
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 12, Number 2, pages 238–252, July 2022

An asynchronous P system with a DPLL algorithm for solving SAT

Takuya Noguchi Akihiro Fujiwara

Graduate School of Computer Science and Systems Engineering
Kyushu Institute of Technology

Iizuka, Fukuoka, 820-8502, Japan

Received: February 5, 2022
Accepted: March 22, 2022

Communicated by Susumu Matsumae

Abstract

Membrane computing, which is also known as P system, is a computational model inspired
by the activity of living cells. Several efficient P systems, which work in a polynomial number
of steps, have been proposed for solving computationally hard problems. However, most of the
proposed algorithms use an exponential number of membranes, and reduction of the number of
membranes must be considered in order to make the P system a more realistic model.

In the present paper, we propose an asynchronous P system with a Davis-Putnam-Logemann-
Loveland (DPLL) algorithm, which is a set of rules for solving a satisfiability problem (SAT)
efficiently, in an attempt to reduce the number of membranes. The proposed P system solves
SAT with n variables and m clauses in O(mn2) parallel steps or O(mn22n) sequential steps.

We evaluate the number of membranes used in the proposed P system by comparison with
the number of membranes used in known P systems. The experimental result demonstrates the
validity and efficiency of the proposed P system.

Keywords: membrane computing, satisfiability problem, DPLL algorithm

1 Introduction

Membrane computing, which was introduced in [8] as P system, is a computational model inspired
by the activity of living cells. The definition of P system is based on a feature of a membrane and
an object, which denote a computing cell and data storage, respectively. In P system, each object
evolves according to evolution rules, which are associated with the membrane.

Since an exponential number of membranes can be created in a polynomial number of steps using
the division rule, which is one of evolution rules in a P system, a computationally hard problem can
be solved in a polynomial number of steps. Using this feature, a number of P systems have been
proposed for solving computationally hard problems [4, 5, 7, 9, 12,14].

In addition, asynchronous parallelism, which assumes asynchronous application of evolution rules,
has been considered for P systems. Asynchronous parallelism means that all objects may react to
rules with different speeds on P system. Asynchronous parallelism makes P system a more realistic
computational model because living cells work independently according to the environment. Using
asynchronous parallelism, a number of asynchronous P systems have been proposed for computa-
tionally hard problems [2, 10,11].

However, computationally hard problems have been solved in a polynomial number of steps using
an exponential number of membranes. The number of membranes indicates the number of living

238

International Journal of Networking and Computing

cells, and a reduction of the number of membranes must be considered in the case where the P
system is implemented using living cells because living cells cannot be created exponentially.

Recently, a number of P systems [3, 6, 13] have been proposed for reducing the number of mem-
branes. For example, P system for the satisfiability problem (SAT) [3] with branch and bound,
which is a well-known optimization technique, has been proposed. In the proposed P system, the
satisfiability is checked for partial assignment, and the partial assignment is bounded if all clauses
are satisfied or if one of the clauses cannot be satisfied. The experimental results for the proposed
P system show that the number of membranes used is at most 75 percent less than the number of
membranes used in previous P system for SAT.

In the present paper, we propose an asynchronous P system for solving SAT with the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm. The DPLL algorithm is a well-known search al-
gorithm for SAT and preferentially assigns a variable in the partial assignment using three rules:
a one-literal rule, a pure literal rule, and a splitting rule. Using these three rules repeatedly and
intensively, the number of membranes that contain partial assignment can be decreased.

We propose an asynchronous P system for solving SAT with n variables and m clauses using the
DPLL algorithm. The theoretical complexities of proposed P system is O(mn22n) sequential steps
or O(mn2) parallel steps using O(m2n2) kinds of objects.

We evaluate the number of membranes in the proposed P system by comparing the number of
membranes in known P systems. The experimental results show that the number of membranes used
is nearly constant for small inputs and is smaller than the number of membranes used in previous
P systems.

The remainder of the paper is organized as follows. In Section 2, we describe the computational
model for the membrane computing and an outline of the DPLL algorithm. In Section 3, we propose
P system with the DPLL algorithm for SAT and consider a complexity of P system. In Section 4,
we show experimental results for the previous P systems and proposed P systems. Finally, Section
5 concludes the paper.

2 Preliminaries

In the present paper, we propose an asynchronous P system with the DPLL algorithm. We briefly
explain the definition of P system and an outline of the DPLL algorithm in this section.

2.1 Computational model for membrane computing

A P system consists mainly of membranes and objects. A membrane is a computing cell in the P
system and may contain objects and other membranes. Each membrane is labeled with a distinct
integer. An object denotes a memory cell that stores data in the P system. According to the
evolution rules for the corresponding membrane, objects may evolve into other objects or pass
through membranes. Objects may also divide or dissolve the membranes in which the objects are
stored. We assume that each object is a finite string over a given set of alphabetic characters.

As an example of membranes and objects, the following expression denotes a membrane structure
that consists of two membranes and three objects.

[[α]2 [β γ]3]1

In this example, the membrane labeled 1 contains two membranes, labeled 2 and 3, and the
membranes labeled 2 and 3 contain sets of objects {α} and {β, γ}, respectively.

Computation of P systems is governed by a number of evolution rules. Each evolution rule is a
rewriting rule for membranes and objects. According to the applicable evolution rules, objects and
membranes are transformed in parallel in every step of computation. The system stops computation
if there is no applicable evolution rule for the objects.

A number of types of evolution rules are assumed in membrane computing. In the present paper,
we assume the following five rules as in [4]:

239

An asynchronous P system with a DPLL algorithm for solving SAT

(1) Object evolution rule:

[α]h → [β]h

Object α is transformed into object β.

(2) Send-in communication rule:

α []h → [β]h

Object α is moved into inner membrane h and is transformed into object β.

(3) Send-out communication rule:

[α]h → []h β

Object α is sent out from membrane h and is transformed into object β.

(4) Dissolution rule:

[α]h → β

The membrane that contains object α is dissolved, and object α is transformed into object β.
(Note that the outermost membrane cannot be dissolved.)

(5) Division rule:

[α]h → [β]h[γ]h

The membrane that contains object α is divided into two membranes with the same label, and
object α is transformed into other objects, β and γ, in each of the divided membranes.

The P system consists of the following six components:

O: the set of objects used in the system,

µ: the structure of the membrane,

ωi: the set of objects initially contained in the membrane labeled i,

Ri: the set of evolution rules for the membrane labeled i,

iin: the label of the input membrane, and

iout: the label of the output membrane

Using the above components, a P system Π with m membranes is defined as follows:

Π = (O,µ, ω1, ω2, · · · , ωm, R1, R2, · · · , Rm, iin, iout)

The complexity of the P system is defined as follows. We assume that each of the evolution rules
can be applied in one step in the computational model, and the complexity of the P system is the
number of steps executed.

In the present paper, we consider asynchronous parallelism [10] in the P system. Under the
assumption of asynchronous parallelism, any number of applicable evolution rules is applied in
parallel. In other words, all objects, for which there are applicable evolution rules, can be transformed
in parallel, or only one of the applicable evolution rules is applied in each step of computation. We
refer to the number of steps in the former and latter cases as the number of parallel and sequential
steps, respectively. The number of parallel steps is the complexity of the P system in the best case,
and the number of sequential steps is the complexity in the worst case.

240

International Journal of Networking and Computing

2.2 DPLL algorithm for CNF-SAT

In this subsection, we present an outline of the DPLL algorithm [1], which is a known search
algorithm for solving CNF-SAT. CNF-SAT is a well-known computationally hard problem that
determines if there exists a truth assignment for a given Boolean formula in conjunctive normal
form. The DPLL algorithm for SAT consists of three rules: a one-literal rule, a pure literal rule,
and a splitting rule. The rules are based on eliminating useless variable assignments.
(a) One-literal rule

The one-literal rule focuses on a clause containing only one literal. The clause can only be
satisfied by assignments such that the literal is set as true. The following is an example of an input
formula for the one-literal rule:

L = (X1 ∨ ¬X2) ∧ (X1 ∨X2) ∧ (¬X1)

In the above case, the third clause contains a single literal. Using the one-literal rule for the
third clause, X1 is set to 0.
(b) Pure literal rule

The pure literal rule focuses on a pure literal, which is a literal with only one polarity in the
input formula. A pure literal can be assigned as true or false according to polarity of the literal
and can be deleted from clauses in which the literal is contained. The following is an example of an
input formula for the pure literal rule:

L = (X1 ∨ ¬X2) ∧ (X1 ∨X2) ∧ (X1 ∨X3)

In the above case, X1 is a positive literal in all clauses, and the literal is a pure literal. Using
the pure literal rule, X1 is set to 1.
(c) Splitting rule

A non-pure literal x, which is positive or negative in terms of clauses, can be assigned as x = 0
or x = 1. The splitting rule is applied for the literal, and the input formula is divided into two
formulas according to the two assignments. For example, the following is an input formula that is
divided into two formulas by applying the splitting rule to X3:

L = (X1 ∨ ¬X2 ∨X3) ∧ (¬X1 ∨X2 ∨ ¬X3)

=

{
X1 ∨ ¬X2 (X3 = 0)

¬X1 ∨X2 (X3 = 1)

Using the above three rules, we can solve SAT effectively using the following procedure.

1. If a given formula consists of a single variable, then the satisfiability of the formula is deter-
mined in a constant time.

2. If the one-literal rule or the pure literal rule is applicable to a given formula, then the rules are
applied for the formula. If these two rules cannot be applied, then the splitting rule is applied
for the formula.

3. After applying the splitting rule, the input formula is divided into two formulas. Then, the
procedure is executed recursively for the two formulas.

3 An asynchronous P system with the DPLL algorithm for
SAT

In this section, we explain the proposed asynchronous P system for solving SAT. We first show an
encoding for the input and the output for the P system and then present an outline and details
of the P system. We next show an example of execution of the proposed P system, and we finally
discuss the complexity of the proposed P system.

241

An asynchronous P system with a DPLL algorithm for solving SAT

3.1 Input and output for proposed P system

We assume that an input formula for SAT is given in conjunctive normal form (CNF) with n Boolean
variables and m clauses. We also assume that an output for SAT is one of two values, ”TRUE”
or ”FALSE”. The output is ”TRUE” if there exists a truth assignment for satisfying the formula;
otherwise, the output is ”FALSE”.

The following is an example of an input formula with three variables and three clauses. Since a
truth assignment, X1 = 0, X2 = 1 and X3 = 0, satisfies the input formula, an output of SAT for
this instance is ”TRUE”.

L = (X1 ∨X2) ∧ (¬X1 ∨ ¬X3) ∧ (¬X1)

The above input is given by the following set of objects OL in the P system:

OL = {〈Xi,j , V 〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m,V ∈ {0, 1, N}}

Each object 〈Xi,j , V 〉 denotes a Boolean value for variable Xi in the j-th clause. When Xi occurs
in j-th clause, V = 1 and when ¬Xi occurs in j-th clause, V = 0. In addition, V is set to N if
neither Xi nor ¬Xi is in the j-th clause. For example, the following set of objects denotes the above
input formula:

OL ={〈X1,1, 1〉, 〈X1,2, 0〉, 〈X1,3, 0〉,
〈X2,1, 1〉, 〈X2,2, N〉, 〈X2,3, N〉,
〈X3,1, N〉, 〈X3,2, 0〉, 〈X3,3, N〉}

We assume that the input set OL is given from the outside region into the outer membrane. The
output of the P system is one of two objects, 〈TRUE〉 or 〈FALSE〉. Object 〈TRUE〉 is sent out
from the outer membrane to the outside region if the input formula is satisfiable; otherwise, object
〈FALSE〉 is sent out to the outside region.

3.2 Outline of P system with DPLL algorithm

The proposed P system consists of two membranes [[]2]1, i.e., an inner membrane labeled 2 is
contained in an outer membrane labeled 1. The P system consists of the following six steps:

Step 1: Move a set of input objects into an inner membrane.

Step 2: In each inner membrane, choose a variable such that the pure literal rule is applicable
to the variable. If the variable exists, then assign a Boolean value for the variable according
to the pure literal rule.

Step 3: If no variable is chosen in Step 2, choose a variable such that the one-literal rule is
applicable to the variable. If the variable exists, then assign a Boolean value for the variable
according to the one-literal rule.

Step 4: If no variable is chosen in Steps 2 and 3, then divide the inner membrane into two
membranes and assign a value for a variable in each divided inner membrane according to the
splitting rule.

Step 5: Check the satisfiability in each inner membrane and send an object indicating “TRUE”
to the outer membrane if all clauses are satisfied. On the other hand, send an object indicating
“FALSE” to the outer membrane if one of the clauses cannot be satisfied. Otherwise, the above
procedure is repeated from Step 2.

Step 6: Send one of the final objects, 〈TRUE〉 and 〈FALSE〉, from the outer membrane if
objects indicating “TRUE” or “FALSE” are sent out from the inner membrane.

242

International Journal of Networking and Computing

3.3 Details of proposed P system

We now explain the details of each step of the P system with the DPLL algorithm. In the following
description, Ri,j denotes a set of evolution rules applied to membrane i in Step j. A set of objects
OL, which denotes an input formula, is given to the outer membrane.

Step 1

In Step 1, a set of input objects is moved into an inner membrane. The step is executed using
the following evolution rules:

(Evolution rules for the outer membranes)

R1,1 = {〈X1,1, V 〉[]2 → [〈M2,1, 1〉〈X1,1, V 〉〈A1, N〉]2 | V ∈ {0, 1}}
∪{〈X1,1, N〉[]2 → [〈M2,1, 0〉〈X1,1, N〉〈A1, N〉]2}
∪{〈Mi,1, p〉〈Xi,1, V 〉[]2 → [〈Mi+1,1, p+ 1〉〈Xi,1, V 〉〈Ai, N〉]2
| 2 ≤ i ≤ n, 0 ≤ p ≤ n− 1, V ∈ {0, 1}}

∪{〈Mi,1, p〉〈Xi,1, N〉[]2 → [〈Mi+1,1, p〉〈Xi,1, N〉〈Ai, N〉]2}
| 2 ≤ i ≤ n, 0 ≤ p ≤ n− 1}

∪{〈Mi,j , p〉〈Xi,j , V 〉[]2 → [〈Mi+1,j , p+ 1〉〈Xi,j , V 〉]2
| 1 ≤ i ≤ n, 2 ≤ j ≤ m, 0 ≤ p ≤ n− 1, V ∈ {0, 1}}

∪{〈Mi,j , p〉〈Xi,j , N〉[]2 → [〈Mi+1,j , p〉〈Xi,j , N〉]2
| 1 ≤ i ≤ n, 2 ≤ j ≤ m, 0 ≤ p ≤ n− 1}

(Evolution rules for the inner membranes)

R2,1 = {[〈Mi,j , p〉]2 → []2〈Mi,j , p〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ p ≤ n}
∪{〈Mn+1,j , p〉 → 〈M1,j+1, 0〉〈Fj , p, 0〉 | 1 ≤ j ≤ m, 0 ≤ p ≤ n}
∪{〈M1,m+1, 0〉 → 〈P1,1〉〈PUR,N〉〈LIT, n〉〈MEM,m〉}

The computation using the above evolution rules is executed as follows. All input objects in the
outer membrane are moved into the inner membrane using the object 〈Mi,j , p〉. When objects of
1st clause are moved, the object 〈Ai, N〉 is created. The object indicates assignment of i-th literal.
In the movement, the number of unassigned literals in each clause is counted using a value p in the
object 〈Mi,j , p〉. At the end of movement for the j-th clause, objects 〈M1,j+1, 0〉 and 〈Fj , p, 0〉 are
created, and the objects trigger movement for the (j + 1)-st clause. The p and 0 in object 〈Fj , p, 0〉
indicate that p literals are in the j-th clause and the clause is not satisfied, respectively.

At the end of Step 1, object 〈M1,m+1, 0〉 is created after all input objects are moved into the
inner membrane. As the final task of Step 1, objects 〈P1,1〉, 〈PUR,N〉, 〈LIT, n〉, and 〈MEM,m〉 are
created. Then, objects 〈P1,1〉 and 〈PUR,N〉 trigger Step 2. In addition, 〈LIT, n〉 and 〈MEM,m〉
are objects that denote the number of unassigned literals and the number of unsatisfied clauses,
respectively.

Step 2

In Step 2, a variable to which pure literal rules can be applied are selected and a Boolean value is
assigned to the variable according to the pure literal rule if the variable exists. The step is executed
using the following evolution rules:

243

An asynchronous P system with a DPLL algorithm for solving SAT

(Evolution rules for the inner membrane)

R2,2,1 = {〈Pi,j〉〈Xi,j , V 〉〈PUR,N〉〈Fj , p, 0〉 → 〈Pi,j+1〉〈Xi,j , V 〉〈PUR, V 〉〈Fj , p, 0〉
| 1 ≤ i ≤ n, 1 ≤ p ≤ n, 1 ≤ j ≤ m,V ∈ {0, 1}}

∪{〈Pi,j〉〈Xi,j , V 〉〈PUR, V 〉 → 〈Pi,j+1〉〈Xi,j , V 〉〈PUR, V 〉
| 1 ≤ j ≤ m, 1 ≤ i ≤ n, V ∈ {0, 1}}

∪{〈Pi,j〉〈Xi,j , V 〉〈PUR, V ′〉〈Fj , p, 0〉 → 〈Pi+1,j〉〈Xi,j , V 〉〈PUR,N〉〈Fj , p, 0〉
| 1 ≤ i ≤ n, 1 ≤ p ≤ n, 1 ≤ j ≤ m,V, V ′ ∈ {0, 1}, V 6= V ′}

∪{〈Pi,j〉〈Xi,j , N〉 → 〈Pi,j+1〉〈Xi,j , N〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪{〈Pi,j〉〈Fj , 0, 1〉 → 〈Pi,j+1〉〈Fj , 0, 1〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

R2,2,2 = {〈Pi,m+1〉〈PUR, V 〉〈Ai, N〉〈LIT, k〉 → 〈Ai, V 〉〈LIT, k − 1〉〈Ci,1, i〉〈FALSE, 2k−1〉
| 1 ≤ i ≤ n, 1 ≤ k ≤ n, 1 ≤ j ≤ m,V ∈ {0, 1}}

∪{〈Pi,m+1〉〈PUR,N〉 → 〈Pi+1,1〉〈PUR,N〉 | 1 ≤ i ≤ n}
∪{〈Pn+1,1〉〈PUR,N〉 → 〈N1〉}

The computation using the above evolution rules is executed as follows. First, the value of the
first literal in the first clause is stored in object 〈PUR,N〉 by object 〈P1,1〉. Then, the value of
the first literal in each clause is checked, and the check is moved to the next variable if value V of
〈PUR, V 〉 is not equal to value V of 〈Xi,j , V 〉.

In the case where all clauses are checked and all values are equal to 〈PUR, V 〉, the pure literal
rule is applicable to the literal. Then, object 〈Pi,m+1〉 is created, and value V in object 〈PUR, V 〉 is
set to V in 〈Ai, V 〉. This procedure means that a value of the i-th variable is set to V . In addition,
object 〈Ci,1, i〉, which triggers Step 5, is created.

In the case the pure literal rule cannot be applied to any variable, object 〈N1〉, which triggers
Step 3, is created.

Step 3
In Step 3, a variable is chosen such that the one-literal rule is applicable to the variable, and a

Boolean value is assigned to the variable according to the one-literal rule if the variable exists. Step
3 is executed using the following evolution rules:

(Evolution rules for the inner membrane)

R2,3,1 = {〈Nj〉〈Fj , p, V 〉 → 〈Nj+1〉〈Fj , p, V 〉 | 2 ≤ p ≤ n, 1 ≤ j ≤ m,V ∈ {0, 1}}
∪{〈Nj〉〈Fj , V, 1〉 → 〈Nj+1〉〈Fj , V, 1〉 | 1 ≤ j ≤ m,V ∈ {0, 1}}
∪{〈Nj〉〈Fj , 1, 0〉 → 〈K1,j〉〈Fj , 1, 0〉 | 1 ≤ j ≤ m} ∪ {〈Nm+1〉 → 〈S1〉}

R2,3,2 = {〈Ki,j〉〈Xi,j , V 〉〈Ai, N〉〈LIT, k〉
→ 〈Ai, V 〉〈Xi,j , V 〉〈LIT, k − 1〉〈Ci,1, i〉〈FALSE, 2k−1〉
| 1 ≤ i ≤ n, 1 ≤ k ≤ n, 1 ≤ j ≤ m,V ∈ {0, 1}}

∪{〈Ki,j〉〈Xi,j , V 〉〈Ai, V
′〉〈LIT, k〉 → 〈FALSE, 2k〉

| 1 ≤ i ≤ n, 1 ≤ k ≤ n, 1 ≤ j ≤ m,V, V ′ ∈ {0, 1}, V 6= V ′}
∪{〈Ki,j〉〈Xi,j , N〉 → 〈Ki+1,j〉〈Xi,j , N〉}

The computation using the above evolution rules is executed as follows. First, the clause which
consists of only one literal are checked by using value p in 〈Fj , p, V 〉. In case that the value p = 1,
j-th clause consists of one literal. After finding the clause, object 〈K1,j〉 is created for assigning the
value, and the value of the literal is set to 〈Ai, V 〉. In addition, object 〈Ci,1, i〉, which triggers Step
5, is created.

244

International Journal of Networking and Computing

In the case where the one-literal rule cannot be applied for any clause, object 〈S1〉, which triggers
Step 4, is created.

Step 4
Step 4 is executed if no variable is chosen in Steps 2 and 3. In Step 4, the inner membrane is

divided into two membranes, and the value of a variable is assigned to each divided inner membrane
according to the splitting rule. Step 4 is executed using the following evolution rules:

(Evolution rules for the inner membrane)

R2,4 = {[〈Si〉〈Ai, N〉〈LIT, k〉]2 → [〈Ai, 0〉〈LIT, k − 1〉〈Ci,1, i〉]2[〈Ai, 1〉〈LIT, k − 1〉〈Ci,1, i〉]2
| 1 ≤ i ≤ n, 1 ≤ k ≤ n}

∪{〈Si〉〈Ai, V 〉 → 〈Si+1〉〈Ai, V 〉 | 1 ≤ i ≤ n, V ∈ {0, 1}}

The computation using the above evolution rules is executed as follows. Object 〈Si〉 triggers
membrane division according to the splitting rule. In the division, object 〈Ai, 0〉 is created in one
membrane, and object 〈Ai, 1〉 is created in another membrane. Simultaneously, object 〈Ci,1, i〉,
which triggers Step 5, is created in both of the membranes.

Step 5
In Step 5, the satisfiability is checked in each inner membrane, and an object indicating “TRUE”

is sent to the outer membrane if all clauses are satisfied. On the other hand, an object indicating
“FALSE” is sent to the outer membrane if one of the clauses cannot be satisfied. Otherwise, the
above procedure is repeated from Step 2.

Step 5 is executed using the following evolution rules:

(Evolution rules for the inner membrane)

R2,5,1 = {〈Ci,j , i〉〈Xi,j , V 〉〈Ai, V
′〉〈Fj , p, 0〉 → 〈Ci,j+1, i〉〈Xi,j , N〉〈Ai, V

′〉〈Fj , p− 1, 0〉
| 1 ≤ i ≤ n, 2 ≤ p ≤ n, 1 ≤ j ≤ m,V, V ′ ∈ {0, 1}, V 6= V ′}

∪{〈Ci,j , i〉〈Xi,j , N〉〈Ai, V 〉〈Fj , p, V
′〉 → 〈Ci,j+1, i〉〈Xi,j , N〉〈Ai, V 〉〈Fj , p, V

′〉
| 1 ≤ i ≤ n, 1 ≤ p ≤ n, 1 ≤ j ≤ m,V, V ′ ∈ {0, 1}}

∪{〈Ci,j , i〉〈Xi,j , V 〉〈Ai, V 〉〈Fj , p, 0〉〈MEM, q〉
→ 〈Ci,j+1, i〉〈Xi,j , N〉〈Ai, V 〉〈Fj , 0, 1〉〈MEM, q − 1〉
| 1 ≤ i ≤ n, 1 ≤ p ≤ n, 1 ≤ j ≤ m, 1 ≤ q ≤ m,V ∈ {0, 1}}

∪{〈Ci,j , i〉〈Xi,j , V 〉〈Ai, V
′〉〈Fj , p, 1〉 → 〈Ci,j+1, i〉〈Xi,j , V 〉〈Ai, V

′〉〈Fj , 0, 1〉
| 1 ≤ i ≤ n, 2 ≤ p ≤ n, 1 ≤ j ≤ m,V ∈ {0, 1}, V ′ ∈ {0, 1, N}}

∪{〈Ci,j , i〉〈Xi,j , V 〉〈Ai, V
′〉〈Fj , 1, V

′′〉〈LIT, k〉 → 〈FALSE, 2k〉
| 1 ≤ i ≤ n, 1 ≤ j ≤ m,V, V ′, V ′′ ∈ {0, 1}}

∪{〈Ci,j , i〉〈Fj , 0, 1〉 → 〈Ci,j+1, i〉〈Fj , 0, 1〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

R2,5,2 = {〈Ci,m+1, i〉 → 〈CHECK〉 | 1 ≤ i ≤ n}
∪{〈MEM, q〉〈CHECK〉 → 〈MEM, q〉〈P1,1〉〈PUR,N〉 | 1 ≤ q ≤ m}
∪{〈MEM, 0〉〈CHECK〉 → 〈TRUE〉}
∪{[〈FALSE, 2k〉]2 → []2〈FALSE, 2k〉 | 0 ≤ k ≤ n− 1}

The computation using the above evolution rules is executed as follows. Each clause is checked
for satisfiability by checking object 〈Ci,j , i〉. In the case where the clause is satisfied, value q in
object 〈MEM, q〉 is decreased by one. In addition, if all clauses are checked, then object 〈CHECK〉
is created. In the case where all clauses are satisfied, objects 〈MEM, 0〉 and 〈CHECK〉 are in the
same membrane, and object 〈TRUE〉 is then sent to the outer membrane.

245

An asynchronous P system with a DPLL algorithm for solving SAT

On the other hand, object 〈FALSE, 2k〉 is created if there is a clause that cannot be satisfied.
(Here, k is the number of unassigned literals in object 〈LIT, k〉.) The object is used in Step 6 to
detect the unsatisfiability of the formula.

Otherwise, objects that are obtained at the end of Step 1 are created again, and the objects
trigger Step 2.

Step 6
In Step 6, one of the final objects, 〈TRUE〉 or 〈FALSE〉, is sent from the outer membrane if

objects indicating “TRUE” or “FALSE” are sent out from the inner membrane. Step 6 is executed
by applying the following evolution rules:

(Evolution rules for the outer membrane)

R1,6 = {[〈TRUE〉]1 → []1〈TRUE〉}
∪{〈FALSE, 2k〉〈FALSE, 2k〉 → 〈FALSE, 2k+1〉 | 0 ≤ k ≤ n− 1}
∪{[〈FALSE, 2n〉]1 → []1〈FALSE〉}

The computation using the above evolution rules is executed as follows. Object 〈FALSE, 2k〉 is
combined until the object is merged into 〈FALSE, 2n〉. In the case where 〈FALSE, 2n〉 or 〈TRUE〉
is in the outer membrane, an output is determined, and 〈TRUE〉 or 〈FALSE〉 is sent out from the
outer membrane.

We now summarize the asynchronous P system ΠDPLL SAT as follows:

ΠDPLL SAT = (O,µ, ω0, ω1, R0, R1, iin, iout)

O = {〈Xi,j , V 〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m,V ∈ {N, 0, 1}}
∪{〈Mi,j , l〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ l ≤ n}
∪{〈Fj , i, V 〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m,V ∈ {0, 1}}
∪{〈PUR, V 〉 | V ∈ {N, 0, 1}}
∪{〈Ai, V 〉 | 0 ≤ i ≤ n, V ∈ {N, 0, 1}}
∪{〈LIT, i〉 | 0 ≤ i ≤ n}
∪{〈MEM, j〉 | 0 ≤ j ≤ m}
∪{〈Pi,j〉 | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ m}
∪{〈Nj〉 | 1 ≤ j ≤ m+ 1}
∪{〈Ki,j〉 | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ m+ 1}
∪{〈Ci,j , i〉 | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ m+ 1}
∪{〈Si〉 | 1 ≤ i ≤ n}
∪{〈FALSE, 2i〉 | 0 ≤ i ≤ n}
∪{〈CHECK〉〈TRUE〉}

µ = [[]2]1

ω1 = ω2 = φ

R1 = R1,1 ∪R1,6

R2 = R2,1 ∪R2,2,1 ∪R2,2,2 ∪R2,3,1 ∪R2,3,2 ∪R2,4 ∪R2,5,1 ∪R2,5,2

iin = iout = 1

3.4 An example of execution of the proposed P system

An example of execution of the proposed P system is shown in Figure 1 to Figure 8. An input
formula of the example is as follows.

L = (X1) ∧ (X2 ∨ ¬X3) ∧ (¬X1 ∨ ¬X2 ∨X4) ∧ (¬X2 ∨X3 ∨ ¬X4)

246

International Journal of Networking and Computing

Figure 1: Initial state Figure 2: Step 1 Figure 3: Step 2 Figure 4: Step 3

Figure 5: Step 5 Figure 6: Step 4

Figure 1 illustrates an initial state of the P system. A set of an input object OL is given in
membrane 1. Figure 2 illustrates an execution of Step 1. The set of objects OL is moved into
membrane 2 by applying evolution rules R1,1 and R2,1.

Figure 3 illustrates an execution of Step 2. Since a pure literal rule cannot be applied for the
input, the execution is moved to Step 3, which is illustrated in Figure 4. In Step 3, one-literal-rule
can be applied for X1 in the input, and X1 is set to 1. In this case, object 〈FALSE, 23〉 is generated,
and the object is moved from membrane 1 to membrane 2. Since the pure literal rule is applied in
Step 3, Step 4 is skipped, and the execution is moved to Step 5.

Figure 5 illustrates an execution of Step 5. At this time, the Boolean formula could be given as
follows because of the assignment for X1.

L = (X2 ∨ ¬X3) ∧ (¬X2 ∨X4) ∧ (¬X2 ∨X3 ∨ ¬X4)

In the figure, object 〈F1, 0, 1〉 means that the first clause is satisfied. In addition, the number
of literals in the third clause is changed from three to two because ¬X1 is in the third clause, and
object 〈F3, 3, 0〉 is changed to 〈F3, 2, 0〉. Then, an object that triggers Step 2 is generated because
all clauses are not satisfied. After that, a splitting rule is applied in Step 4 since none of pure literal
rule and one-literal rule can be applied. In Figure 6, which illustrates an execution of Step 4, the
inner membrane is divided into two membranes, and X2 is set to 1 in the left inner membrane, and
X2 is set to 0 in the right inner membrane.

Next, the execution is moved to Step 5, and then, Step 2. Figure 7 illustrates an execution in
Step 2. In the left inner membrane, the input formula is now L = (¬X3), and X3 set to 0 applying
pure literal rule. In the right inner membrane, the input formula is now L = (X4) ∧ (X3 ∨ ¬X4),
and X3 set to 1 applying pure literal rule. Then, an execution is moved to Step 5.

247

An asynchronous P system with a DPLL algorithm for solving SAT

Figure 7: Step 2 (2nd) Figure 8: Step 6

In Step 5, all clauses are satisfied in the left inner membrane, and 〈TRUE〉 is generated, and
then, the the object is outputted in Step 6, which is illustrated in Figure 8. In this case, object
〈TRUE〉 is send out from the outer membrane.

3.5 Complexity of the P system

The number of membrane is 2n at worst.
In Step 1, since O(mn) objects move sequentially, Step 1 are executed in O(mn) parallel steps

or O(mn) sequential steps.
In Step 2, since each variable in each clause are checked, Step 2 are executed in O(mn) parallel

steps or O(mn2n) sequential steps. Evolution rules are O(mn2).
In Step 3, same as Step 2, Step 3 are executed in O(mn) parallel steps or O(mn2n) sequential

steps.
In Step 4, since a variable which is not assigned are checked, Step 4 are executed in O(n) parallel

steps or O(n2n) sequential steps. Evolution rules are O(n2).
In Step 5, since one variable in each membrane are checked, Step 5 are executed in O(m) parallel

steps or O(m2n) sequential steps. Evolution rules are O(m2n2).
Steps 2 through 5 are repeated at worst n times.
In Step 6, Step 6 are executed in O(1) parallel steps or O(1) sequential steps. Evolution rules

are O(n).
From the above, we obtain the following theorem for the complexity of the proposed asynchronous

P system ΠDPLL SAT .

Theorem 1 The asynchronous P system ΠDPLL SAT solves the satisfiability problem (SAT) with n
variables and m clauses and operates in O(mn2) parallel steps or O(mn22n) sequential steps using
O(m2n2) types of objects and O(2n) membranes. �

Since SAT is a computationally hard problem, the worst case complexity for the proposed P
system is still exponential. We evaluate the validity of the proposed P system using experimental
simulations in the next section.

4 Experimental simulations

For the experimental simulations, we use our original simulator for the asynchronous P system. The
simulator is built using Python 3 and is executed on CentOS 7. The input formula is randomly
created for a given number of variables n and clauses m.

We first compare the number of membranes for the proposed P system with two existing P
systems, which are a P system with exhaustive search [10] and a P system with branch and bound [3].

248

International Journal of Networking and Computing

32 64
128

256

512

1024

13 22.5 40
80

151
221

1 1 1 1 1 1
0

200

400

600

800

1000

1200

5 6 7 8 9 10

n
u

m
b

e
r

o
f

m
e

m
b

ra
n

e
s

number of variables

exhaustive branch-and-bound DPLL

Figure 9: Number of membranes on known P systems and the
proposed P system

0

2

4

6

8

10 11 12 13 14 15 16 17 18 19 20

n
u

m
b

e
r

o
f

m
e

m
b

ra
n

e
s

number of variables
m = 10 m = n

Figure 10: Number of membranes on the proposed P system for
a number of variables between 10 and 20

0

50

100

150

200

250

300

350

40 80 120 160 200 240 280 320 360

n
u

m
b

e
r

o
f

m
e

m
b

ra
n

e
s

number of variables m=n

Figure 11: Number of membranes on the proposed P system for
larger inputs

249

An asynchronous P system with a DPLL algorithm for solving SAT

0

1

2

3

10 11 12 13 14 15 16 17 18 19

n
u

m
b

e
r

o
f

m
e

m
b

ra
n

e
s

number of variables

m = 10 m = n

Figure 12: Number of membranes for 3-SAT

The simulation is executed for a small number of variables because the P system with exhaustive
search [10] cannot be executed for a large number of membranes. Each clause consists of one to
three randomly selected literals.

Figure 9 shows the number of membranes in the case where the number of variables n is between
5 and 10 and the number of clauses is m = 3. Each number of membranes is obtained as an average
of 50 trials. In this case, the number of membranes used in the P system in [10] is exponential, and
the number of membranes used in the P system in [3] is better than the result for the P system
described in [10]. On the other hand, the number of membranes used in the proposed P system is
always one, regardless of the numbers of variables. In other words, the splitting rule is not applied
in the case where the number of variables is less than 10, although the worst number of membranes
is O(2n).

We next evaluate the number of membranes of the proposed P system for larger numbers of
variables. We assume that the number of variables n is between 10 and 20, and we also assume that
the number of clauses m in two cases (m = 10 or m = n). Each number of membranes is obtained
as an average of 25 trials. The number of literals in each clause is set to a randomly selected number
between 1 and n because an increase in the number of literals in each clause causes an increase in
the number of applications of the splitting rule.

Figure 10 shows the number of membranes for these two cases. In the case where m = 10, the
number of membranes decreases with increasing number of variables. The results implies that the
pure literal rule and the single literal rule can be applied increasingly according to the number of
variables.

In the case where m = n, the number of membranes increases with the number of variables. The
results imply that even if the one-literal rule and the pure literal rule can be applied more often, the
number of clauses that cannot be applied to the rules increases with increasing number of clauses.
If the one-literal rule and the pure literal rule are applied in early steps, the number of clauses can
be reduced; otherwise, the number of membranes increases significantly. In other words, an increase
in the number of clauses affects the number of membranes more than an increase in the number of
variables.

Figure 11 shows the number of membranes of the proposed P system for even larger inputs. The
number of variables is between 40 and 360, and the number of clauses is set to be the same as the
number of variables, that is, m = n. Each number of membranes is obtained as an average of 20
trials. In this case, the number of membranes seems to increase linearly as the number of variables
increases. In other words, we prevent an exponential increase of the number of membranes. The
fact shows that the more variables are in the input, the more membranes can be reduced effectively
in proposed P system.

250

International Journal of Networking and Computing

Finally, we assume that the input is 3-SAT1. Figure 12 shows the results of the simulation for
the proposed P system in this case, and each number of membranes is obtained as an average of 25
trials. The results show that the number of membranes is approximately constant, and the splitting
rule is rarely applied in the case of 3-SAT. The reason of the peak for m = n with 17 variables is
that there is a rare input such that the number of membrane is not 1, and the case is in 25 trials in
case of the 17 variables.

5 Conclusions

In the present paper, we proposed an asynchronous P system with a DPLL algorithm for solving
SAT. This system reduces the number of membranes by eliminating useless variable assignments.

We examined the proposed P system and existing P systems in a simulation environment. The
results show that the number of membranes used in the proposed P system is significantly smaller
than the numbers of membranes used in existing P systems.

In our future research, we intend to consider the reduction of the number of membranes for other
computationally hard problems.

Acknowledgment

This research was supported in part by JSPS KAKENHI through a Grant-in-Aid for Scientific
Research (C) (No. 20K11681).

References

[1] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Commu-
nications of the ACM, 5(7):394–397, 1962.

[2] R. Freund. Asynchronous P systems and P systems working in the sequential mode. WMC’04
Proceedings of the 5th international conference on Membrane Computing, 3365:36–62, 2005.

[3] Y. Jimen and A. Fujiwara. Asynchronous P systems for solving the satisfiability problem.
International Journal of Networking and Computing, 8(2):141–152, 2018.

[4] A. Leporati and C. Zandron. P systems with input in binary form. International Journal of
Foundations of Computer Science, 17:127–146, 2006.

[5] T. Murakawa and A. Fujiwara. Asynchronous P system for arithmetic operations and factor-
ization. Proceedings of 3rd International Workshop on Parallel and Distributed Algorithms and
Applications, 2011.

[6] Y. Nakano and A. Fujiwara. An asynchronous P system with branch and bound for solving
the knapsack problem. In Workshop on Parallel and Distributed Algorithms and Applications,
pages 242–248, 2020.

[7] L. Pan and A. Alhazov. Solving HPP and SAT by P systems with active membranes and
separation rules. Acta Informatica, 43(2):131–145, 2006.

[8] G. Păun. Computing with membranes. Journal of Computer and System Sciences, 61(1):108–
143, 2000.

[9] G. Păun. P system with active membranes: Attacking NP-complete problems. Journal of
Automata, Languages and Combinatorics, 6(1):75–95, 2001.

1In 3-SAT, at most three literals exist in each clause.

251

An asynchronous P system with a DPLL algorithm for solving SAT

[10] H. Tagawa and A. Fujiwara. Solving SAT and Hamiltonian cycle problem using asynchronous
p systems. IEICE Transactions on Information and Systems (Special section on Foundations
of Computer Science), E95-D(3), 2012.

[11] K. Tanaka and A. Fujiwara. Asynchronous P systems for hard graph problems. International
Journal of Networking and Computing, 4(1):2–22, 2014.

[12] T. Tateishi and A. Fujiwara. Logic and arithmetic operations with a constant number of steps in
membrane computing. International Journal of Foundations of Computer Science, 22(3):547–
564, 2011.

[13] K. Umetsu and A. Fujiwara. P systems with branch and bound for solving two hard graph
problems. International Journal of Networking and Computing, 10(2):159–173, 2020.

[14] C. Zandron, G. Rozenberg, and G. Mauri. Solving NP-complete problems using P systems
with active membranes. Proceedings of the Second International Conference on Uncoventional
Models of Computation, pages 289–301, 2000.

252

