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Abstract

Field programmable gate arrays (FPGAs) are now used in a wide range of application fields including
aerospace, medical, and industrial infrastructure systems, where not only soft errors but also common cause
faults must be treated in systems design. Although the heterogeneous redundant design is preferable in
such application fields, it tends to be a large burden on system designers. Even with high-level synthesis
(HLS) technologies, which have enabled productive design processes without register transfer level (RTL)
descriptions, an efficient design approach for redundant design is not always clear. In this paper, we
present and evaluates two heterogeneous redundant circuit design approaches for FPGAs: a resource-level
approach and strategy-level approach. The resource-level approach focuses on diversity in FPGA technology
mapping. For example, two different implementations for a multiplier, one with look-up tables (LUTs) and
the other with digital signal processing (DSP) blocks, can form heterogeneous redundancy. The strategy-
level approach makes the use of the optimization options offered by an FPGA design tool, called strategies,
as a source of diversity. For example, two different implementations can be derived from the same hardware
description with area oriented optimization and performance oriented optimization. With both approaches,
heterogeneous implementation variants can be generated from the same hardware description code. For
evaluation, we implemented homogeneous and heterogeneous redundant designs for proportional-integral-
derivative (PID) control with those approaches and evaluated their error detection capability and reliability
with overclock simulation. The resource-level approach showed that heterogeneous redundant designs
by the proposed method have a high error detection rate in both RTL and HLS implementations in an
application-level circuit. Although the detection rate of the strategy-level approach was not as high as that
of the resource-level one, it was shown to have a certain diversification effect.

Keywords: redundant design, diversity, high-level synthesis, compiler options

1 Introduction
Flexibility of field programmable gate arrays (FPGAs) have expanded their application fields to various
domains including financial, medical, autonomous vehicle driving, and aerospace systems. In such fields,
fault-tolerant design is required since stoppage due to system failures or malfunctions is not acceptable. In
order to improve safety of systems, a method of arranging multiple same modules is commonly used, as
represented by triple modular redundancy (TMR). Such a method is called homogeneous redundant design.
Probabilistic failures, such as device degradation and soft errors caused by environmental radiation, can
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be detected by comparing outputs between redundant modules, so that the outage of the entire system is
effectively prevented. However, homogeneous redundant design can overlook systematic failures caused by
common cause faults such as voltage and temperature abnormalities, since each redundant module may output
the same error value.

Heterogeneous redundant design is a method that can improve tolerance for this case. This method
introduces diversity into the redundancy by arranging redundant modules with different implementation
approaches. The diversity for redundant modules can be made in a various ways, such as the use of different
algorithms for the same calculation task. However, this increases the design cost and decreases the productivity.
Hence it is desirable to keep the cost as low as possible to mitigate designers’ burden. High-level synthesis
(HLS), which automatically generates register transfer level (RTL) code from high-level languages, allows
designers to easily design hardware without being aware of the complex circuit design issues. However,
a concise and efficient design method for heterogeneous redundant designs using HLS is not necessarily
obvious.

This paper presents and evaluates two heterogeneous redundant circuit design approaches for FPGAs: a
resource-level approach and strategy-level approach. The fundamental difference between these approaches
lies in the way in which diversity is introduced. In the resource-level approach, the diversity that exists in
technology mapping, which is a process to bind each logic function to FPGA resources, is focused. By
inserting directives into RTL or HLS code, heterogeneous redundancy can be introduced with relatively low
design costs. For instance, two different implementations of a multiplier, one with digital signal processing
(DSP) blocks and the other with look-up tables (LUTs), can be derived from the same code.

On the other hand, in the strategy-level approach, the optimization options offered by an FPGA design
tool, called strategies, are focused as a source of diversity. The choice of the strategy can affect various
aspects of FPGA design including state machine encoding and the upper limit number of fanouts. Since
the strategies are thoughtfully designed by the FPGA tool vendor, quality of each implementation variant
produced with different strategies is expected to be high. In this paper, use of strategy-level diversity in two
different design phases is discussed: strategy in logic synthesis and strategy in place-and-route. While the
resource-level approach has been proposed and discussed in our earlier literature [1, 2, 3], the strategy-level
approach is proposal of this paper, inspired by the work in which different compiler optimization levels are
used to improve reliability of software [4].

For evaluation, we adopt a proportional-integral-derivative (PID) control module, which is widely used
in industrial control systems, as an application example, and implement the module with those redundant
design methods. We then evaluate the performance of each design by generating timing errors with overclock
simulation, which emulates common cause faults.

The rest of this paper is organized as follows. Section 2 presents the background of this work. In Section 3,
we implement modules for PID control, which is the target of redundant design. In Section 4, the resource-
level heterogeneous redundant design approach is introduced and evaluated. Comparison between RTL-based
and HLS-based designs is also presented. We propose the strategy-based approach utilizing optimization
options offered by an FPGA design tool in Section 5. The strategies in logic synthesis and in place-and-route
are evaluated and compared. Finally, the paper is concluded in Section 6.

2 Background

2.1 Functional safety

The application domains of FPGAs are increasingly expanding, so that FPGAs are now used in mission-critical
systems such as autonomous vehicles. Such systems can be exposed to harsh environments and need to be
designed to be robust against any failure. There are two major failures; probabilistic ones (e.g., bit flip caused
by environmental radiation, deterioration of devices) and systematic ones (e.g., design mistakes, program
bugs). IEC 61508 [5], an international standard for functional safety, says that countermeasures should be
taken for both failures.
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(a) homogeneous
(b) heterogeneous

Figure 1: Two types of redundant design

2.2 Redundant design
Redundant design is a typical method to improve the safety of systems. Modules are replicated so that the
entire system can continue to function even if one of the modules fails. General redundant design methods
are based on multiple identical modules. This kind of methods are called homogeneous redundant design.
A typical example is triple modular redundancy (TMR), whose structure is shown in Fig. 1a. With such
design, even if one of the modules produces an abnormal output value due to a probabilistic failure, the error
can be detected by comparing it with normal output values of the others. However, if a failure occurs due
to a common factor such as an abnormal voltage drop of the power supply, each module can make the same
and wrong output value. This error cannot be detected by comparing the outputs of the redundant modules,
making this homogeneous redundancy meaningless.

For system designs that require high reliability, it is necessary to address not only soft errors but also
common cause fault. Heterogeneous redundant design can be expected to provide fault tolerance against
common cause fault. The heterogeneous redundant design introduces diversity into the module redundancy
as shown in Fig. 1b. With this design, even if a common cause fault occurs, the diversified modules can
output different values so that the system can detect the error. Although circuit topologies, design code,
and algorithms can be considered as a source for generating module diversity, this approach increases the
design costs. Therefore, for heterogeneous redundant designs, both mitigation of design costs for introducing
module diversity and improvement of the tolerance against the common cause fault are required. In terms
of design costs, HLS, which automatically generates RTL descriptions from high-level languages such as C,
C++, and Java, has made it possible to improve design productivity. However, an efficient design method for
heterogeneous redundant design using HLS has not been established yet. Considering that the development
of hardware systems using HLS is going to become the mainstream in near future, it is necessary to clarify
the heterogeneous redundant design method using HLS as well as RTL.

2.3 Related works
There are a lot of research on high-reliability hardware systems, and also a number of reports on redundant
design. Li et al. proposed a CPU-based method for a nuclear plant system [6], and Milluzzi et al. proposed a
GPU-based method for image/signal processing in aerospace applications [7]. Redundant design approaches
on an FPGA are also actively reported. For example, a design space exploration method for hardware design
parameters such as reliability, area, latency, and dynamic power consumption has been proposed [8]. Since
introducing redundancy can cause speed performance degradation, a method to mitigate it using partial
reconfiguration has also been proposed [9]. In addition, there are research reports on redundant design using
HLS from the viewpoint of design productivity [10, 11]. However, the targets of these work are homogeneous
redundant designs, and the tolerance for common cause fault is not considered.

Heterogeneous redundant design is an effective method to improve the fault tolerance against common
cause fault. Marques et al. proposed a heterogeneous fault-tolerant architecture “Lock-V,” which consists
of Arm and RISC-V processors deployed on an FPGA, showing that it has an error correction capability
for simulated common cause faults [12]. However, complex circuit configurations, such as multiplexing
of different processor architectures, are not very desirable in terms of design cost. On the other hand, for
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detecting software faults such as program bugs, Höller et al. proposed a method based on compiler options [4].
They reported that, by combining various optimization levels available in the widely-used C compilers, they
were able to detect up to 70% of memory-related software bugs injected into programs. This method is useful
for improving reliability while reducing cost, and it is expected that a diversification using FPGA design tool
options can be applied to FPGA redundant design.

We have proposed a method to diversify the modules on FPGA circuits by only inserting simple directives
into the RTL code [1, 2, 13]. It has been shown that the method can improve reliability against common
cause fault while reducing design cost. However, the evaluation targets are simple arithmetic circuits and
state machines described in RTL, not including pratical circuits, In the case of redundant design of complex
circuits, there is a possibility that the inherent diversity is naturally introduced in the place-and-route process.
Therefore, it is necessary to clarify whether the method is effective even for application-level circuits.

For further design cost reduction, HLS-based design is desirable since it provides designers with high level
abstraction of hardware. In this paper, we firstly propose a heterogeneous redundant design method using HLS
with low design cost. We use a PID control module as an evaluation target. The heterogeneous redundant
designs of the target are implemented with the proposed method in RTL and HLS. Then, the implementation
results are compared to evaluate the effectiveness of the method. In addition, we evaluate another method
based on compiler options of FPGA tools and, together with results of HLS-based approach, aim to establish
a directive-based desirable heterogeneous redundant design approach.

In a context of power efficient dynamic voltage scaling (DVS) systems, several circuit mechanisms with
redundant structure of flip-flops (FFs) have been proposed. A Razor FF [14] consists a pair of FFs: a main FF
and an additional shadow FF. The latter works synchronized with a delayed clock signal and thus has a more
relaxed timing constraint than the former has. Therefore, it can be expected that the shadow FF latches the
correct value even when the main FF has a timing fault caused by improperly lowered supply voltage, enabling
the fault to be detected by comparing the output values of the two FFs. The correct value in the shadow FF
can also be used for recovering from the timing fault, allowing the Razor FF to control the supply voltage
speculatively based on the observed error rate. In contrast, Canary FF [15] is augmented by the shadow FF
which shares the same clock signal with the main FF. On the other hand, the insertion of a delay line into
the data input port brings a stricter timing constraint on the shadow FF. This enables to prevent the main FF
from having the actual timing fault, by detecting its presage with the shadow FF. These techniques can also
be considered as a sort of heterogeneous redundant FF designs, where the diversity is introduced with the
delayed clock or delay line. Compared to the modular redundancy approach, their hardware costs are small.
On the other hand, when both main and shadow FFs face the timing fault at the same time, they likely to
latch the same errant value and fail to detector the error. The quantitative comparison is one of the interesting
future work.

2.4 Scope and limit of this work

The main focus of this paper is to evaluate pros and cons of the proposed heterogeneous redundant design
approaches. For pros, it is discussed how effectively the proposed approaches can introduce heterogeneity,
by evaluating error detection rate with homogeneous redundant designs. For cons, the main concerns is
how the heterogeneity lowers the performance of the circuit compared to the homogeneous design. Among
various source of common cause fault, we focus on timing errors in this evaluation and perform overclock
simulations with random stimulus to mimic the situations such as abnormal distortion in the clock signal or
supply voltage. Although this random simulation approach is useful to asses the fundamental characteristics
of the heterogeneity, consideration and analysis of the fault model are crucial for realistic systems design [16].
While we partially addressed this issue by using mathematical models in earlier work [1], it is not covered in
the rest of this paper. Also, redundant module design covered in this paper is a portion of the design issues of
fault tolerance. The topics such as error correction and recovery mechanisms, single points of failure issues,
redundancy in other design levels are not covered in this paper and left for the future work.
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Figure 2: PID controller Figure 3: Karatsuba multiplier

3 Implementation of PID controller
PID control is a mainstay feedback control method especially in industrial application fields. In PID control,
the control value 𝑢(𝑡) is found by calculating the proportional, integral, and derivative terms for the error
value 𝑒(𝑡), which is difference between the observed value and the target value, as shown in the following
equation:

𝑢(𝑡) = 𝐾𝑝 × 𝑒(𝑡) + 𝐾𝑖 ×
∫ 𝑡

0
𝑒(𝜏) d𝜏 + 𝐾𝑑 × d

d𝑡
𝑒(𝑡), (1)

where 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑 are the gains for each control term. Table 1 shows the list of inputs and outputs of the
PID control module implemented by RTL (Verilog HDL) and HLS (C++) in this work.

Fig. 2 shows RTL structure of the PID controller module. This module includes saturation addition for∫ 𝑡

0
𝑒(𝜏) d𝜏 in (1). As shown in Table 1, the PID control module used in this work contains 48-bit signed

fixed-point numbers, so the multiplication of 48-bit 𝑋 and 𝑌 is needed. To prevent the degradation of the
maximum clock frequency, we divided 48-bit 𝑋 and𝑌 into three 16-bit segments as 𝑋 = 𝑥2𝑏2 + 𝑥1𝑏 + 𝑥0, 𝑌 =
𝑦2𝑏

2 + 𝑦1𝑏 + 𝑦0, 𝑏 = 216, and then applied Karatsuba-algorithm.
The 9 multiplication operations of ordinary multiplication shown in (2) can be reduced to 6 multiplication

operations in the Karatsuba multiplication of (3). Note that the multiplication by the power of 𝑏 can be
realized with a shift operation and does not require multipliers. Fig. 3 shows the structure of Karatsuba
multiplier module in RTL.

𝑋 × 𝑌 = 𝑥2𝑦2 𝑏
4 + (𝑥2𝑦1 + 𝑥1𝑦2) 𝑏3 + (𝑥2𝑦0 + 𝑥1𝑦1 + 𝑥0𝑦2) 𝑏2 + (𝑥1𝑦0 + 𝑥0𝑦1) 𝑏 + 𝑥0𝑦0 (2)

𝑋 × 𝑌 = 𝑥2𝑦2 𝑏
4 +

{
𝑥2𝑦2 + 𝑥1𝑦1 − (𝑥2 − 𝑥1) (𝑦2 − 𝑦1)

}
𝑏3

+
{
𝑥2𝑦2 + 𝑥1𝑦1 + 𝑥0𝑦0 − (𝑥2 − 𝑥0) (𝑦2 − 𝑦0)

}
𝑏2

+
{
𝑥1𝑦1 + 𝑥0𝑦0 − (𝑥1 − 𝑥0)(𝑦1 − 𝑦0)

}
𝑏 + 𝑥0𝑦0 (3)

Table 1: Inputs and output for PID controller

Port Name Bit Width DescriptionInteger Decimal

data_in 24 0 Current observed value
ref_in 24 0 Target value
kp_in 24 24 Proportional gain
ki_in 24 24 Integral gain
kd_in 24 24 Derivative gain

bias_in 24 0 Bias value to remove offset
scale_in 24 24 Multiplied value with PID control result
data_out 24 24 Control value of PID
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4 Resource-level approach using RTL/HLS

4.1 Methodology
A design flow of FPGA circuits consists of logic synthesis of design description, technology mapping, place
and route, and generation of configuration data. The authors of [1, 2, 13] have proposed a heterogeneous
redundant design method focusing on the diversity in the technology mapping process. In the technology
mapping process, in which FPGA resources are assigned to the netlist generated by logic synthesis, the
diversity can be introduced depending on a design strategy. For example, there are two types of multiplier on
FPGAs: one is realized using look-up tables (LUTs), and the other is realized using hardwired digital signal
processing (DSP) blocks. Normally, it is left up to the logic synthesis tool to decide which type of multipliers
is used. However, by inserting directives into the RTL code, the designer can explicitly allocate resources. In
Xilinx Vivado, to implement multiplication by LUTs, add the directive:

(* use_dsp = "no" *) (4)

and by DSPs, add the directive:
(* use_dsp = "yes" *) (5)

just before the RTL module or wire [17]. Also in HLS design, explicit specification of resources using
directives is possible. In Xilinx Vivado HLS, for example, to implement multiplication c=a*b by LUTs, insert
the pragma:

#pragma HLS RESOURCE variable=c core=Mul_LUT (6)

and by DSPs, insert the pragma:

#pragma HLS RESOURCE variable=c core=DSP48 (7)

into the source code. This achieves the same effect as directives (4) and (5), for the descriptions in a higher
abstraction level than RTL. Note that this RESOURCE directive is not currently supported for the arbitrary
precision fixed-point data type provided by Vivado HLS (i.e., ap_fixed). Therefore, it is necessary to
implement modules using the C plain old data (C POD) type, to which RESOURCE directive can be applied [18].

In addition, FPGA design tools such as Xilinx Vivado optimize the circuit area during logic synthesis and
technology mapping. Especially in redundant designs, redundant modules, redundant registers, and redundant
wires might be removed from the netlist during the optimization process. To prevent this, we need to add

(* dont_touch = "true" *) (8)

to registers that are intentionally redundant, and add

(* keep_hierarchy = "yes" *) (9)

to modules that we want to maintain a hierarchical structure. However, all of the above require only simple
insertions of directives into RTL code, therefore the cost of implementing redundant designs is still low.

4.2 Evaluation
We evaluate how the proposed method improves the reliability of the target design, focusing mainly on the
error detection rate of redundant designs. The evaluation targets are various types of redundant design of PID
control modules: duplex/triplex, homogeneous/heterogeneous, and RTL/HLS implementations. Hereinafter,
among the homogeneous redundant designs, those using DSPs are referred to as duplex DSP-DSP and triplex
DSP-DSP-DSP, those using LUTs are similarly referred to as LUT-LUT and LUT-LUT-LUT. In the same
way, the heterogeneous redundant designs based on the proposed method referred to as DSP-LUT, DSP-DSP-
LUT, and DSP-LUT-LUT. These redundant design modules were synthesized, placed and routed on a Xilinx
Spartan-7 FPGA evaluation board (xc7s50csga324-1) using Xilinx Vivado 2019.1. Table 2 shows the required
amount of resources and 𝐹max for each design.
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Table 2: Required resources and 𝐹max for RTL/HLS-based redundant designs

Design Type #LUTs #FFs #DSPs 𝑭max [MHz]

DSP-DSP 2,638 2,644 48 123.9
DSP-LUT 10,436 4,676 24 100.3
LUT-LUT 18,152 6,708 0 99.2

RTL DSP-DSP-DSP 4,108 4,686 72 116.6
DSP-DSP-LUT 11,994 6,801 48 95.7
DSP-LUT-LUT 19,501 8,601 24 94.6
LUT-LUT-LUT 26,510 10,062 0 94.7

DSP-DSP 2,675 2,156 36 112.9
DSP-LUT 8,041 3,143 18 99.7
LUT-LUT 12,399 4,070 0 99.1

HLS DSP-DSP-DSP 3,714 3,234 54 107.2
DSP-DSP-LUT 8,227 4,148 36 98.3
DSP-LUT-LUT 12,739 5,062 18 93.1
LUT-LUT-LUT 19,330 6,105 0 94.5

4.2.1 Evaluation method

As mentioned in Sections 1 and 2, a highly reliable design must handle not only soft errors but also common
cause fault. In order to verify the effectiveness of the heterogeneous redundant design by the proposed method,
simultaneous failures due to common cause fault should be emulated rather than single failure emulation with
bit flip injection. Therefore, we performed gate-level timing simulation with post-mapped netlists with routing
delay information, and emulated the common cause fault by setting the clock frequency to above the 𝐹max of
the circuit. This overclock simulation emulates timing errors due to delay variations by common cause fault
such as abnormal voltage drop and abnormal temperature rise.

The inputs to the redundant module in the simulation were random numbers generated by the SystemVerilog
$random system task with the same seed value. In addition, since the PID control module includes a register
that inherits the previously computed value, once an error occurs in the register, it is considered to remain
thereafter. Therefore, for each simulation trial, we directly set random values to registers as well as the input
ports shown in Table 1. Considering the 𝐹max values shown in Table 2, we performed simulations by changing
the clock frequency from 100 MHz to 200 MHz by 1 MHz, and 100,000 input trials were evaluated for each
frequency.

By comparing the outputs in gate-level simulation with those in logic simulation, the number of errors
occurred, errors detected, and errors overlooked were counted. From the viewpoint of evaluating the error
detectability, the average Hamming distance between the redundant outputs when errors occured was calculated
for duplex redundant designs. Let x(𝑘) = [𝑥 (𝑘)0 , 𝑥 (𝑘)1 , . . . , 𝑥 (𝑘)𝐵−1], and y(𝑘) = [𝑦 (𝑘)0 , 𝑦 (𝑘)1 , . . . , 𝑦 (𝑘)𝐵−1] be the
results of the 𝑘-th 𝐵-bit output of the two modules, respectively. The Hamming distance 𝑑𝐻

(
x(𝑘) , y(𝑘) ) is

calculated as follows:
𝑑𝐻

(
x(𝑘) , y(𝑘)

)
= popcnt

(
x(𝑘) ⊕ y(𝑘)

)
, (10)

where ‘⊕’ is XOR and popcnt(x) =
∑𝐵−1

𝑖=0 𝑥𝑖 (𝑥𝑖 ∈ {0, 1}). Then, the average Hamming distance �̄� when
errors occur 𝑛𝑒 times out of 𝑛 trials is calculated as:

�̄� =

∑𝑛
𝑘=1 𝑑𝐻

(
x(𝑘) , y(𝑘) )
𝑛𝑒

, (11)

where 𝐵 = 48 and 𝑛 = 100,000 in this evaluation. The larger �̄� is, the more easily the errors are detected.

4.2.2 Results and discussion

First, the error detection rate for each redundant design is shown in Table 3. For the duplex redundant design, a
large number of errors were overlooked in the homogeneous redundant designs DSP-DSP and LUT-LUT. This
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Table 3: Number of errors, detections, overlooks, and detection rate in each RTL/HLS-based redundant design

Design Type #Errors #Detections #Overlooks Detection Rate [%]

DSP-DSP 1,797,447 1,796,884 563 99.969
DSP-LUT 7,579,839 7,579,839 0 100.000
LUT-LUT 7,935,786 7,866,206 69,580★ 99.123

RTL DSP-DSP-DSP 1,170,700 1,170,668 32 99.997
DSP-DSP-LUT 8,156,813 8,156,813 0 100.000
DSP-LUT-LUT 8,314,671 8,314,671 0 100.000
LUT-LUT-LUT 8,374,202 8,374,096 106 99.998

DSP-DSP 3,983,008 3,982,694 314 99.992
DSP-LUT 8,677,491 8,677,491 0 100.000
LUT-LUT 8,707,679 8,705,210 2,469 99.972

HLS DSP-DSP-DSP 3,991,322 3,991,322 0 100.000
DSP-DSP-LUT 8,900,638 8,900,638 0 100.000
DSP-LUT-LUT 9,249,176 9,249,176 0 100.000
LUT-LUT-LUT 9,307,721 9,307,646 75 99.999

★ Breakdown: 2,350 overlooks ∼120 MHz and 67,230 overlooks ∼150 MHz (cf. Fig. 5a)

is almost consistent with the evaluation results for simple circuits described in RTL [2, 13]. We also evaluated
homogeneous TMR, which is commonly used for today’s practical systems. Although their error detection
rate was improved compared to the duplex designs, a certain number of error overlooks were observed in some
triplex homogeneous redundant designs. On the other hand, all heterogeneous redundant designs achieved an
error detection rate of 100% for both duplex and triplex designs, in RTL and HLS implementations. Next, the
distribution of the number of errors and the number of overlooks per frequency for each design is shown in
Fig. 4 and Fig. 5, respectively. As can be seen from these two figures, some designs tend to overlook errors
in the frequency band “error jump” from the frequency where errors start to occur to the frequency where all
outputs become errors. The LUT-LUT of RTL (Fig. 4c) overlooked many errors around 150 MHz other than
“error jump,” but the DSP-LUT, where one of LUTs is replaced with a DSP block, did not show this tendency,
so the effect of diversifying is significant. These results indicate that heterogeneous redundant design by the
proposed method has high fault tolerance against common cause fault even in an application-level circuit.

Fig. 6 shows comparison results of the average Hamming distances when errors occur calculated by (11)
for each design. The average Hamming distance converged to around 24 bits in all the designs as the frequency
was increased. This is half of the bit width of the output port (48 bits), which means that the flip occurred
with a probability of 50% for each bit. The average Hamming distance for the HLS designs is larger than that
of the RTL designs, showing that the HLS designs have a better ability to detect errors. One of the reasons for
this difference would be the state machine. In HLS, a state machine is generated in the scheduling process to
synthesize hardware from procedural descriptions in a programming language, and this process is performed
even for arithmetic circuits such as PID controllers. On the other hand, only data paths are synthesized for this
kind of simple pipelined arithmetic circuits in RTL designs. The difference is presumed to be caused by the
common cause fault on this state machine in an overclocking environment. For the state machines, it has been
suggested that diversification by encoding can increase the effectiveness of heterogeneous redundancy [13].
The default state encoding by Vivado HLS is ‘one-hot,’ and it does not have diversity with respect to the
encoding of the redundant designs implemented in this work. However, the Vivado HLS also allows explicit
specification of the encoding [18], and it is expected that more reliable heterogeneous redundant designs can
be realized by adding diversity not only in resources but also in state encoding.
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(a) DSP-DSP (RTL)

100 110 120 130 140 150 160 170 180 190 200
0

10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000

F m
ax

=1
00

.3
M

H
z

Frequency [MHz]

Er
ro

rC
ou

nt

occured
detected

(b) DSP-LUT (RTL)
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(c) LUT-LUT (RTL)

100 110 120 130 140 150 160 170 180 190 200
0

10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000

F m
ax

=1
16

.6
M

H
z

Frequency [MHz]

Er
ro

rC
ou

nt

occured
detected

(d) DSP-DSP-DSP (RTL)
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(e) DSP-DSP-LUT (RTL)
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(f) DSP-LUT-LUT (RTL)
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(g) LUT-LUT-LUT (RTL)
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(h) DSP-DSP (HLS)
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(i) DSP-LUT (HLS)
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(j) LUT-LUT (HLS)
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(k) DSP-DSP-DSP (HLS)
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(l) DSP-DSP-LUT (HLS)
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(m) DSP-LUT-LUT (HLS)
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Figure 4: Error occurences and detection count for RTL/HLS-based redundant designs
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Figure 5: Overlook count for RTL/HLS-based redundant designs
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Figure 6: Average Hamming distance �̄� for duplex RTL/HLS-based redundant designs

5 Strategy-level approach

5.1 Methodology
A strategy is a set of circuit optimization options provided by an FPGA design tool. There are several types
of strategies, such as increasing operating frequency, reducing circuit area, and reducing power consumption.
By setting this “strategy” according to the design objective, it is possible to comprehensively vary FPGA
resources, state machine coding, and the limited number of fanouts. In this section, we also propose a
strategy-based approach that is not specific to resources on FPGAs, and evaluate heterogeneous redundant
designs consisting of modules optimized for different criteria such as performance and area.

5.1.1 Diversify logic synthesis strategy

All modules usually share the same strategy. In our method, however, this behavior must be suppressed so that
the strategy can be given individually to each module. One way to give different strategies to multiple instances
of the same module is to use out-of-context (OOC) design flow in the Vivado environment. In particular,
logic synthesis process with the OOC design flow is called out-of-context synthesis, and be referred to as
OOC-Synth. OOC-Synth runs independently of top-level logic synthesis for rarely-changing libraries such
as Intellectual Property (IP) cores to mainly reduce design time. What is important here is that the logic
synthesis strategy can be set separately for each OOC module. OOC-Synth redundant design method focuses
on this IP flow and introduces diversity by giving different synthesis strategies to redundant modules. Fig. 7a
shows an overview of OOC-Synth redundant design flow with IP cores.

5.1.2 Diversify place-and-route strategy

The OOC-Synth flow utilizing IP is performed independently, but the place-and-route process is performed
together on the top-level module. Hence, we also propose an out-of-context implementation (OOC-Impl)
redundant method. It focuses on the top-down hierarchical design flow with floorplanning in order to
synthesize and place-and-route redundant modules independently of the top-level module and reflect the
results in the top-level module.

This OOC-Impl flow includes 5 steps:

(i) Top-level synthesis

(ii) OOC-Synth of redundant modules

(iii) Top-level placement and generate constraints

(iv) OOC-Impl of redundant modules

(v) Top-level place-and-route
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(a) OOC-Synth redundant design (b) OOC-Impl redundant design

Figure 7: Overviews of redundant design flow using out-of-context run

and its overview is shown in Fig. 7b. In the OOC flow, the information of the top-level modules is necessary in
order to independently run logic synthesis and place-and-route of redundant modules and marge their results
into the top-level module. In step (i), it is necessary to suppress the logic synthesis of redundant modules by
inserting the directive:

(* black_box *) (12)

just before the instantiation description of redundant modules. In parallel with step (i), step (ii) runs OOC-
Synth of redundant modules with appropriate strategy settings. In step (iii), floorplanning is performed so
that the place-and-route of each redundant module does not conflict to realize OOC-Impl, and timing-driven
constraints used in step (iv) are generated [19]. Then, step (v) applies these constraints and implements each
redundant module with its own strategy, and the top-level module is finally configured. These steps include
read and write of the design archive files (DCP file in Xilinx Vivado environment).

5.2 Evaluation

The area- and performance-optimized modules are implemented and referred to as area and perf , respectively.
For OOC-Impl design flow, we also prepared a module power optimized for dynamic power consumption.
Table 4 shows what strategies were selected for redundant modules in OOC-Synth and OOC-Impl flows.
These strategies were the optimal pairs for each criteria after running all the combinations. Combining these
optimized modules, homogeneous default-default, area-area, perf -perf , area-area-area, perf -perf -perf ,
and heterogeneous area-perf , area-area-perf , area-perf -perf and area-perf -power redundant designs were
configured. For the OOC-Impl redundant design, we floorplanned on the xc7s50csga324-1 FPGA as shown
in Fig. 8. The required amount of resources and 𝐹max for these designs are shown in Table 5.
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Table 4: Strategy settings for each redundant module

Flow Name Strategy
Synthesis Implementation

OOC-Synth
default Vivado Synthesis Defaults –

area Flow_AreaOptimized_high –
perf Flow_PerfOptimized_high –

OOC-Impl

default Vivado Synthesis Defaults Vivado Implementation Defaults
area Flow_AreaOptimized_medium Area_Explore
perf Flow_PerfOptimized_high Performance_EarlyBlockPlacement

power Vivado Synthesis Defaults Power_DefaultOpt

Table 5: Required resources and 𝐹max for each strategy-based redundant design

Flow Type #LUTs #FFs #DSPs 𝑭max [MHz]

OOC-Synth

default-default 2,639 2,908 48 123.9
area-area 2,579 2,908 48 120.1
area-perf 2,688 3,068 48 121.7
perf -perf 2,812 3,228 48 132.1

area-area-area 3,857 3,966 72 119.5
area-area-perf 3,966 4,126 72 119.8
area-perf -perf 4,085 4,286 72 123.5
perf -perf -perf 4,201 4,446 72 122.1

OOC-Impl

default-default 2,637 2,908 48 119.7
area-area 2,575 2,908 48 125.2
area-perf 2,681 3,068 48 120.9
perf -perf 2,798 3,228 48 132.9

area-area-area 3,842 3,966 72 119.5
area-area-perf 3,963 4,126 72 119.5
area-perf -perf 4,080 4,286 72 124.7
perf -perf -perf 4,194 4,446 72 131.4

area-perf -power 3,987 4,126 72 120.2

5.2.1 Evaluation method

The evaluation range of 100 MHz to 200 MHz in Section 4.2 was not enough to show the difference in detection
capability of redundant designs, so we used the range from 100 MHz to 300 MHz in this section. One of
the reason for this is that “error jumps” of each design did not end within 200 MHz due to optimizations. In
addition to the number of error detections and average Hamming distance, we also evaluated the number of
correctable errors for TMR designs in this section. Error correction is typically performed by majority voting
of outputs. When 3 redundant module outputs are y1, y2, and y3, respectively, the majority vote output y is
given by the following equation:

y = (y1 & y2) | (y2 & y3) | (y3 & y1). (13)

If an error occurs and the majority output y matches the true value, then the error is correctable.

5.2.2 Results and discussion

The number of error detections and corrections for each redundant design are shown in Table 6, and their
distributions are shown in Fig. 9 and Fig. 10. In addition, Fig. 11 shows the distribution of overlooks, and
the number of overlooked errors in the homogeneous redundant design was higher in OOC-Impl designs than
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(a) duplex redundant design (area-perf ) (b) triplex redundant design (area-area-perf )

Figure 8: Floorplan of OOC-Impl redundant designs (green: area-optimized, red: performance-optimized)

OOC-Synth ones. One possible reason for this is the fact that the redundant modules were implemented
independently without interaction, resulting in little diversity in place-and-route process, leading to more
overlooked errors. However, thanks to the diversification of both logic synthesis and place-and-route strategies,
the number of overlooked errors in heterogeneous redundant designs was limited to a few: area-perf -perf
TMR design achieved a detection rate of 100%, and area-perf -power was extremely close to 100%.

TMR designs can correct errors, and Fig. 9e–9h and Fig. 10e–10i show the correctable error distributions.
The correctable errors are distributed over a slightly wider frequency range than the overlooked errors,
and the number of correctable errors decreases as the frequency increases. Since most of the errors are
uncorrectable in an excessively overclocked environment, it can be inferred that the majority vote in (13) was
not determined. For error correction rate of TMR designs shown in Table 6, the average of the homogeneous
redundant designs is 10.91% while that of heterogeneous ones is 17.96%, and the error correction capability
of OOC-Impl heterogeneous redundant design tends to be higher.

However, in critical situations where common cause faults actually occur, the error detection should be
considered more important than the error correction because once an error begins to appear, it must be stopped
even if it can be corrected. From the results of the average Hamming distance shown in Fig. 12, the strategy-
based heterogeneous redundancy design appears to have a slight advantage over the homogeneous redundancy
designs in terms of error detection easiness when errors occurring, but the error detection capability is inferior
to the multiplier resource diversification method. Although there are still many combinations of strategies
to be applied to redundant modules, the introduction of strategy diversification alone was not sufficiently
effective to improve the fault tolerance against common causes in this evaluation. Hence, this approach can
be combined with other approach as needed to complement the system reliability. It should be emphasized
that we can easily automate the OOC flows and we can apply this approach to circuits other than DSP-friendly
applications, such as PID controller.

The results so far can support the conjecture that diversity of multiplier resources was more effective and
the greater the difference in the place-and-route between redundant modules, the better the detection capability.
If we consider the netlists after place-and-route process as a graph, for example, and define the “similarity”
between redundant modules, we expect the number of overlooked errors to increase in proportion to this
similarity. It is important to establish more desirable design approaches for directive-based diversification by
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Table 6: Number of errors, detections, correctables, and these rates in each strategy-based redundant designs

Flow Type #Errors #Detections #Overlooks #Correctables #Uncorrectales Detection Rate [%] Correction Rate [%]

OOC-Synth

default-default 11,697,443 11,696,826 617 – – 99.9948 –
area-area 10,283,747 10,282,365 1,382 – – 99.9866 –
area-perf 11,441,703 11,439,822 1,881 – – 99.9836 –
perf -perf 9,292,148 9,287,108 5,040 – – 99.9458 –

area-area-area 10,177,715 10,177,047 668 831,971 9,345,744 99.9934 8.1744
area-area-perf 11,302,295 11,302,279 16 1,607,916 9,694,379 99.9999 14.2265
area-perf -perf 10,448,374 10,447,915 459 989,657 9,458,717 99.9956 9.4719
perf -perf -perf 11,374,566 11,374,552 14 969,082 10,405,484 99.9999 8.5197

OOC-Impl

default-default 12,173,796 12,166,366 7,430 – – 99.9390 –
area-area 10,884,226 10,871,363 12,863 – – 99.8818 –
area-perf 10,972,983 10,972,259 724 – – 99.9934 –
perf -perf 9,035,186 9,023,609 11,577 – – 99.8719 –

area-area-area 13,195,142 13,194,979 163 1,958,094 11,237,048 99.9988 14.8395
area-area-perf 12,874,577 12,874,577 0 2,205,680 10,668,897 100.0000 17.1321
area-perf -perf 11,844,096 11,844,069 27 3,795,156 8,048,940 99.9998 32.0426
perf -perf -perf 9,311,616 9,311,305 311 1,128,074 8,183,542 99.9967 12.1147

area-perf -power 13,279,890 13,279,889 1 2,249,211 11,030,679 ∼100.0000 16.9370

conducting more quantitative analysis for heterogeneous redundant design.

5.2.3 Comparison to the resource-level approach

To make comparative discussions between the resource-level and strategy-level approaches, the results for two
representative implementations, the RTL-base resource-level and OOC-Impl strategy-level redundant design,
are summarized in Table 7. In terms of the error detection rate, the heterogeneous designs (DSP-LUT and
area-perf ) show the best rate in each group. However, while DSP-LUT achieves the 100% of detection rate,
area-perf only shows 99.993% of detection rate, overlooking 724 errors. Although the heterogeneity provided
by the strategy-level approach shows an advantage compared to the homogeneous designs, the heterogeneity
offered by the resource-level approach is superior to the strategy-level counterpart. This means that the
resource-level approach makes more significant difference between the two redundant modules.

The Fmax for area-perf (120.9 MHz) is decreased by 8.5% compared to that for the fastest homogeneous
counterpart, which is perf -perf (132.1 MHz). On the other hand, the Fmax for DSP-LUT (100.3 MHz)
is degraded by 19% compared to the fastest homogeneous design, which is DSP-DSP (123.9 MHz). The
increase in the error detection rate that heterogeneous redundant designs achieve is a result of a tradeoff with
this performance overhead, and the overhead to be paid is much smaller for the strategy-level approach. This
is one of apparent advantages that the strategy-level approach has over the resource-level approach.

Another tradeoff is reflected in resource utilization. For example, heterogeneous DSP-LUT requires nearly
4 times LUTs compared to homogeneous DSP-DSP as a result of prohibiting the use of half of the DSP blocks.
On the other hand, among the implementations in the strategy-approach, differences in resource utilization
are not considerable. Even considering out-of-context (OOC) implementation for the strategy-level approach
has an area overhead related to fixed floor planning, the circuits generated with the strategy-level approach
seem to be more efficient than those of the resource-level approach in terms of the balance between speed and
area.

In terms of ease of design, the resource-level approach might be preferable, since circuit designers need to
handle floor planning issues for the out-of-context implementation in the strategy-level approach. However,
most steps can be automatically carried out using a script file, which effectively reduces the difference in
ease of design between two approaches. As a conclusion, the resource-level and strategy-level approaches
offer a tradeoff between reliability and efficiency. A desirable choice may depend on which factor is more
important in each application. Theoretically, it is also possible to combine these two approaches. For instance,
a heterogeneous redundant design consisting of “LUT” module in the resource-level approach and “perf ”
module in the strategy-level approach can be implemented. However, given that tradeoff between the two
approaches, it may become halfway measures.
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(b) area-area

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
0

10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000

F m
ax

=1
21

.7
M

H
z

Frequency [MHz]

Er
ro

rC
ou

nt

occured
detected

(c) area-perf
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(d) perf -perf
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(f) area-area-perf
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(g) area-perf -perf
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Figure 9: Error occurences and detection/correction count for redundant designs using OOC-Synth
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(c) area-perf
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Figure 10: Error occurences and detection/correction count for redundant designs using OOC-Impl
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Figure 11: Overlook count for strategy-based redundant designs
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Figure 12: Average Hamming distance �̄� for strategy-based duplex redundant designs
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Table 7: Comparison between resource-level and strategy-level approaches

Approach Type Fmax [MHz] Detection rate [%] #Overlooks LUTs FFs DSPs

Resource
DSP-DSP 123.9 99.969 563 2,638 2,644 48
DSP-LUT 100.3 100.000 0 10,436 4,676 24
LUT-LUT 99.2 99.123 69,580 18,152 6,708 0

Strategy

default-default 119.7 99.939 7,430 2,639 2,908 48
area-area 125.2 99.882 12,863 2,579 2,908 48
area-perf 120.9 99.993 724 2,688 3,068 48
perf-perf 132.1 99.872 11,577 2,812 3,228 48

6 Conclusion
We firstly proposed a heterogeneous redundant design method with lower design cost by HLS. We evaluated the
heterogeneous redundant design by utilizing the diversity of logic elements on FPGAs, targeting application-
level PID controller rather than simple circuits. Gate-level simulation with delay information was used to
emulate the occurrence of common cause fault in redundant modules by running them at frequencies exceeding
their 𝐹max. The simulation results show that, compared to conventional homogeneous redundant design, the
heterogeneous ones by the proposed method have a higher ability to detect errors caused by common fault
in both RTL and HLS, even for application-level circuits. Our future work includes the verification of the
reliability of heterogeneous redundant design that diversifies the state encoding or that combines encoding
and resources using HLS. A strategy-based approach was also evaluated, using the same RTL PID controller.
Although the error detection rate of the strategy-based approach was lower than that of the resource level, a
certain improvement in error detection/correction capability was evaluated in the heterogeneous redundant
design by diversifying both synthesis and place-and-route optimization. It is suggested that reducing the
similarity between redundant modules contributes to the reliability of heterogeneous redundant designs, and
topological analysis will help to establish a more desirable heterogeneous redundant design approach.
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