-V processor with the unit which implemented on an FPGA achieves a 3.65%
reduction of execution time compared to the original processor.

Keywords: Floating-point arithmetic, Microprocessors, Field programmable gate arrays, Grid
square statistics

1 Introduction

In recent years, a statistical analysis which uses grid square codes has been focused. A statistical
analysis using grid square codes is important to clarify the migration history of people and the
population density. Although grid square codes are obtained from latitude and longitude based on

204



International Journal of Networking and Computing

equations, this calculation requires a long computing time because it needs a lot of floating-point
instructions. Therefore, a method which accelerates the generation of grid square codes from latitude
and longitude is strongly required.

In this paper, an execution unit which generates grid square codes from latitude and longitude
is designed, and the instruction which generates grid square codes by using the unit is implemented
on a RISC-V processor [1]. The proposed execution unit can generate the corresponding grid square
code from latitude and longitude in one cycle. The RISC-V processor with the proposed unit is
implemented on an FPGA, and the performance is evaluated.

This paper also designs an execution unit which converts grid square codes to latitude and
longitude in one cycle. As compared to generating grid square codes, the number of instructions
which required for converting grid square codes to latitude and longitude is small. Therefore, the
computing time which could be reduced by the unit is short. However, because floating-point
arithmetic units are not used, the power consumption will be reduced when the unit could be
implemented with a small amount of resources.

This paper is organized as follows. Section 2 outlines grid square codes. In Section 3, an execution
unit which generates grid square codes from latitude and longitude is proposed. Section 4 evaluates
the performance of a RISC-V processor which implements the proposed execution unit. Section 5
concludes this paper.

2 GRID SQUARE CODES

In this study, grid square codes based on JIS X0410 [2] specified as Japanese Industrial Standard
(JIS) are used. JIS X0410 defines Japanese procedures for generating grid square statistics for
both government of Japan statistics and industrial applications. In Japan, the Statistics Bureau,
the Ministry of Internal Affairs and Communications, and the Ministry of Land, Infrastructure,
Transport and Tourism provide grid square data for Japanese statistical surveys such as censuses,
economic surveys, and censuses, national land numeric information, facilities, natural environment
and land usage [3]. Grid square codes are codes given when subdividing landscape into rectangular
subregions by latitude and longitude [2]. The codes enable us to identify each grid square as a
unique location from latitude and longitude. In addition, the codes are useful for data analysis in
grid square statistics. Figure 1 shows a schematic representation of the grid square codes. The
codes are expressed by numeric digits in which length corresponds to the spatial resolution, and its
notation is defined as ”puqvrw”. ”pu” is called ”1st grid code”, which is expressed by four numeric
digits and 80km grid square code. Also, ”puqv” is called ”2nd grid code”, which is expressed by
six numeric digits and divides 1st grid code into 8 parts of equal length and breadth (10km grid
square code). Furthermore, ”puqvrw” is called ”3rd grid code”, which is expressed by eight numeric
digits and divides 2nd grid code by 10 equally (1km grid square code). Generally, 3rd grid code is
called the ”Standard Area Grid”. Because the JIS X0410 is stipulated for the area around Japan,
the range of latitude is 20 to 46 degrees and the range of longitude is 122 to 154 degrees.

For data analysis based on grid square statistics, it is necessary that the data conversion from
degree notation of latitude and longitude to the grid square codes. Specifically, the conversion
method is denoted as the following equations [2]:

p = blatitude× 60÷ 40c (p is two digits) (1)

a = (latitude× 60÷ 40− p)× 40 (2)

q = ba÷ 5c (q is one digit) (3)

b = (a÷ 5− q)× 5 (4)

r = bb× 2c (r is one digit) (5)

u = blongitude− 100c (u is two digits) (6)

f = longitude− 100− u (7)

205



An Implementation of a Grid Square Codes Generator on a RISC-V Processor

Figure 1: Schematic representation of Grid square codes based on JIS X0410

v = bf × 8c (v is one digit) (8)

g = (f × 8− v) (9)

w = bg × 80c (w is one digit) (10)

Here, ”b c” denotes the floor function. In this paper, latitude and longitude are expressed in
decimal degrees. For example, when latitude and longitude are given as 38.24583 and 140.3313,
respectively, 3rd grid code of 57402296 is obtained by using above equations.

Figure 2 shows a schematic representation of an area corresponding to grid square code ”57402296”.
The area includes Yamagata station. In addition, Grid square code ”57403206” adjacent to the upper
side of the grid square code includes Kajo park.

To output the result obtained by data analysis with the code, visualization on a map is useful.
Because we can allow to easily understand distribution such as the population or temperature in
each area. To visualize the result, it is necessary data conversion from the grid square codes to
the degree notation of latitude and longitude. We call this conversion ”Grid-to-Degree conversion”.
Specifically, the conversion method is denoted as the following equations:

Wlatitude =
2

3
(11)

Wlongitude = 1 (12)

W ′
latitude =

Wlatitude

8
(13)

W ′
longitude =

Wlongitude

8
(14)

W ′′
latitude =

W ′
latitude

10
(15)

W ′′
longitude =

W ′
longitude

10
(16)

206



International Journal of Networking and Computing

Figure 2: an area corresponding to a grid square code

Mlatitude =
2

3
p (17)

Mlongitude = u + 100 (18)

M ′
latitude = Mlatitude +

(
2
3q

)
8

(19)

M ′
longitude = Mlongitude +

v

8
(20)

M ′′
latitude = M ′

latitude +
(2/3)r

8

10
(21)

M ′′
longitude = M ′

longitude +

(
w
8

)
10

(22)

M ′′
latitudec = M ′′

latitude +
W ′′

latitude

2
(23)

M ′′
longitudec = M ′′

longitude +
W ′′

longitude

2
(24)

Here, Wlatitude and Wlongitude denote width and height of a 1st grid square code, a concept is shown
in Figure 3. W ′

latitude and W ′
longitude denote width and height of a 2nd grid square code, W ′′

latitude

and W ′′
longitude denote width and height of a 3rd grid square code.

Subsequently, Mlatitude and Mlongitude denote latitude and longitude corresponding to south-
western location on a 1st grid square code obtained by Grid-to-Degree conversion (See Figure 3).
We call the latitude and the longitude ”grid-latitude” and ”grid-longitude”, respectively. M ′

latitude

and M ′
longitude denote grid-latitude and grid-longitude corresponding to southwestern location on a

2nd grid square code, M ′′
latitude and M ′′

longitude denote grid-latitude and grid-longitude corresponding

to southwestern location on a 3rd grid square code. In addition, M ′′
latitudec

and M ′′
longitudec

denote

grid-latitude and grid-longitude corresponding to center location on a 3rd grid square code.
As mentioned above, a lot of operations are required to generate a grid square code from latitude

and longitude, and to convert a grid square code to latitude and longitude. Therefore, this paper
proposes and evaluates execution units which perform these operations at high speed.

207



An Implementation of a Grid Square Codes Generator on a RISC-V Processor

Figure 3: A concept for grid-latitude and grid-longitude

3 Design of a grid square codes generator

Figure 4 shows the function which generates the corresponding grid square code from latitude and
longitude in 64-bit RISC-V processors. The function is implemented in C language, compiled by
GCC 9.2.0 with an optimization option -O3.

As shown in Figure 4(a), over 50 instructions are required in 64-bit RISC-V processors. In order
to generate the corresponding grid square code from latitude and longitude, a lot of instructions are
required, and a large part of these instructions is floating-point instructions. Therefore, this paper
proposes an execution unit which can generate the corresponding grid square code from latitude and
longitude in one cycle.

Figure 5 shows the structure of the proposed grid square code generator. The proposed generator
generates the ”puqvrw” value described in Section 2 from two single-precision floating-point values
which illustrate latitude and longitude.

In this paper, each ”puqvrw” is expressed as several bits to considering the ease of matching the
grid square codes to 1st grid code and 2nd grid code. ”p” and ”u” are expressed by 8-bit and the
others are expressed 4-bit, so the entire ”puqvrw” is expressed 32-bit.

The behavior of the proposed generator is as follows. At first, it is confirmed whether the input
latitude and longitude are within an appropriate range. The range converted by the grid square
codes is 20 to 46 degrees in latitude, and 122 to 154 degrees in longitude. If latitude or longitude is
out of range, the output value is set to zero.

Next, ”p”,”q”, and ”r” are generated by latitude. Figure 6(a) shows the structure of the generator
for latitude.

At first, the exponent field of the input latitude is checked. The range of latitude is 20 to
46 degrees, so the exponent value is ”10000011” or ”10000100”. Because it is necessary to align
the exponent value, if the value is ”10000100”, the temporary value is set to the 1-bit left shifted
significand of the input latitude. Otherwise, that is set to the significand of the input latitude.

The mechanism to generate ”p”, ”q”, and ”r” from the temporary value is as follows. The value
of ”p” is the integer part of the temporary value times 1.5. This value is obtained by adding the
temporary value and the 1-bit left shifted temporary value, and taking the upper 7-bits of the result.
The value of ”q” is upper 3-bit of the remaining of the result. The remaining value after taking
”q” is multiplied by 10. This multiplication could be realized by adding the value and the 2-bit
shifted value. The value of ”r” is obtained by taking upper 4-bit of the result of this addition. As
mentioned above, the hardware resources to generate ”p”, ”q” and ”r” from the temporary value
are one comparator, two adders and one multiplexer.

208



International Journal of Networking and Computing

Figure 4: A function which generates the corresponding grid square code from latitude and longitude

The values of ”p”, ”q”, and ”r” are generated from 38.24583 as follows. In this case, the value
of ”p” is 57, the value of ”q” is 2 and the value of ”r” is 9. The exponent value of the 38.24583
is ”10000100”, and the significand value with an implicit leading bit is ”100110001111101110111011”.
The temporary value is set to the 1-bit left shifted value, so the value is ”1001100011111011101110110”.
The temporary value and the 1-bit left shifted temporary value are added, and the result is
”011100101011110011001100010”. The upper 7-bit of the value is ”p”, so it is ”0111001”. The value
of ”q” is next 3-bit, so it is ”010”. The remaining of the value is ”11110011001100010”. The value
and the 2-bit left shifted value is added, and the result is ”100101111111111010100”. The value of
”r” is the upper 4-bit of the result, so it is ”1001”.

Next, ”u”, ”v”, and ”w” are generated by longitude. Figure 7 shows the structure of the generator
for longitude. At first, the exponent field of the input longitude is checked. The range of longitude is
122 to 154 degrees, so the exponent value is ”10000101” or ”10000110”. If the value is ”10000110”,
the temporary value is set to the 1-bit left shifted significand of the input longitude. Otherwise,
that is set to the significand of the input longitude.

The mechanism to generate ”u”, ”v”, and ”w” from the temporary value is as follows. The
value of ”u” is obtained by subtracting 100 from the upper 8-bit of the temporary value. The value
of ”v” is upper 3-bit of the remaining of the temporary value. The remaining value after taking
”v” is multiplied by 10. This multiplication could be realized by adding the value and the 2-bit
shifted value. The value of ”w” is obtained by taking upper 4-bit of the result of this addition. As
mentioned above, the hardware resources to generate ”u”, ”v” and ”w” from the temporary value
are one comparator, one subtractor, one adder and one multiplexer.

The values ”u”, ”v”, and ”w” are generated from 140.3313 as follows. In this case, ”u” is 40, ”v”
is 2 and ”w” is 6. The exponent value of the 140.3313 is ”10000110”, and the significand value with
an implicit leading bit is ”100011000101010011010000”. The temporary value is set to the 1-bit left
shifted value, so the value is ”1000110001010100110100000”. The upper 8-bit of temporary value
is ”10001100”, and 100 is subtracted from it. The result is ”00101000”, and it is the value of ”u”.
The remaining of the temporary value is ”01010100110100000”. the value of ”v” is the upper 3-bit

209



An Implementation of a Grid Square Codes Generator on a RISC-V Processor

Figure 5: Structure of the proposed grid square codes generator

Figure 6: Structure of the generator for latitude

Figure 7: Structure of the generator for longitude

210



International Journal of Networking and Computing

of the value, so it is ”010”. The remaining value after taking ”v” is ”10100110100000”. The value
and the 2-bit left shifted value is added, and the result is ”01101000000100000”. The value of ”w”
is the upper 4-bit of the result, so it is ”0101”.

In this paper, the proposed generator is implemented on the ALU of a RISC-V processor. As
shown in Figure 4(b), the RISC-V processor which implements the proposed generator can generate
the corresponding grid square code from latitude and longitude by three instructions. In Figure
4(b), ”llcode” is the instruction which generates the corresponding grid square code from latitude
and longitude. Although the generation can be done by one instruction, additional two instructions
are need to move the two values from f registers to x registers.

4 Design of a Grid-to-Degree converter

Figures 8 and 9 show the functions which convert the grid square code to latitude and longitude
in 64-bit RISC-V processors, respectively. As shown in Figure 8(a) and Figure 9(a), about 20
instructions are required in 64-bit RISC-V processors for each conversion. As compared to the grid
square codes generation, Grid-to-Degree conversion requires small number of instructions, and a
large part of these instructions are integer instructions. Although the performance of a Grid-to-
Degree converter is lower than that of the grid square codes generator, it is considered that the
converter will reduce the computing time. In addition, the converter is useful when floating-point
units are not implemented on a processor like as the edge computing. Therefore, this paper proposes
a Grid-to-Degree converter which can convert the grid square code to latitude and longitude.

Figure 10 shows the structure of the proposed Grid-to-Degree converter. The proposed converter
converts the ”puqvrw” value described in Section 2 into two single-precision floating-point values
which illustrate latitude and longitude. The behavior of the proposed converter is as follows. At
first, it is confirmed whether the input ”p” and ”u” values are within an appropriate range. The
range of ”p” is 30 to 68, and the range of ”u” is 22 to 53. If ”p” or ”u” is out of range, the output
values are set to zero.

Next, ”p”,”q”, and ”r” are converted to latitude. Figure 11 shows the structure of the converter
for latitude. The Mlatitude is calculated by using the following equation from equations (17), (19)
and (21):

Mlatitude = ((p× 80) + (q × 10) + r)÷ 120 (25)

At first, to multiply ”p” by 80, ”p” and the 2-bit left shifted ”p” are added, and the result is
4-bit left shifted. Also to multiply ”q” by 10, ”q” and the 2-bit left shifted ”p” are added, and
the result is 1-bit left shifted. The multiplied ”p”, the multiplied ”q”, and ”r” are added, and the
result is multiplied by a significand of 1/120. Next, ”p” is checked for deciding the exponent value
and the significand value. When ”p” is less than 48, the exponent value is set to ”10000011”, and
the significand value is obtained by taking 33th to 11th bits of the result of multiplication. When
”p” is 48 or more, the exponent value is set to ”10000100”, and the significand value is obtained by
taking 34th to 12th bits of the result of multiplication. As mentioned above, the hardware resources
to convert ”p”, ”q” and ”r” to latitude are three adders, one multiplier, one comparator and two
multiplexers.

Next, ”u”, ”v”, and ”w” are converted to longitude. Figure 12 shows the structure of the
converter for longitude. The Mlongitude is calculated by using the following equation from equations
(18), (20) and (22):

Mlongitude = ((u× 80) + (v × 10) + w)÷ 80 (26)

At first, 100 is added to ”u”. To multiply ”u+100” by 80, the result and the 2-bit left shifted
”u+100” are added, and the result is 4-bit left shifted. Also to multiply ”v” by 10, ”q” and the 2-bit
left shifted ”v” are added, and the result is 1-bit left shifted. The multiplied ”u”, the multiplied ”v”,
and ”w” are added, and the result is multiplied by a significand of 1/80. Next, ”u” is checked for
deciding the exponent value and the significand value. When ”u” is less than 28, the exponent value

211



An Implementation of a Grid Square Codes Generator on a RISC-V Processor

is set to ”10000101”, and the significand value is obtained by taking 35th to 13th bits of the result of
multiplication. When ”u” is 28 or more, the exponent value is set to ”10000110”, and the significand
value is obtained by taking 36th to 14th bits of the result of multiplication. As mentioned above,
the hardware resources to convert ”p”, ”q” and ”r” to latitude are four adders, one multiplier, one
comparator and two multiplexers.

The proposed Grid-to-Degree converter is implemented on the ALU of a RISC-V processor.
As shown in Figure 8(b) and Figure 9(b), the RISC-V processor which implements the proposed
generator can convert the grid square code to latitude and longitude by two instructions. In Figure
8(b), ”codelat” is the instruction which converts the grid square code to latitude. In Figure 9(b),
”codelong” is the instruction which converts the grid square code to longitude. Although these
conversions can be done by one instruction, additional one instruction is need to move one value
from x register to f register. Therefore, the grid square code is converted to latitude and longitude
by four instructions.

5 Performance Evaluation

To evaluate the performance of the proposed units, these are implemented on a RISC-V processor.
As RISC-V is open architecture which enables open-source hardware implementations, there are a
lot of instruction extension examples [4]. So a RISC-V processor is selected as a baseline processor
in this paper.

In the implementation on FPGA, Ariane [5] is used as a baseline processor. Ariane is a 64-bit,
single-issue, in-order RISC-V processor. In the experiments, the digilent genesys2 board which equips
Xilinx XC7K325T-2FFG900C FPGA is used. The clock frequency when Ariane is implemented on
this board is 50MHz. Xilinx Vivado Design Suite 2019.2 is used for designing.

As a result of logic synthesis, the proposed generator uses 104 LUTs, and the maximum path
delay is 6.956ns. The proposed converter uses 69 LUTs and 2 DSPs, and the maximum path delay
is 10.223 ns.

Table 1 shows the hardware utilization of the original Ariane processor, the processor with the
proposed generator, and the processor with the proposed converter. As compared to the baseline
processor, the processor with the proposed generator increases the number of LUTs by 172 and the
number of FFs by 4, and the processor with the proposed converter increases the number of LUTs
by 421, and the number of FFs by 5.

The maximum path delay of the processor with the proposed generator and the processor with
the proposed converter are 16.753 ns and 16.026 ns, respectively, while it is 16.307 ns for the baseline
processor. These are short enough to achieve a 50MHz clock frequency. In all cases, the maximum
path delay is observed on the scoreboard.

To evaluate the performance of the proposed generator, the benchmark is executed on linux, and
the execution time is measured. As the benchmark, a program that counts the number of times
the randomly generated latitude and longitude matches the specified grid square code is used. The
number of iterations is 10 million, and the number of grid square codes for matching is 16. Figure
13 shows the experimental results. As compared to the baseline processor, the processor with the
proposed generator achieves a 36.6% reduction of the execution time.

Ariane is an in-order, single issue processor. Therefore, it is considered that the effect of the
proposed generator is enhanced. In order to evaluate the proposed generator in an out-of-order
processor, the gem5 simulator [6] is used. Table 2 shows the parameter of the simulated processor.
The clock frequency is set to 1.7GHz, that is the clock frequency when Ariane processor is designed
with 22 nm FD-SOI process [5].

Figure 14 shows the simulation results. As compared to the baseline, the proposal achieves a
23.9% reduction of the number of execution cycles. Figure 15 shows the breakdown of instructions
executed in the baseline and the proposal. As compared to the baseline, the proposal achieves a
39.5% reduction of the number of instructions. This is because the number of instructions required
to generate the grid square code has been reduced. Compared to the reduction of the number
of instructions, the reduction of the number of execution cycles is small. It is considered to be

212



International Journal of Networking and Computing

Figure 8: A function which converts the grid square code to latitude

Figure 9: A function which converts the grid square code to longitude

Table 1: Hardware Utilization
Baseline with Generator with Converter

Total LUTs 64013 64185 64434
Logic LUTs 62421 62593 62842
LUTRAMs 1224 1224 1224

SRLs 368 368 368
FFs 48707 48711 48712

RAMB36 49 49 49
RAMB18 2 2 2

DSP48 Blocks 27 27 29

213



An Implementation of a Grid Square Codes Generator on a RISC-V Processor

Figure 10: Structure of the proposed grid square codes converter

Figure 11: Structure of the converter for latitude

Figure 12: Structure of the converter for longitude

214



International Journal of Networking and Computing

Figure 13: Execution time of the benchmark in processors on FPGA (grid square code generator)

Figure 14: The number of execution cycles of the benchmark in the gem5 simulator (grid square
code generator)

Figure 15: The breakdown of instructions

Figure 16: Execution time of the benchmark in processors on FPGA (Grid-to-Degree converter)
215



An Implementation of a Grid Square Codes Generator on a RISC-V Processor

Table 2: Parameters of the simulated processor
Parameter

Clock 1.7GHz
L1I/D size 32KB

L1I/D assoc. 8
L1I/D latency 2

L2 size 256KB
L2 assoc. 8

L2 latency 20

the effect of out-of-order execution. Although the performance improvement rate becomes smaller
than the FPGA implementation, the effect of the proposed generator is still large. To evaluate the
performance of the proposed converter, the benchmark is executed on linux, and the execution time
is measured. As the benchmark, a program that counts the number of times the randomly generated
grid square code is near on the specified latitude and longitude is used. The number of iterations is
10 million, and the number of latitudes and longitudes for matching is 16. The benchmark counts
the number when the differences between the specified latitude and longitude and the converted
latitude and longitude are within 0.01. Figure 16 shows the experimental results. As compared
to the baseline processor, the processor with the proposed converter achieves a 3.65% reduction of
the execution time. The performance improvement is smaller than that of the proposed generator.
This is because the number of instructions required for converting grid square codes to latitude and
longitude is smaller than that for generating grid square codes from latitude and longitude.

6 Conclusions

This paper implements an execution unit that generates grid square codes from latitude and longi-
tude on a RISC-V processor and evaluates its performance.

Experimental results show the in-order RISC-V processor with the proposed unit which im-
plemented on an FPGA achieves a 36.6% reduction of execution time compared to the original
processor. In addition, the performance evaluation of the out-of-order RISC-V processor with the
proposed unit by using the gem5 simulator shows a 23.9% reduction of execution cycles compared
to the original processor.

This paper also designs an execution unit which converts grid square codes to latitude and
longitude in one cycle. Experimental results show the in-order RISC-V processor with this unit
which implemented on an FPGA achieves a 3.65% reduction of execution time compared to the
original processor.

Since grid square codes based on JIS X0401 covers only the area around Japan, the available
area is limited. To solve this problem, the world grid square code has been proposed, which is an
extension of the JIS X0401 and covers the entire world [3]. In future work, an execution unit which
generates world grid square codes from latitude and longitude will be designed and evaluated. In
addition, an accelerator which speeds up of the matching of grid square codes will be designed and
evaluated.

Acknowledgment

This work was partially supported by JSPS KAKENHI Grant Number JP19H02134.

216



International Journal of Networking and Computing

References

[1] A. Waterman and K. Asanovic, ”The RISC-V Instruction Set Manual Volume I: User-Level ISA
Document Version2.2,” RISC-V Foundation, 2017.

[2] ”Statistics Bureau of Japan,” Method of Demarcation for Grid Square, [online] Available:
http://www.stat.go.jp/english/data/mesh/05.html.

[3] A. Sato, S. Nishimura and H. Tsubaki, ”World Grid Square codes: Definition and an example of
World Grid Square data,” 2017 IEEE Int. Conf. on Big Data (BIGDATA), pp. 4156-4165, Dec.
2017.

[4] M. Gautschi et al., ”Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT End-
point Devices,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25(10),
pp. 2700–2713, 2017.

[5] F. Zaruba and L. Benini, ”The Cost of Application-Class Processing: Energy and Performance
Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29(11), pp. 2629–2640, 2019.

[6] N. Binkert et al. ,”The gem5 simulator,” ACM SIGARCH Computer Architecture News, vol.
39(2), pp. 1–7, 2011.

217


