International Journal of Networking and Computing — www.ijnc.org, ISSN 2185-2847
Volume 12, Number 2, pages 446-466, July 2022

PZLAST: an ultra-fast sequence similarity search tool implemented on a MIMD processor

Hitoshi Ishikawa
PEZY Computing, K.K., Tokyo, Japan

Hiroshi Mori
Department of Informatics, National Institute of Genetics, Shizuoka, Japan

Koichi Higashi
Department of Informatics, National Institute of Genetics, Shizuoka, Japan

Yoshiaki Kato
Computational Astrophysics Laboratory, RIKEN, Saitama, Japan

Tomofumi Sakai
Infinite Curation, Inc, Tokyo, Japan

Toshikazu Ebisuzaki
Computational Astrophysics Laboratory, RIKEN, Saitama, Japan

Ken Kurokawa
Department of Informatics, National Institute of Genetics, Shizuoka, Japan

Received: January 5, 2022
Revised: April 6, 2022
Accepted: May 30, 2022
Communicated by Akihiro Fujiwara

446

International Journal of Networking and Computing

Abstract

We have developed an ultra-fast sequence similarity search tool named PZLAST on a MIMD
processor PEZY-SC2. In this paper, we show the merit of MIMD features in reducing the load
imbalance among the threads. They are also effective in the implementation of the alignment
for long sequences. Additionally, we point out two problems related to the implementation
on an ultra-parallel computation accelerator as follows: (1) Deciding the optimal amount of
inputs prior to the run is extremely difficult and usually even impossible, and (2) Keeping up
the parallelism efficiently throughout the whole computation is not always possible. A feedback
strategy and an accumulation strategy are proposed to overcome these problems and their results
are shown to be valuable in reducing the accidental memory overflow in runtime and speeding
up the processing time.

Keywords: Sequence Similarity Search Tool, MIMD Processor, PEZY-SC, PEZY-SC2, BLAST,
CLAST, PZLAST

1 Introduction

By digitizing the genomic information of microbiomes in the environment using a sequencer and an-
alyzing it, various findings including the statistical properties of their communities can be obtained.
In the metagenomics field, frequently the genomic information already known is stored as a reference
database, and the unknown genomic information is collated with the reference database. Although
there are various ways to analyze unknown genomic information depending on the purpose, it is a
usual procedure to start with searching the matching points and homologies between the reference
sequences in the known database and the unknown query sequences.

Recently, NGS (Next Generation Sequencing) [3] has made it possible to digitize a large amount
of genomic information at a higher speed than the conventional sequencers, which extremely enriches
both the size of reference database and the newly sequenced queries. The computational cost required
for analyzing these large data has also increased enormously.

From the computational point of view, many-core processors such as GPUs have been effectively
used for various applications, which have been often used in supercomputer systems as well. Ac-
cording to the execution form of the instructions, they are categorized into SIMD (Single Instruction
Multiple Data) and MIMD (Multiple Instruction Multiple Data) types. The SIMD type processors
are characterized in that all the threads in the processor execute the same instruction at the same
time, whereas the MIMD type processors allow each thread to execute each different instruction.
Currently, there exist the other categories between SIMD and MIMD, where synchronization is re-
quired in a unit (e.g. warp) but not required between the units. However, the majority of current
GPUs are hard to handle a thread level independency. In this paper, we show that a genomic se-
quence similarity search tool can be efliciently constructed on PEZY-SC2, which is a MIMD type
many-core processor. Additionally, we introduce two strategies to utilize the parallelism of the
multiple threads efficiently in this application and examine their effectiveness.

447

PZLAST: an ultra-fast sequence similarity search tool implemented on a MIMD processor

2 Related work

2.1 BLAST
gaps
>sequencel /—/
GTCCACGCAGCCGCTGACAGACACACCATGAGAACC reference sequence ...A A-=GAA..
TTACGGGACTACCCGA
>sequence2 query sequence LA ATCGA-..
TGGCCGGGCAGATGCAAAGCCTGGTGATGCAGAGTC
GGGCAAAGGCGCAGCCTTCGTGTCCAAGCAGGAGGG S $
CAGCGAGG
ces mutations
Figure 1: An example of FASTA. Figure 2: An example result of sequence alignment

including the gaps and mutations.

A digitized nucleic acid sequence is typically represented by a succession of the four letters of ACGT
(DNA) or ACGU(RNA). In the case of protein, it needs more letters to express the amino acids.
Figure 1 is an example of FASTA file format commonly used in the field of bioinformatics. A
sequence name is described just after >’ followed by its body represented as a string. Sequence
similarity searching is a method of searching sequence databases to a query sequence by using
alignment, which finds the matching points, homologies and the other related characteristics. Figure
2 illustrates an example of the alignment result which includes the gaps and mutations between the
sequences. A sequence similarity search tool calculates the homologies not only for exact matching
cases but also for such ambiguous cases. Typically, a sequence similarity search tool refers two
sequence groups (reference and query sequences) as its input, and calculates the matching points
and homologies between the sequence selected from the reference sequences and the one selected from
the query sequences. Since every combination of the reference and query sequences are searched, in
the case that the number of sequences becomes large, the computational cost increases enormously.
BLAST (Basic Local Alignment Search Tool) [6] is a basic, still popular alignment tool in the
bioinformatics field. It performs high-speed and sensitive sequence similarity searching using a
method called seed-and-extend alignment. Recently, BLAST+ [1] has been developed, which is a
rewritten and improved version of BLAST. It achieves substantial speed improvements compared to
the conventional BLAST.

reference sequence . |

query sequence wv - . TTCACTIGCTCCAR..
seeds seedl seed2 ...

Figure 3: An example of seed creation, where the k-length is 5.

The seed-and-extend alignment method consists of the following two steps.

In the first step, BLAST tries complete matches of k-length string between the reference and
query sequences, and the seeds are created at the matching positions (Figure 3).

448

International Journal of Networking and Computing

align_width

forward alignment

7
A

backward alignmen

query position

4

reference position

Figure 4: Forward and backward alignment.

In the second step, BLAST performs alignment using dynamic programing for each seed. An
alignment consists of a forward and a backward alignment (Figure 4). In the forward alignment,
alignment is performed from the seed position toward the end of the sequence, while in the backward
alignment, toward the beginning.

2.2 CLAST
2.2.1 CLAST overview

While the target processors of BLAST and BLAST+ are CPU, CLAST (CUDA implemented large-
scale alignment search tool) [4] targets at GPU processors. CLAST is a CUDA implementation of
BLAST improved in search speed utilizing a huge number of GPU threads in parallel.

| (A) create read-only g-gram index | reference
T sequences

I (B) create seeds | query
¢ sequences

I (0) filter seeds |

{

| (D) align seeds |

{

I (E) filter results I

queries
done?
references
done?

yes

Figure 5: CLAST whole computation flow.

Figure 5 illustrates the CLAST whole computation flow which consists of (A) to (E) phases.

In (A) phase, a search table suitable for k-length complete string matching is created from the
reference sequences. Next in (B) phase, seeds are made applying the query sequences against the
search table using binary searching. Since the seeds created in (B) phase usually include redundant
ones, they are reduced by filtering in (C) phase. Then, each seed is aligned strictly using dynamic
programming in (D) phase and the final results are filtered in (E) phase according to their alignment
length and score. Each phase in Figure 5 is designed suitable for ultra-parallel computation on a

449

PZLAST: an ultra-fast sequence similarity search tool implemented on a MIMD processor

huge number of threads, which contributes to the speedup of computation. Since the size of GPU
device memory is limited, in the case the reference size or query size are too large to be stored in
it, they are divided into separate fields and computed in multiple iterations. Each loop in Figure 5
corresponds to the division of reference and query sequences respectively.

2.2.2 Filtering the seeds

[m]

V\

Isolate seed

duplicate seeds

query position

reference position
Figure 6: An example of redundant seeds (an isolate seed and duplicate seeds).

Figure 6 illustrates an example of redundant seeds created in (B) phase. The rectangle marker
represents an isolate seed around which no other seed is generated. In such case, it is probable that
the seed is incorrect. The circle markers are duplicate seeds, which are likely to give the same results
by the following (D) phase, and better to be unified into one. Such redundant seeds are filtered out
in (C) phase. In most cases, the number of seeds after (C) phase is dramatically reduced, which
contributes to a speedup of the alignment in (D) phase.

Despite the above advantages of the filtering in (C) phase, finding the redundant seeds needs
sorting process whose computational cost cannot be ignored when the number of seeds becomes
huge.

2.2.3 Alignment in a diagonal direction

In (D) phase, alignments are conducted using dynamic programming.

align_width

1 |z |3 |4 |5 |s |7 |8 |9 |10|11|12|13|14|1S|16|17|18|19|20|21

H,V,S

border cell border cell

Figure 7: An example of working buffer for alignment.

Figure 7 shows an example of working buffer used in the alignment. It is an array of (align width
+ 2 border) cells. Each cell includes H, V and S, which represent the horizontal, vertical and maximum
scores respectively. These variables in the two border cells are initialized with a very low score prior

to an alignment.
[14]ss 617 [1s]19]20 22 current step
| 1 | [| [|
—
B "Tbj previous step

Figure 8: Alignment at diagonal movement.

-
w

e

-
o
IS

450

International Journal of Networking and Computing

In an alignment, the working buffer moves diagonally, updating each cell in turn as shown in
Figure 8.

align_width

forward alignment

query position

reference position

Figure 9: Forward and backward alignment with a working buffer.

Repeating this process multiple times realizes the whole alignment as shown in Figure 9.

Move the working buffer to diagonal direction

[vpdate nriz,vii1,sti |

Repeat i=1 to
align_width

Repeat from the
seed to query end

Figure 10: CLAST alignment flow.

List 1: Cell update rules.

1 H[i] = max(H[i-1]+GAP_PENALTY, S[i-1]+GAP_OPEN_PENALTY+GAP_PENALTY)
2 V[i] = max(V[i+1]+GAP_PENALTY, S[i+1]+GAP_OPEN_PENALTY+GAP_PENALTY)
3 S[i] = max(H[i], V[i], S[il+score(BaseRef, BaseQuery))

Figure 10 shows the alignment flow and List 1 shows the cell update rules. Here, score(BaseRef, BaseQuery)
represents the alignment score between the corresponding reference and query base, which is defined
in a score table. The variables needed in calculating H[i] are of current step, so there is no risk
of breaking coherency. Those in calculating V[i] and S[i] are of previous step, however the array
indices do not include i — 1 and the coherency still remains.

2.2.4 Parallelization of each CLAST phase

(A) to (E) phases described above have been parallelized utilizing GPU threads. In (A) phase,
k-length strings are sampled out of reference sequences at equal intervals and used to calculate hash
values. They are conducted by each GPU thread in parallel. The created hash values are structured
into a g-gram index table. Then in (B) phase, query hash values are calculated from query sequences,

451

PZLAST: an ultra-fast sequence similarity search tool implemented on a MIMD processor

searched against the g-gram index table, and used in creating the seeds which include the reference
and query position pairs. They are possible to be computed in parallel. In (C) phase, the seeds are
sorted according to their positions, then each GPU thread compares each seed to the following one
and removes it if it is judged as an isolate or duplicate one. In (D) phase, an alignment starting
from each seed is conducted by each GPU thread in parallel. In (E) phase, each result is removed if
its score is too low or its hit length is too short. This is also done by each GPU thread in parallel.

2.3 PEZY-SC2

In this section, we introduce PEZY-SC2, which is a second generation many-core MIMD processor
of PEZY-SC series [5, 8],

Table 1: PEZY-SC2 specification
Frequency(GHz) 0.733
Number of cores 2,048

Number of threads | 16,384

Rpeak(TFlops/DP) 2.8

Memory BW(GB/s) | 76.8
Memory size(GB) 64

Table 1 shows the specification of PEZY-SC2. A PEZY-SC2 processor has 2,048 MIMD cores
and 64GB device memory. Since each core has 8 threads, 16,384 threads are available in total.
In the system we used, a PEZY-SC2 processor is connected to a Xeon-D 1572 processor through
a PLX PCle switch chip. Similar to the GPU programming, the PEZY-SC2 program is launched
after preparing the input data in the device memory. The computation results are stored into the
device memory, which is read by the CPU program when necessary. An OpenCL-like programming
environment named PZCL is provided, on which users write both the CPU program and the PEZY-
SC2 kernel program. The CPU program sets up the kernel program and buffers, write the initial
value to the buffers allocated in the PEZY-SC2 device memory, and then launch the kernel program
on the PEZY-SC2 as multiple threads. After detecting the end of all threads in the PEZY-SC2, the
CPU program reads the results from PEZY-SC2 buffers to the CPU buffers.

452

International Journal of Networking and Computing

3 PZLAST

3.1 Porting CLAST to a MIMD processor

PZLAST (PEZY implemented large-scale alignment search tool) is a transplant of CLAST to PEZY-
SC2. In this porting, the functionalities of (A) to (E) phases shown in Figure 5 have been maintained.
While CLAST is implemented on CUDA Thrust library, PZLAST is implemented on PZCL. The
behavior of each thread is written freely in C language (partly C ++) which is suitable for MIMD
architecture. The MIMD features of PEZY-SC2 cause some differences between the PZLAST and
CLAST software implementations.

3.1.1 Reducing the load imbalance among the threads

As for (D) phase, the forward and the backward alignment are executed in the different computa-
tional stages in CLAST. This is because the GPU architecture is categorized to SIMD and every
threads have to process the same instruction synchronously. On the other hand, in PEZY-SC2, the
behavior of each thread can be freely described as long as there is no data dependency between the
threads. Therefore, a forward and a backward alignment are concatenated into one, and the pro-
cessing speed has been improved. Furthermore, the processing time of alignment frequently changes
depending on the sequence length.

threads threads
t0 t1 t2 t3 t4 t5 t6 t7 i t0 tl t2 t3 t4 t5 t6 t7 i
Glﬂl H
A E ﬂljl—l A E E[r]S
1B [o I8 fof 1
NfEI<E oM T
(] (V] - |
2 B 2|l P
SRRl ﬂ H 5| LR _1°
| 0 | |
Qg
v v
fixed scheduling flexible scheduling
on a SIMD processor on a MIMD processor

Figure 11: Task execution in each thread.

Thus, rather than assigning the tasks to each thread in a fixed manner, assigning them in a
flexible scheduling is suitable to reduce the load imbalance among the threads (Figure 11). Left of
this figure shows the case that every threads need to synchronize on a SIMD processor. Whereas
in the right of this figure, each thread can run independently on a MIMD processor and can be
assigned any tasks freely.

453

PZLAST: an ultra-fast sequence similarity search tool implemented on a MIMD processor

List 2: Flexible scheduling with PZCL atomic operations.

1 // Initialize the atomic counter.

2 if (thread_id == 0) {

3 pz_atomic_xchg(atomic_counter, OL);

4

5

6 // All threads wait until the initialization of atomic counter has been done.
7 sync() ;

8

9 while (true) {

10 // Get the job id dynamically.

11 long i = pz_atomic_inc(atomic_counter);

12

13 // Break the loop if the job id is bigger than or equal to total.
14 if (total <= i) break;

15

16 // Execute i-th job

17 R

18 }

This is easily realized with atomic operations in PZCL as List 2. Here, pz_atomic_xchg(p, val)
swaps the old value stored at location p with the new value given by val. pz_atomic_inc(p) reads
the value (referred to as old) stored at location pointed by p, stores (0old + 1) at location pointed
by p, and then returns old.

Initially, atomic variable atomic_counter is set to 0. Each thread gets the job id from atomic_counter,
increase it and execute the assigned job. This way, a thread can get a new job as soon as it finishes
the previous job.

Also in (B) phase, a table search is performed using binary searching, and the processing time
of each thread tends to vary depending on the depth of searching and the latency of memory access.
Thus, the flexible scheduling utilizing the MIMD features improve the performance in the seed
creation.

3.1.2 Two phase alignment for long sequences

The alignment algorithm described in section 2.2 fails in some cases.

alignment range alignment range

. .
. .
e s
. .
. ,
. .
.
. e
. .
.
2
7
;
;
/
/
s

/

. c ,/
s trijﬁ§tory o'.Fche 5 Tong gap /, ‘
5 matching positions - \ .
i o .~~~ trajectory of the
2 8 /A matching positions
2 2 /
] seed] {/\
> =} %
o o %
2 seed
.
> >
reference position reference position

Figure 12: Problems in long sequences.

Left of Figure 12 shows the case that a reference sequence includes many short gaps. Right of this

454

International Journal of Networking and Computing

figure shows the case of a long gap. In these cases, the alignment range restricted by align width
is not sufficient to cover the whole trajectory of the matching positions and cannot make a good
result. This is because the working buffer can move only in a diagonal direction.

To adapt these cases, we added the alignment algorithm the ability to move in a vertical or
horizontal direction.

19 [20 [21 current step

[[previous step

Figure 13: Alignment at vertial movement.

.@2 [3 Ja]s e 7 [s]o |1o|11|1z|13|14|1s|16|17|18|19|20|21. current step
e e s e

previous step

Figure 14: Alignment at horizontal movement.

Figure 13 and 14 illustrate the vertical and horizontal movement of the working buffer. Changing
the direction of movement in this way breaks the coherency of updating each cell. To deal with this
problem, we added a new variable D which represent diagonal score, to each cell in Figure 7, and
divided the update stage in Figure 10 into two phases.

Move the working buffer to designated direction

|
1 -

| update Vv[i],D[i] |

Repeat i=1 to
align_width

! —

| update H[i1,5[1] |
Repeat i=1 to
align_width
Repeat from the
seed to query end

Figure 15: Two phase alignment flow.

\— phasel

> phase2

List 3: Cell update rules in phasel.

if direction == VERTICAL
V[i] = max(V[i]+GAP_PENALTY, S[i]+GAP_OPEN_PENALTY+GAP_PENALTY)
D[i] = D[i-1]+score(BaseRef, BaseQuery)

else if direction == HORIZONTAL
do nothing

else if direction == DIAGONAL
V[i] = max(V[i+1]+GAP_PENALTY, S[i+1]+GAP_OPEN_PENALTY+GAP_PENALTY)
D[i] = D[i]+score(BaseRef, BaseQuery)

W N O Utk W N

455

PZLAST: an ultra-fast sequence similarity search tool implemented on a MIMD processor

List 4: Cell update rules in phase2.

if direction == VERTICAL

H[i] = max(H[i-1]+GAP_PENALTY, S[i-1]+GAP_OPEN_PENALTY+GAP_PENALTY)
else if direction == HORIZONTAL

H[i] = max(H[i]+GAP_PENALTY, S[i]+GAP_OPEN_PENALTY+GAP_PENALTY)
else if direction == DIAGONAL

H[i] = max(H[i-1]+GAP_PENALTY, S[i-1]+GAP_OPEN_PENALTY+GAP_PENALTY)
S[i]l = max(H[i], Vv[il, D[il)

N O Ul W N =

Figure 15 is the revised alignment flow, and List 3 and 4 are the revised update rules. In both
phases, the update rules differs depending on the direction of working buffer movement.

To decide the direction of movement, we defined two thresholds in the working buffer.

left_threshold right_threshold

.1|2‘3|4‘5|6’7|8’9 10|11‘12 13‘14|15’16|17’18|19|20‘21.
.1|2‘3|4‘5|6‘7|8‘9 1o|11‘12 13‘14|15‘16|17‘18|19|20‘21.
‘:

.1|2‘3|4‘5|6‘7|8‘9 10|11‘12 13‘14|15‘1s|17‘1s|19|20‘21.

Figure 16: How to decide the direction of movement.

Figure 16 shows how to decide the direction of movement. If the cell of maximum score is to
the left than the left_threshold, vertical movement is selected. If it is to the right than the
right_threshold, horizontal movement is selected, otherwise diagonal is selected.

This decision algorithm works well in the case of left of Figure 12, in which no long gaps exist
and the change of the trajectory of the matching positions is gradual. With a long gap as shown in
the right of this figure, this decision algorithm is not sufficient. In such case, the scores in almost all
cells become low simultaneously and the cell of maximum score cannot indicate the suitable moving
direction. Since the seeds created in (B) phase in Figure 5 have fruitful information about the
matching positions, we used them as the other clues to decide the movement direction to overcome
such long gaps.

456

International Journal of Networking and Computing

detection
of getting
lost

a
= 7 trajectory of the
_____ O matching positions

Use these seeds as the clues
to decide the direction

query position

reference position

Figure 17: Alignment with long gap.

As illustrated in Figure 17, when a long gap causes the alignment to get lost, the nearby seeds
can be used to decide the next moving direction. How to judge the state of getting lost and how to
get an optimal clue among the nearby seeds are not simple. They are remained as important issues.
Currently the tendency of the highest score in the working buffer is used to judge the state. When
the highest score keeps low for a certain period, we consider the alignment as getting lost.

List 5: Judging a lost state.

1 s_new = max_score_prev < max_score ¢ 1.0 : 0.0
2 s = lerp(s, s_new, s_coef)

3 s = clamp(s, SMIN, 1)

4 -

5

max_score_prev = max_score
got_lost = s < S_THRESHOLD

To find a lost state, a variable s is introduced as shown in List 5. s increases if the maximum
score in the working buffer is higher than previous one, otherwise it decreases.

Here, the lerp(x,y,t) function returns the value linearly interpolated between x and y by the
interpolant t, and the clamp(x,min,max) function clamps x between min and max. max_score is
the maximum score in the working buffer of current step, and max_score_prev is of previous step.
s_coef is a coefficient in the range 0 to 1 which relates to the change speed of s.

List 6: Calculating s_coef.

2 * S_NORMALIZED_SPEED / (align_width - 1)
clamp(s_coef, 0, 1)

1 s_coef
2 s_coef

s_coef is calculated as List 6 so that s changes quickly if align width is narrow and slowly if it
is wide.
We set SMIN as 0.75, S_.THRESHOLD as 0.8 and S_NORMALIZED_SPEED as 0.8.

Since a wrong clue will mislead the alignment, we have to select an adequate seed more carefully
than the filtering in (C) phase. In our interim implementation, a seed is selected as a clue only when
it is not too far from current position and does not seem to be very strange.

List 7: Selecting an anchor.

1 seed_nextl = seed_cur.next
2 if seed_nextl != null

457

00 N O Utk W

10
11
12
13

15

PZLAST: an ultra-fast sequence similarity search tool implemented on a MIMD processor

seed_next2 = seed_nextl.next
if seed_next2 != null
diag_dist_cur = seed_cur.pos_ref - seed_cur.pos_query
diag_dist_nextl = seed_nextl.pos_ref - seed_nextl.pos_query
diag_dist_next2 = seed_next2.pos_ref - seed_next2.pos_query
if abs(diag_dist_cur - diag_dist_nextl) <= abs(diag_dist_cur -
diag_dist_next2)
anchor = seed_nextl
else
anchor = seed_next2
else
anchor = seed_nextl
else
anchor = null

List 7 is a pseudo code selecting a seed as anchor. The seeds are supposed to be sorted along
with their reference position, and seed_cur is the seed placed just prior to the center position of
the working buffer. seed next1 is the seed placed just after seed_cur and seed_next?2 is just after

seed_nextl.
List 8: Deciding the direction of movement.
1 if got_lost == false
2 if max_score_id < left_threshold
3 direction = VERTICAL
4 else if right_threshold < max_score_id
5 direction = HORIZONTAL
6 else
7 direction = DIAGONAL
8 else
9 # when got lost, use the anchor as a clue for the movement
10 if anchor != null
11 dpos_ref = max(anchor.pos_ref - working_buffer_center.pos_ref, 0)
12 dpos_query = max(anchor.pos_query - working_buffer_center.pos_query, O0)
13 if dpos_ref < dpos_query
14 direction = VERTICAL
15 else if dpos_query < dpos_ref
16 direction = HORIZONTAL
17 else
18 direction = DIAGONAL
19 else
20 direction = DIAGONAL

Then, the moving direction is decided as List 8. Here, max_score_id is the id of the cell of
maximum score in the working buffer, and working buffer_center is the center cell of the working
buffer.

These algorithms seem to work well in many cases, however it needs further studies and im-
provements. The conditional branches used in these algorithms are frequently inefficient on a SIMD
processor, on the other hand, they are efficiently conducted on a MIMD processor.

3.1.3 Alignment width depending on the seeds variation

Although we improved the alignment algorithms for long sequences as described in section 3.1.2, yet
there are cases that need to widen the alignment width. There is a trade-off between the alignment
width and the processing time, therefore, it is effective to change the alignment width for each
sequence pair. To decide the alignment width, we used the variation of the seed positions.

458

International Journal of Networking and Computing

query position
O

query position
O
O

reference position reference position

small variation large variation

Figure 18: Variation of the seeds.

Left of Figure 18 is an example of the layout of seeds with small variation. In such case, a narrow
width is sufficient for the alignment. While in the right of this figure, the position of the seeds varies
greatly, and we select a wide width for such case.

List 9: Calculating alignment width.

align_width = 0
for seed in all_seeds_in_an_alignment
seed_next = seed.next
if seed_next != null
diag_dist = seed.pos_ref - seed.pos_query
diag_dist_next = seed_next.pos_ref - seed_next.pos_query
align_width = max(align_width, 2 * abs(diag_dist - diag_dist_next) + 1)
align_width = clamp(align_width, MIN_ALIGN_WIDTH, MAX_ALIGN_WIDTH)

0~ O U W N

As shown in List 9, the alignment width is calculated comparing the positions of a seed and its
following seed. Here, all seeds are supposed to be sorted along with their reference position, and
seed next is a seed just behind seed.

Changing the alignment width for each sequence pair causes a significant difference in the pro-
cessing time between the threads. Flexible scheduling with MIMD features described in section 3.1.1
is also effective for reducing the imbalance between the threads.

3.2 Problems in Many-core processor

In section 2.2, we introduced the whole computation flow in CLAST. Here are issues in related to
the efficient use of extremely many threads in parallel.

459

PZLAST: an ultra-fast sequence similarity search tool implemented on a MIMD processor

| (A) create read-only g-gram index |

reference
sequences

1

v
I (B) create seeds | query

T sequences
| (©) filter seeds | - \

I @ J) N~ number of seeds created
| (D) align seeds | <: K in (8) phase

v ~—~

- number of seeds filtered

| (e) filter results | in (O phase

queries
done?

Figure 19: Typical change in the number of seeds in each phase of CLAST.

The gray area in Figure 19 sketches the typical change in the number of seeds in each phase of
CLAST. This figure highlights two problems in applying an ultra-parallel computation to a general
application. One difficulty is in deciding the optimal amount of inputs for each iteration. In CLAST,
the maximum number of reference and query sequences per iteration are fixed at startup, and never
changes in runtime. The number of seeds created in (B) phase varies dependent on the characteristics
of inputs, thus deciding the appropriate amount of inputs before the run is extremely difficult and
usually even impossible. In the worst case, enormous number of seeds causes overflow in the device
memory. In ultra-parallel computations, reallocating the buffer in runtime is costly since the device
memory is shared by many threads. Therefore in CLAST, it is necessary to allocate a sufficiently
large area for storing seeds and decide the maximum amount of inputs per iteration prior to the run
so that overflow never occurs. In addition, (C) phase needs to sort the seeds by their position prior
to filtering them. Even if the overflow does not occur, the efficiency of sorting extremely declines if
the number of sorting seeds explodes. The number of seeds created in runtime is unpredictable and
usually it is difficult or impossible to decide the optimal conditions. Another difficulty is in keeping
up the parallelism efficiently throughout the whole computation. Usually the seeds created in (B)
phase are dramatically reduced in (C) phase. If the number of seeds after filtering becomes few,
sufficient seeds cannot be supplied to the subsequent phases and the parallelism of many threads
cannot be kept well.

3.3 Adaptive Flow Control and Seeds Accumulation

In section 3.2, we pointed out two problems related to the implementation on an ultra-parallel
computation. They are summarized as follows.

(1) Deciding the optimal amount of inputs prior to the run is extremely difficult and usually even
impossible.

(2) Keeping up the parallelism efficiently throughout the whole computation is not always possible.

As for (1), for a fail-safe purpose, PZLAST removes the seeds that have overflowed. Although
this is useful to prevent the accidental illegal memory accesses, it is just a minimal prescription
and we have introduced Adaptive Flow Control as an additional strategy. Furthermore, for (2),
we have introduced Seeds Accumulation strategy to keep up the parallelism throughout the whole
computation.

460

International Journal of Networking and Computing

3.3.1 Adaptive Flow Control

y
| (A) create read-only g-gram index | reference
sequences

S
>

i uer
| 5y create seeds | <?_|| Adaptive Flow Control |<:I
L [4}
4 feed back of the number of seeds
| (C) filter seeds |

accumulation of the seeds

I (D) align seeds I <:
v

I (E) filter results |

queries
done?

yes

references
done?

yes

Figure 20: PZLAST whole computation flow.

Figure 20 shows the whole computation flow of PZLAST. This figure includes two types of gray
areas, which schematically represent the number of seeds related to (B)-(C) phase and (D)-(E) phase
respectively. Adaptive Flow Control adjusts the number of seeds after seed creation to an appropriate
value. Further, by Seeds Accumulation, the imbalance in the number of seeds is alleviated compared
to the CLAST case illustrated in Figure 19.

The key idea of Adaptive Flow Control is that by constructing a feedback system and control-
ling the amount of inputs in runtime, it may be possible to keep the number of seeds around the
appropriate value. Since the number of seeds created in (B) phase is directly related not to the total
number of sequences but to the total number of letters, it is reasonable to use the maximum number
of letters as a control parameter. Within the scope of this paper, for ease of implementation, we
selected as a control parameter the maximum number of letters in only query side and did not use
the one in reference side.

First we decided the optimal number of seeds as 0x80000(=524,288). This value depends on the
algorithm of sorting, the number of available threads, total device memory size and so on, therefore
it could not be derived theoretically but was decided experimentally specialized for our PEZY-SC2
implementation. Adaptive Flow Control always watches the number of seeds created in (B) phase,
predicts the appropriate maximum number of query letters, and then restricts the amount of query
input to the predicted value. Assuming that the distribution of the reference and query sequences
are uniform and the number of reference letters at each step does not vary significantly, we can treat
the number of seeds almost proportional to the number of query letters, thus a simple calculation
strategy can be used for this purpose.

List 10: Predicting maximum number of query letters.

1 function PREDICT_MAXIMUM_QUERY_LETTERS (max_letters, num_seeds)
2 rate = OPTIMAL_NUMBER_OF_SEEDS / max(num_seeds, 1)
3 nl = rate * max_letters

461

PZLAST: an ultra-fast sequence similarity search tool implemented on a MIMD processor

4 nl = clamp(nl, MIN_QUERY_LETTERS, MAX_QUERY_LETTERS)
5 return lerp(max_letters, nl, LERP_COEF)

List 10 shows the pseudo function code to predict the maximum number of query letters.
Here, max_letters represents the maximum number of query letters (i.e. control parameter) and
num_seeds represents the number of seeds created in (B) phase (i.e. control target) in the previous
tion. The function receives the value of control parameter and target, and predicts the control pa-
rameter for the next iteration. The prediction is done according to the ratio of the optimal number of
seeds to the current one. The other parts of this code are to avoid zero division, to clamp extremely
strange values, and to suppress sudden changes in the number of seeds.

3.3.2 Seeds Accumulation

Another strategy named Seeds Accumulation is designed to solve (2). In this strategy, the resultant
seeds of (C) phase are accumulated until the total number of seeds achieves a sufficient amount.
As shown in Figure 20 , a checkpoint is placed just after (C) phase. At the checkpoint, the seeds
just after (C) phase are accumulated. If the number of accumulated seeds becomes larger than a
predefined threshold, (D) and (E) phases are processed, otherwise (B) and (C) phases are repeated
again without going down to the subsequent phases. Here, the threshold is set to 0x80000, which
is the same as the optimal number of seeds used in Adaptive Flow Control. By accumulating the
intermediate seeds in this way, it becomes possible to supply a sufficient number of seeds to the
following phases and perform a large number of tasks in parallel throughout the computation.

4 Results

4.1 Performance evaluation in short queries

Table 2: Comparison of BLAST+, CLAST and PZLAST.

BLAST+ CLAST PZLAST
Processor Xeon Gold 6134 | NVIDIA Tesla V100 | PEZY-SC2

Frequency(GHz) 3.2 1.53 0.733

Number of cores 8 5,120 2,048
Rpeak(TFlops/DP) 0.8 7.8 2.8
Memory BW(GB/s) 127.8 900 76.8
Memory size(GB) 96 16 64
Total processing time(sec) 3,213 517 314

The total processing times of BLAST+, CLAST and PZLAST for short queries are compared in Ta-
ble 2. Here, PZLAST is conducted with Adaptive Flow Control and Seeds Accumulation previously
described. To evaluate the performance with the same functionalities, the alignment algorithms for
long sequences described in section 3.1.2 and 3.1.3 are not adopted in this evaluation. Since the
other part of the alignment search algorithms for these three tools are almost the same as BLAST
and we used the same parameters for these three tools, the accuracy and sensitivity also are about
the same.

Throughout this section except for Figure 21, we fixed the k-length (i.e. exact string matching
length) as 15. As an experimental dataset, we used 1Gbp (base pair) nucleotide 500 bacterial
genome (2Mbp average length) for the reference, and 750Mbp 5M reads (150bp) of Illumina HiSeq
metagenome for the query [7]. In spite that CLAST runs on V100 whose theoretical performance
and memory bandwidth are higher than PEZY-SC2, PZLAST achieves a higher performance than
CLAST. While there may be various reasons for this result including the differences in optimization

462

International Journal of Networking and Computing

or the differences between CUDA Thrust library and PZCL, the use of MIMD features, Adaptive
Flow Control and Seeds Accumulation have largely contributed to the improvement of performance.

88,900,000 600,000
e
88,800,000 500,000
§ 88,700,000 400,000
(]
%]
o 88,600,000 300,000
(o]
g 88,500,000 200,000 k=16
§ —— k=15
z 88,400,000 100,000 k=14
@k:lG
88,300,000 0
12345678 1 21 41 61 81 101 121 141 161 181 201
Iteration Iteration

without Adaptive Flow Control

with Adaptive Flow Control

Figure 21: The number of seeds created in (B) phase with and without Adaptive Flow Control.

Table 3: Processing time (sec) of each phase with and without Adaptive Flow Control.

without Adaptive Flow Control | with Adaptive Flow Control
(A) 69.68 69.69
(B) 184.44 167.91
() 154.50 73.53
(D) 1.27 1.28
(E) 2.16 1.16

Figure 21 and Table 3 show the effect of Adaptive Flow Control in more detail.

Figure 21 illustrates the number of seeds created in (B) phase for every iterations. Left of this
figure shows the number of seeds without Adaptive Flow Control at k-length=15, which drastically
fluctuates around 88,700,000. When we change the k-length to 14, the number of seeds grows larger
than 290,000,000, which causes a high risk of memory overflow and a slowdown of seed sorting
process. Also when we set the k-length to 16, the number of seed decreases smaller than 30,000,000.
These indicate that the number of seeds is very sensitive to both the data and parameters. On
the other hand, right of this figure shows the number of seeds with Adaptive Flow Control at the
k-length of 14, 15 and 16. They are controlled well to almost the same range regardless the k-length,
and the possibility of the seeds overflow is extremely reduced. Moreover, the number of seeds is
remained to the preferable range from the viewpoint of the processing time of the seeds sorting. As
for the initial value of the maximum number of query letters, we assigned a small value so that no
overflow of seeds will occur. Therefore, the number of seeds created in (B) phase remains low in the
early iterations and then gradually increases to the preferable value.

Table 3 compares the processing time of each phase at k-length=15, with and without Adaptive
Flow Control. The shortening of the processing time in (C) phase is remarkable.

Table 4: Average number of seeds with and without Seeds Accumulation.

without Seeds Accumulation | with Seeds Accumulation
521,442.9 521,442.9
7,811.3 506,244.2

463

PZLAST: an ultra-fast sequence similarity search tool implemented on a MIMD processor

Table 5: Processing time (sec) of each phase with and without Seeds Accumulation.

without Seeds Accumulation | with Seeds Accumulation
(A) 69.64 69.69
(B) 167.42 167.91
(@) 73.40 73.53
D) 2.56 1.28
(E) 6.52 1.16

Table 4 and Table 5 show the effect of Seeds Accumulation.

In Table 4, the average values derived from dividing the total number of seeds by the number
of repetitions are compared. The number of repetitions of (B) and (C) phase does not change with
and without Seeds Accumulation. With Seeds Accumulation, the number of repetitions of (D) and
(E) phase decreases because the execution of these phases is delayed until sufficient seeds have been
accumulated. The average value in (D) and (E) phases becomes larger with Seeds Accumulation,
which allows PZLAST to take full advantage of thread parallelism.

Table 5 is a comparison of the processing time of each phase, with and without Seeds Accu-
mulation. The effects in (D) and (E) phases are conspicuous although the percentage to the total
time is not large. This indicates the parallel efficiency of the multi-threads has improved with Seeds
Accumulation. While we have tried short query sequences (i.e. 150bp) in this evaluation, in the
case of long length queries or more sensitive alignment, the effect of this improvement becomes more
crucial.

4.2 Alignment result of long sequences

210

= 220 2 240 250 e 260
A T AAATTEAAT u 1 rr 1A rrr A u N-B u
A T EAAATTEAAT (W T TT.TA rrr K T e A T

230

Figure 22: Alignment result in the case of many short gaps.

Figure 23: Alignment result in the case of a long gap.

Figure 22 is an alignment result in the case where the reference sequence include many gaps, and
Figure 23 is one where the reference include a long gap. In these evaluations, we set align width as
a fixed value 17, which is too narrow to treat such sequences with the alignment algorithm described
in section 2.2. left_threshold is set as 9 and right_threshold is set as 11. Although the delay
in the judgement of getting lost shown in Figure 17 causes a few misalignment at the start and end
point of a long gap, totally they are well aligned with the two phase alignment discussed in section
3.1.2.

To confirm the effectivity of the new method described in section 3.1.2 and 3.1.3, we have aligned
20,000 COVID-19 related nucleotide sequences downloaded from NCBI site (https://www.ncbi.nlm.nih.gov)
against a reference sequence (NC_045512.2 : Wuhan-Hu-1). The length of these sequences are around
30,000 and they include many insertions, deletions or mutations. Here, we set k-length as 20.
align width was fixed as 33 for the original method. The new method calculates align width as

464

International Journal of Networking and Computing

described in section 3.1.3. left_threshold and right_threshold are calculated as (align width+
1)/2 — 1 and (align width 4 1)/2 4 1 respectively.

Table 6: Alignment score distribution in the original and new method.

alignment score | original method | new method
[-40,000, -30,000) 0 0
-30,000, -20,000) 35 0
-20,000, -10,000) 0 0
[-10,000, 0) 0 0
[0, 10,000) 0 0
[10,000,20,000) 0 0
[20,000,30,000) 3 0
[30,000,40,000) 16 0
[40,000,50,000) 6 1
[50,000,60,000) 19940 19999
[60,000,70,000) 0 0

Table 6 shows the distribution of resultant alignment scores. Although both the original and
new method could align all of 20,000 sequences against NC_045512.2, the new method takes higher
scores, which shows this new method is effective in the alignment of long sequences.

5 Conclusion and discussion

We have developed an ultra-fast sequence similarity search tool which utilizes the MIMD features
efficiently. The merit of MIMD features in reducing the imbalance among the threads was shown in
this paper. Also we have developed the alignment algorithms for long sequences fully utilizing the
MIMD features. Although these algorithms work well in many cases, further studies are remained
in deciding the direction of movement.

Furthermore, we applied two strategies against the problems found in implementing on an ultra-
parallel computation. These strategies are not limited to a sequence similarity search tool, but
effective for creating the other general applications utilizing an ultra-parallel computation. In using
a huge number of threads in the applications, how to control their parallelism is an essential issue.
The feedback strategy and the accumulation strategy presented in this paper have the ability to
solve this issue in many cases. While the strategies described in this paper are versatile enough,
their software designs are not well modularized and not always optimal for adapting to any other
applications. Further studies are needed to modularize and make them applicable to any other
general applications.

a range covered by a processor

query sequences

reference sequences

Figure 24: Parallelization to multiple processors by splitting reference and query sequences.
In this paper, we introduced PZLAST as a sequence similarity search tool on a single PEZY-SC2

processor. The approaches proposed in this paper parallelizes single alignment of a reference and
query sequence pair and accelerate it. On the other hand, since an alignment of a reference and

465

PZLAST: an ultra-fast sequence similarity search tool implemented on a MIMD processor

query pair is independent of that of the other pair, a sequence similarity searching between multiple
sequences can be easily parallelized with splitting them by the sequence id (Figure 24). In [2],
we have already proposed a web-based metagenomic PZLAST service using multiple PEZY-SC2s
in parallel. The reference database is larger than 2 terabytes, which has been too large for the
traditional systems to treat it. Although we have not yet apply the two types of strategies and the
alignment algorithms for long sequences to the system, the MIMD features of PEZY-SC2 processors
have been fully utilized there. Currently we are building the other version of PZLAST systems on
multiple PEZY-SC2s utilizing our novel algorithms described in this paper.

Acknowledgement

We thank Masahiro Yano for the CLAST algorithm discussion. We thank Yoshinori Kimura and
Toshimitsu Murakami for the help with developments of the PZLAST.

References

[1] Camacho C., Coulouris G., and Avagyan V. et al. BLAST+: architecture and applications.
BMC Bioinformatics, 10(421), 2009. https://doi.org/10.1186,/1471-2105-10-421.

[2] Mori H., Ishikawa H., Higashi K., Kato Y., Ebisuzaki T., and Kurokawa K. PZLAST: an ultra-
fast amino acid sequence similarity search server against public metagenomes. Bioinformatics,
37(21):3944-3946, 2021. https://doi.org/10.1093/bioinformatics/btab492.

[3] Mlumina Inc. Introduction to NGS. https://www.illumina.com/science/technology/next-
generationsequencing.html (Retrieved on Jun 30, 2021).

[4] Yano M., Mori H., and Akiyama Y. et al. CLAST: CUDA implemented large-scale alignment
search tool. BMC' Bioinformatics, 15(406), 2014. https://doi.org/10.1186/s12859-014-0406-y.

[6] Torii S. and Ishikawa H. ZettaScaler: Liquid immersion cooling Many-core based Super-
computer. https://www.pezy.co.jp/wpcontent /uploads/2019/02/Keynote_candar2017.pdf (Re-
trieved on Jun 30, 2021).

[6] Altschul SF., Gish W., Miller W., Myers EW., and Lipman DJ. Basic local alignment search
tool. J Mol Biol, 215:403-410, 1990. https://doi.org/10.1016/S0022-2836(05)80360-2.

[7] E. Singer, Andreopoulos B., and Bowers R. et al. Next generation sequencing data of a defined
microbial mock community. Sci Data, 3(160081), 2016. https://doi.org/10.1038/sdata.2016.81.

[8] Hishinuma T. and Nakata M. pzqd: PEZY-SC2 Acceleration of Double-Double Precision
Arithmetic Library for High-Precision BLAS. Mechanisms and Machine Science, 75, 2019.
https://doi.org/10.1007/978-3-030-27053-7_61.

466

