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Abstract

The security of Schnorr signature Sch has been widely discussed so far. Recently, Fuchsbauer,
Plouviez and Seurin gave a tight reduction that proves EUF-CMA of Sch in the random oracle
(ROM) with the algebraic group model (AGM) from the discrete logarithm (DL) assumption at
EUROCRYPT 2020. Kiltz, Masny and Pan considered multi-user security of Sch at CRYPTO
2016, whereas Fuchsbauer et al. considered the single-user security only. More precisely, Kiltz
et al. constructed a tight reduction from EUF-CMA to MU-EUF-CMA. Combining these two
results will likely enable us to construct a tight reduction that proves MU-EUF-CMA security of
Sch in AGM+ROM from DL assumption.

Against such an intuition, we show an impossibility on proving MU-EUF-CMA of Sch in
AGM+ROM only by combining them in this paper. To estimate our impossibility result, we
also discuss why the result by Fuchsbauer et al. cannot be applied to MU-EUF-CMA setting.
Our result therefore suggests that we are required to develop a new proof technique beyond
the algebraic reduction or to find a new form of public keys other than that considered in our
impossibility, in order to show MU-EUF-CMA of Sch in AGM+ROM.

Keywords: Schnorr Signature, Algebraic Group Model, Algebraic Reduction, Multi-user Security,
Impossibility

1 Introduction

Schnorr signature Sch is one of the simplest and most efficient digital signature schemes. Due to
such advantages, Sch is used as a building block of many advanced cryptographic schemes and
cryptographic protocols, e.g., [6, 37]. Not only the efficiency and the applicability of Sch but also
its security is also discussed so far. Pointcheval and Stern [34] showed the existential unforgeability
of Sch against the chosen message attack (EUF-CMA) from the discrete logarithm (DL) assumption.
This result is proven under two conditions: in the random oracle model (ROM) and with loose
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security reduction. The difficulty of removing ROM was already discussed in several papers [30, 12,
28, 19]. In this paper, we focus on the other condition, namely the loose security reduction.

The loose reduction is closely related to the loss factor. To explain loss factor, we consider a
securiry reduction R breaking the underlying cryptographic assumption with probability ϵR in time
TR by the black-box access to an adversary A attacking the designated cryptographic scheme with
probability ϵA in time TA. Then, the loss factor is defined so that ϵA/TA ≤ p · ϵR/TR. We say
that the security is loose when p is polynomial, whereas it is tight when the parameter p is constant
in the security parameter. The tight security implies that one can set the length of parameters
of the cryptographic scheme to be almost the same as that of the cryptographic assumption. In
other words, it guarantees the size efficiency of the scheme. Therefore, it is desirable for us that
cryptographic schemes have the tight security reduction. However, the question of whether or not the
tight security of Sch can be proven is not fully resolved. This open question was just discussed under
some restricted conditions. The representative one is the impossibility result under the restriction of
reductions given by Paillier and Vergnaud [30]. They showed that the tight security of Sch cannot
be proven even in ROM, as long as algebraic reduction algorithms are concerned. The algebraic
algorithm intuitively means that the algorithm must compute elements of the underlying group
using only group operations. This impossibility result was strengthened by [23, 36]. In particular,
Seurin [36] showed that the loss factor p must be set as QH like [34, 1], which is the number of hash
oracle queries by the adversary. As shown above, the restrinction by an algebraic reduction is used
to give negative evidence for unresolved problems.

Recently, Fuchsbauer, Plouviez and Seurin [14] gave an affirmative evidence for a tight secu-
rity reduction of Sch by circumventing the impossibility barrier explained above. Their result was
given by restricting an adversary instead of a reduction. More specifically, they showed that Sch is
EUF-CMA in ROM and in algebraic group model (AGM) from DL assumption with a tight reduction.
AGM [13] is the security model in which an adversary A is restricted to be algebraic. This implies
that they gave such an affirmative result by restricting the behavior of an EUF-CMA adversary A,
whereas the impossibility results [30, 23, 36] are shown by restricting the type of reductions R.

EUF-CMA considers that an adversary A attacks a single user at once. In the real world, A shall
attack multi-users rather than the single user. To capture the security in the multi-user setting,
the multi-user unforgeability against CMA (MU-EUF-CMA) was introduced [21]. For the security of
Sch in the multi-user setting, Kiltz, Masny and Pan [28] discussed MU-EUF-CMA of Sch in ROM.
In particular, they constructed a tight reduction from EUF-CMA of Sch to MU-EUF-CMA of Sch.
By combining the results by [14] and [28], it is expected that Sch is proven to be MU-EUF-CMA in
AGM+ROM with tight reduction.

1.1 Our Contribution

In this paper, we give an impossibility on proving MU-EUF-CMA of Sch in AGM+ROM against the
above expectation. Our result is given by the following theorem.

Theorem 1 (Informal) If Sch is proven to be MU-EUF-CMA in AGM+ROM from DL assumption
via an algebraic reduction R that generates some specific formed public keys, then DL assumption is
broken.

In Theorem 1, we consider the two conditions. The first one is that reductions should be algebraic
as well as [30, 23, 36]. An algebraic algorithm R with respect to a target group G is formally defined
as an algorithm such that any element w in G output by R is always expressed as the linear
combination

∑M
i=1 αi · g of elements (g1, · · · , gM ) ∈ GM given to R. Additionally, R is required to

output its coefficient vector (α1, . . . , αM ) ∈ ZM when R outputs w. As we mentioned above, the
algebraic property is employed to discuss the (un)provable security of several cryptographic schemes
[10, 30, 23, 36, 13, 14]. Moreover, the known security reductions proving the single-user security of
Sch fall into this type [34, 14].

The second one concerns the type of public keys which are returned by R when R invokes an
MU-EUF-CMA adversary A. We briefly describe the behavior of a security reduction R supposed in
Theorem 1. As security reductions constructed in [34, 28], a reductionR, which provesMU-EUF-CMA
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of Sch from DL assumption, is given a DL instance (G, q, g, y) of a group description (G, q, g) of a
group G of prime order q with a generator g and y ∈ G. Then R would invoke an MU-EUF-CMA
adversary A in a black-box manner with multiple public keys {pk∗i }

N
i=1 as input for A. Since R

is assumed to be algebraic and pk∗i belongs to the target group G, R must output the coefficient
vectors of all pk∗i . On the other hand, the group elements given to R are only (g, y) ∈ G. These
imply that any pk∗i ∈ G can be expressed as

pk∗i = αi · g + βi · y,

with the coefficient vector (αi, βi) ∈ Z2
q. The second condition is that βi = 1 for all pk∗i , namely the

form of pk∗i is assumed to be

pk∗i = αi · g + y.

Note that the similar construction of public keys can be seen in the security proofs concerning
MU-EUF-CMA of Sch [28, 21].

We also review the previous result of [14]. We discuss the reason why the security reduction
of [14] proving EUF-CMA in AGM+ROM is difficult to be applied to the multi-user case. This
paper suggests that we have to develop a new proof technique beyond the algebraic reduction such
as [14, 28], or to find a new form of public keys that does not fall into the condition considered
in Theorem 1 in order to overcome our impossibility and prove MU-EUF-CMA of Sch with a tight
reduction.

1.2 Related Works

Paillier and Vergnaud [30] also gave the impossibility of proving the security of Sch without ROM
inder the restriction that concerned reductions are only algebraic. ROM enables us to employ the
useful features on the construction of security reductions, the observability and the programmability.
The observability means that a security reduction R can observe all pairs of a query and its answer
to the hash oracle by the adversary. The programmability enables R to set arbitrary values as
the hash values for queries. Ananth and Bhaskar [3] considered a reduction for Sch without the
observability. On the other hand, Fischlin and Fleischhacker [12] showed that Sch cannot be proven
to be secure without the programmability. This impossibility was strengthened by [15, 17, 18, 19].
Kiltz, Masny and Pan [28] also summarized the impossibility results on the programmability for
generic Fiat-Shamir-type signatures including Sch.

Fuchsbauer, Kiltz and Loss [13] first introduced AGM as a relaxed model of the generic group
model. They proved that several DL-based assumptions, including the computational Diffie-Hellman
(DH) assumption and the strong DH assumption, are equivalent to the DL assumption in AGM.
They also gave the tight reduction in AGM for the BLS signature [9] and the Groth ZK-SNARG [25].
Fuchsbauer, Plouviez and Seurin [14] discussed not only the tight security of Sch but also the Schnorr-
based blind signature, although the cryptographic assumption on which that blind signature is based
is broken by [8]. Then a new blind signature based on the one-more DL assumption was proposed
in AGM [26]. Most recently, [27, 29, 5, 22] discussed the security of cryptographic protocols related
to Sch in AGM.

For the tight security of FS signatures, Abdalla, Fouque, Lyubashevsky and Tibouchi [2] intro-
duced the notion of the lossy ID scheme which derives tightly secure Fiat-Shamir-type signatures in
ROM. However, the conventional lossy ID schemes are based on decisional assumptions rather than
computational assumptions.

[31, 11, 32] proposed tightly secure signatures in the multi-user setting with adaptive corruption
by extending the Fiat-Shamir-type transformation. On the other hand, we discuss the security of
the original Schnorr signature in the multi-user setting and AGM without any modification to the
Fiat-Shamir-type transformation. It is also an important open question that whether or not the
MU-EUF-CMA security of Sch in AGM with adaptive corruption can be proven.
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GameMU-EUF-CMA
N,QS ,DS,A (λ)

L = ∅

K ←$ Pgen(1λ)

(ski, pki)←$ KGen(K) for i ∈ [1, N ]

(i∗,m∗, σ∗)←$AOSig(K, {pki}
N
i=1)

return 1 if (i∗,m∗) /∈ L ∧ Vf(K, pki∗ ,m
∗, σ∗) = 1

Oracle OSig(i,m)

return ⊥ if i /∈ [1, N ]

σ ←$ Sig(K, ski, pki,m)

L← L ∪ {(i,m)}
return σ

Figure 1: Procedure of challenger C in MU-EUFCMA game with signing oracle OSig

1.3 Difference from Proceeding Version

The proceeding version appeared in [20]. We extend Theorem 1 to cover a security reduction
which can invoke an adversary polynomially many times, whereas in the proceeding version, we only
considered that the number of such an invocation is only one.

2 Preliminaries

For a probabilistic algorithm A, y ←$ A(x;ω) expresses that A outputs y on input x with random
coins ω. A(x) is a random variable where random coins ω are internally chosen. For a finite set X,
y ←$ X means that y is chosen uniformly at random from X. For any algorithm A (a distribution
D, resp.) and any possible input x to A, [A(x)] means the set of all possible outputs by A on input
x, and [A] ([D], resp.) does the set of all possible outputs by A (D, resp.) for any possible input.
Abbreviated words DPT and PPT stand for “deterministic polynomial-time” and “probabilistic
polynomial-time”, respectively.

We write N and Z to denote the sets of all natural numbers and all integers, respectively. For
any two integers a ≤ b, let [a, b] ⊆ Z be the set of all integers between a and b. For any N ∈ N,
let ZN be the ring of residues modulo N . Let G denote an additive group. For any g ∈ G and any
n ∈ N, n · g means

∑n
i=1 g.

2.1 Digital Signature Schemes

A signature scheme DS is defined by a 4-tuple (Pgen,KGen,Sig,Vf) [24]. Pgen is a PPT parameter
generator that generates a public parameter K on a security parameter 1λ. KGen is a PPT key
generator that generates a pair (sk, pk) of a secret key and its public key on a public parameter
K. Sig is a PPT signing algorithm that returns a signature σ on a tuple (K, sk, pk,m) of a public
parameter, a secret key, its public key and a message. Vf is a DPT verifying algorithm that returns
1 if σ is valid under (pk,m) on a tuple (K, pk,m, σ) of a public parameter, a public key, a message
and a signature.

2.1.1 Correctness

The correctness of DS is that Vf(K, pk,m, σ) always returns 1 for any λ ∈ N, any K ←$ Pgen(1λ),
any pair (sk, pk)←$ KGen(K), any message m and any σ ←$ Sig(sk, pk,m).

2.1.2 Security

We consider the multi-user existential unforgeability against the chosen-message attack (MU-EUF-CMA).
This is defined by the MU-EUF-CMA game depicted in Fig. 1. This game is played by a challenger
C and an adversary A. A signature scheme DS = (Pgen,KGen,Sig,Vf) is said to be (T, ϵ,N,QS)-
MU-EUF-CMA secure if for any adversary A that runs in time T and makes QS signing oracle queries,
A wins the MU-EUF-CMA game, namely GameMU-EUF-CMA

N,QS ,DS,A (λ) = 1, with at most probability ϵ. For
the random oracle model (ROM) [7], we denote by the (T, ϵ,QH , N,QS)-MU-EUF-CMA security the
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(T, ϵ,N,QS)-MU-EUF-CMA security for an adversary that makes QH queries to the hash oracle.
EUF-CMA in ROM stands for (T, ϵ,QH , 1, QS)-MU-EUF-CMA.

2.2 Algebraic Group Model and Algebraic Reduction

Since the notions of the algebraic group model and the algebraic reduction are defined by an algebraic
algorithm, we recap the notion of the algebraic algorithm [30, 13]. Its intuitive meaning is that
A can execute operations defined over GK only to generate a new element in GK . Paillier and
Vergnaud formally defined that an algebraic algorithm is an algorithm such that any element w in
GK computed by the algebraic algorithm must be expressed by the linear combination of given group
elements in GK . More precisely, if A takes M group elements g1, . . . , gM ∈ GK with a parameter
K before outputting a group element w ∈ GK , then there exists (α1, . . . , αM ) ∈ ZM such that

w =
∑M

k=1 αk · gk and A also outputs (α1, . . . , αM ) with w. (α1, . . . , αM ) is called a coefficient
vector of w under the basis (g1, . . . , gM ). We write w{

∑M
k=1 αk·gk} to denote the pair (w,α) of the

element w ∈ GK and its coefficient vector α = (α1, . . . , αM ) ∈ ZM under the basis g = (g1, . . . , gM ),

i.e., w =
∑M

k=1 αk · gk.
Consider a reduction algorithm R that wins some security game with black-box access to an

adversary A winning another security game. Then, the algebraic group model (AGM) with respect
to {GK}K [13] means that A is restricted to be algebraic with respect to {GK}K . Such A is called
an algebraic adversary. On the other hand, algebraic reduction with respect to {GK}K [30] does that
R is restricted to be algebraic with respect to {GK}K .

3 Schnorr Signature and Related Properties

In this section, we recap Schnorr signature Sch [35]. We denote by PgenG a PPT group generator
such that on input 1λ, it returns a tuple (G, q, g) of a group description G and a prime q of length
λ that denotes the order of G, and a generator g of G. Since the length of q is λ, we have 2λ−1 <
q < 2λ. Let KGenDL be a PPT algorithm that outputs (x, y) ∈ Zq ×G such that y = x · g on input

(G, q, g) ∈ [PgenG]. Then the discrete logarithm assumption is defined as follows:

Definition 1. The (T, ϵ)-discrete logarithm (DL) assumption holds if there exists no algorithm A
running in time T that on input (G, q, g, y), returns x∗ ∈ Zq such that (x∗, y) ∈ [KGenDL] with

probability ϵ, where (G, q, g)←$ PgenG(1λ) and (x, y)←$ KGenDL(G, q, g).

Schnorr signature Sch is formalized in the following way:

� PgenSch and KGenSch coincide with PgenG and KGenDL, respectively.

� SigSch issues a signature σ = (cha, res) ∈ Z2
q on input (G, q, g, sk, pk,m) so that

st←$ Zq,

cmt = st · g,
cha = H(cmt,m), and

res = st+ cha · sk mod q.

� VfSch returns 1 on input (G, q, g, pk,m, (cha, res)) if cha = H(res · g − cha · pk,m).

We say that a tuple (cmt, cha, res) ∈ G×Zq ×Zq satisfies the verification formula VfSch with respect
to (G, q, g, y) if it holds that cmt = res · g − cha · y over G. Such a tuple (cmt, cha, res) is called a
transcript.
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R

(G, q, g, y)

x

A(G, q, g,
{
pk∗i {αi·g+βi·y}

}N

i=1
)

(cmt{γ·g+
∑

δ·pk∗i },m)

cha QH

(it,mt)

(chat, rest) QS

(m′, (cha′, res′))

Figure 2: Overview of the reduction R which proves MU-EUF-CMA of Sch in AGM+ROM from DL
assumption

4 Impossibility on Proving MU-EUF-CMA of Schnorr signature
in AGM+ROM

In this section, we show that Schnorr signature Sch cannot be proven to be MU-EUF-CMA in
AGM+ROM from DL assumption under some restrictions, whereas EUF-CMA in AGM+ROM is jus-
tified in [14]. For our purpose, we first define the situation where Sch is proven to be MU-EUF-CMA
in AGM+ROM from DL assumption as far as algebraic reductions are concerned. This is defined by
a PPT black-box algebraic reduction R that proves MU-EUF-CMA in AGM+ROM from DL assump-
tion. R aims to break DL assumption with non-negligible probability in AGM+ROM if a successful
MU-EUF-CMA adversary A is provided in a black-box manner. The behavior of R is elaborated in
the following way. Let (G, q, g, y) be a tuple of a group description (G, q, g) and a group element
y ∈ G that is given to R. To break DL assumption with non-negligible probability, R can invoke an
adversary A that breaks MU-EUF-CMA with non-negligible probability. R invokes A with a tuple
(G, q, g, {pk∗i }

N
i=1) of the group description (G, q, g) and N public keys {pk∗i }

N
i=1 as initial input for

A. Here, we suppose that R is fixed-parameter in the sense that the group description given to A
is always the same as the one given to R. Since we now consider a result in ROM, A would make
queries to the hash oracle OA

H and the signing oracle OA
Sig which are emulated by R. In particular, we

need to consider that R may fail to emulate OA
Sig since it is a PPT algorithm. If R fails to emulate

OA
H or OA

Sig for some query by A, A can abort the MU-EUF-CMA game. Otherwise, OA
Sig answers a

signature (chat, rest) ∈ Z2
q of the message mt under the public key pk∗it for the t-th signing oracle

query (it,mt) ∈ [1, N ] × {0, 1}ℓm . If OA
Sig succeeds in answering all signing oracle queries by A, A

finally wins the game with non-negligible probability with the output tuple (i∗,m∗, (cha∗, res∗)). A
is regarded as deterministic or probabilistic with fixed random coins as the treatment in [33].

Now, both R and A are algebraic with respect to {G}(G,q,g)∈[PgenSch], since R is assumed to be
an algebraic reduction. We employ AGM. Therefore when R and A output elements in G such as
cmt ∈ G, they should also output coefficient vectors under the input elements in G. Especially,
R should invoke the MU-EUF-CMA adversary A on the initial input (G, q, g, {pk∗i }

N
i=1) with the

coefficient vectors (αi, βi) ∈ Zq × Zq of pk∗i ∈ G under the basis (g, y). Namely, each pk∗i is of the
form

αi · g + βi · y.

This is because pk∗i is an element in G output by the algebraic algorithm R, and g and y are the
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Specific Adversary: ÃOA
H ,OA

Sig(G, q, g, {pk∗i }
N
i=1)

1 : (m, ĩ, i∗)←$ Orand(G, q, g, {pk∗i }
N
i=1)

2 : (cha, res)←$ OA
Sig (̃i,m)

3 : cmt← res · g − cha · pk∗ĩ
4 : abort if cha ̸= OA

H(cmt{res·g−cha·pk∗
ĩ
},m)

5 : find res′ ∈ Zq s.t. cmt = res′ · g − cha · pk∗i∗
6 : return (i∗,m, (cha, res′))

MR(G, q, g, y)

1 : Lrand = ∅
2 : for k ∈ [1, I] :

3 : (mk, ĩk, i
∗
k)←$ {0, 1}ℓm ×

{
(i, i′) ∈ [1, N ]2 | i ̸= i′

}
4 : k ← 0

5 : return RÃ(G, q, g, y)

Simulator: ÃOA
H ,OA

Sig(G, q, g, {pk∗i {αi·g+y}}Ni=1)

1 : (m, ĩ, i∗)← Sim
{(mk ,̃ik,i

∗
k)}

Lrand
(G, q, g, {pk∗i }

N
i=1)

Sim
{(mk ,̃ik,i

∗
k)}

Lrand
(G, q, g, {pk∗i }

N
i=1)

if Lrand[G, q, g, {pk∗i }
N
i=1] = ⊥ :

k ← k + 1

Lrand[G, q, g, {pk∗i }
N
i=1]← (mk, ĩk, i

∗
k)

return Lrand[G, q, g, {pk∗i }
N
i=1]

2 : (cha, res)←$ OA
Sig (̃i,m)

3 : cmt← res · g − cha · pk∗ĩ
4 : abort if cha ̸= OA

H(cmt{res·g−cha·pk∗
ĩ
},m)

5 : res′ ← res+ (αi∗ − αĩ)cha mod q

6 : return (i∗,m, (cha, res′))

Figure 3: Specific MU-EUF-CMA adversary Ã and meta-reductionM with simulator of Ã

only elements in G given to R before invoking A. The overview of R is depicted in Fig. 2.
Moreover, R is supposed to be sequentially multi-instance (SMI) [4, 16]. Namely, R can invoke

A polynomially many times, but the concurrent invocations of clones of A is prohibited. We denote
by I the number of invocations of A by R.

We now show the impossibility of proving MU-EUF-CMA of Sch in AGM+ROM. More precisely,
Sch cannot be proven to be MU-EUF-CMA from DL assumption in AGM+ROM when each βi of the
public keys pk∗i given to an MU-EUF-CMA adversary is fixed to the same value such as 1.

We now show our main theorem in the following way.

Theorem 1 (DL ̸→ MU-EUF-CMA in AGM+ROM). Assume that there exists a PPT fixed-parameter,
SMI and algebraic black-box reduction R such that R proves MU-EUF-CMA of Sch in AGM+ROM
from DL assumption, it invokes an MU-EUF-CMA adversary at most I times, and the initial input
{pk∗i }

N
i=1 for an MU-EUF-CMA adversary is of the form pk∗i = αi · g + y for the pair (g, y) ∈ G2

which is given to R as the DL adversary. Then, there exists a PPT algorithm M that breaks DL
assumption with non-negligible probability.

Proof. Let R be a PPT black-box reduction that is fixed-parameter, SMI and algebraic, and proves
MU-EUF-CMA of Sch in AGM+ROM from DL assumption. As we have mentioned above, R can
break DL assumption with non-negligible probability ϵR if it is provided an adversary A that breaks
MU-EUF-CMA with non-negligible probability. We now consider the algebraic MU-EUF-CMA adver-
sary Ã of the specific type. If Ã wins the MU-EUF-CMA game with non-negligible probability, R
can break DL assumption in AGM+ROM. Therefore, we aim to construct a PPT algorithmM that
makes R break DL assumption with probability ϵR by simulating Ã. We call M meta-reduction.
We now describe the specific adversary Ã.

Specific MU-EUF-CMA Advesary Ã We depict the specific adversary Ã in the left side of Fig. 3.
The strategy of Ã is as follows. Ãmakes a signing oracle query (̃i,m) to obtain its signature (cha, res)
under pk∗ĩ , and then converts (cha, res) into a signature (cha, res′) of m under another public key

pk∗i∗ . It follows from (̃i,m) ̸= (i∗,m) that (i∗,m, (cha, res′)) can be a forgery of the MU-EUF-CMA
adversary Ã. Since Ã should be deterministic as mentioned above, the random values (m, ĩ, i∗)
are sampled by using the virtual oracle Orand that samples a message m ←$ {0, 1}ℓm and indices

(̃i, i∗)←$

{
(i, i′) ∈ [1, N ]2 | i ̸= i′

}
on a tuple (G, q, g, {pk∗i }

N
i=1) at Line 1 1.

1A similar technique appears in [18].
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Since Ã is supposed to be algebraic with respect to {G}(G,q,g)∈[PgenSch], Ãmust output a coefficient

vector under the input elements (g, {pk∗i }
N
i=1) when Ã outputs some element in G. At Line 4, Ã

outputs cmt ∈ G as a hash query. By the setting of cmt = res · g − cha · pk∗ĩ at Line 3, (res,−cha)
can be naturally a coefficient vector of cmt under (g, pk∗ĩ ). Thus Ã satisfies the condition of the
algebraic MU-EUF-CMA adversary.

It should be noted that Line 5 seems not to be done in polynomial-time. Although Ã is not
required to be a PPT algorithm, we will show thatM simulates Ã in polynomial-time by utilizing
the algebraic property of R.

Construction of Meta-reductionM We construct a PPT meta-reductionM as in Fig. 3. The
basic strategy of M is making R break DL assumption with probability ϵR, and the key technical
issue is how M simulates Ã in polynomial-time. In particular, we realize the simulation of Ã on
the right side of Fig. 3 by utilizing the algebraic property of R. Since R is algebraic with respect
to {G}(G,q,g)∈[PgenSch] and R outputs N public keys pk∗i ∈ G (i ∈ [1, N ]) to invoke Ã simulated by

M, R would output the coefficient vectors of all pk∗i under the group elements (g, y) given to R.
Namely each pk∗i is expressed as

pk∗i = αi · g + y, (1)

for some αi ∈ Zq by the assumption on the statement. Then, the valid signature (cha, res) of m
under pk∗ĩ obtained at Line 2 can be converted into a signature (cha, res′) of m under pk∗i∗ at Line 5.
This is because (cha, res) satisfies that cha = OA

H(cmt,m) for cmt = res ·g−cha ·pk∗ĩ , and then Line 5
implies that

cmt = res · g − cha · pk∗ĩ
= res · g − cha(αĩ · g + y)

= res · g − cha(αĩ · g + y) + αi∗cha · g − αi∗cha · g
= (res− αĩcha+ αi∗cha) · g − cha(αi∗ · g + y)

= res′ · g − cha · pk∗i∗ .

(2)

Therefore, (cha, res′) is a valid signature of m under pk∗i∗ .

Simulation of Specific Adversary Ã We now confirm that the behavior of the simulator of Ã
(in the right side of Fig. 3) is identical to that of the original Ã (in the left side of Fig. 3) from the
viewpoint of R. The differences between the simulator and the original appear at Lines 1 and 5. At

Line 1 of the simulator, the tuple (m, ĩ, i∗) is given from Sim
{(mk ,̃ik,i

∗
k)}

Lrand
instead of Orand. We first

consider a case where the input tuple (G, q, g, {pk∗i }
N
i=1) does not apper at any previous invocation

of Ã. Namely, Sim
{(mk ,̃ik,i

∗
k)}

Lrand
returns a tuple (mk, ĩ, i

∗) which is sampled at Line 3 in M so that

m ←$ {0, 1}ℓm and (̃i, i∗) ←$

{
(i, i′) ∈ [1, N ]2 | i ̸= i′

}
. Since the tuple (G, q, g, {pk∗i }

N
i=1) is a new

tuple given to Ã, (mk, ĩ, i
∗) is a tuple which has not been used to simulate Ã until this invocation of

Ã. This implies that the distribution of (mk, ĩ, i
∗) by Sim

{(mk ,̃ik,i
∗
k)}

Lrand
coincides with the one by Orand

for the viewpoint of R. We next consider the opposite case. Namely, (G, q, g, {pk∗i }
N
i=1) has been

given to Ã for some previous invocation of Ã. In this case, both Orand and Sim
{(mk ,̃ik,i

∗
k)}

Lrand
return

the same tuple (m, ĩ, i) for the same tuple (G, q, g, {pk∗i }
N
i=1). Thus, the behavior at line 1 of the

simulator is the same as that of the original specific adversary.
From Eq. (2), res′ = res+(αi∗−αĩ)cha mod q set as at Line 5 satisfies that cmt = res′ ·g−cha·pk∗i∗ .

This is the goal of Line 5 of the original Ã. These imply that M perfectly simulates the original
specific adversary Ã.

For Multi-invocation of Ã by R Observe that the simulator of Ã is constructed to be determin-
istic. This implies that for the same input (G, q, g, {pk∗i }

N
i=1,O

A
Sig (̃i,m),OA

H(cmt{res·g−cha·pk∗
ĩ
},m)) to

125



On Multi-user Security of Schnorr Signature in AGM

RFPS(g, q, g, y)

1 : LH , Lalg, LSig ← ∅

2 : (m∗, (cha∗, res∗))←$AOA
H ,OA

Sig(g, q, g, y)

3 : cmt∗ ← cha∗ · g − res∗ · y
4 : abort if m∗ ∈ LSig ∨ VfSch(g, q, g, y,m∗, (cha∗, res∗)) ̸= 1 // During that, running OA

H(cmt∗,m∗
)

5 : (γ∗, δ∗)← Lalg[cmt∗,m∗]

6 : return (res∗ − δ∗)/(cha∗ + γ∗)

OFPS
H (cmt{γ·g+δ·y},m)

1 : if LH [cmt,m] = ⊥
2 : LH [cmt,m]←$ Zq

3 : abort if LH [cmt,m] = −δ
4 : Lalg[cmt,m]← (γ, δ)

5 : return LH [cmt,m]

OFPS
Sig (m)

1 : cha, res←$ Zq

2 : cmt← res · g − cha · y
3 : abort if LH [cmt,m] ̸= ⊥
4 : LH [cmt,m]← cha

5 : LSig ← LSig ∪ {m}
6 : return (cha, res)

Figure 4: Fuchsbauer-Plouviez-Seurin’s Reduction R [14]

Ã, Ã behaves the same, even when R invokes Ã many times and rewinds it. Therefore, the multiple
invocations and the rewind of Ã by R do not affect the winning probability of R.

Success Probability ofM SinceM simulates the specific MU-EUF-CMA adversary Ã correctly,
R run byM can break DL assumption with the non-negligible probability ϵR as the assumption on
R. ThusM can break DL assumption with the non-negligible probability ϵR.

For the restriction of N public keys {pk∗i }
N
i=1 that are given to the adversary, the similar con-

struction of public keys can be seen in the reduction by [28] which proves MU-EUF-CMA of Sch from
DL assumption in ROM (not in AGM). Namely, Theorem 1 implies that the known proof technique
to prove MU-EUF-CMA of Sch cannot be applied in the AGM setting.

5 Discussions

In this secion, we review the previous result by [14] of proving the securiry of Sch.
Recall that Fuchsbauer, Plouviez and Seurin showed that Sch is EUF-CMA in AGM+ROM with

tight reduction [14], whereas we have shown the impossibility of proving MU-EUF-CMA of Sch in
AGM+ROM via an algebraic reduction in the previous section. We discuss why the Fuchsbauer-
Plouviez-Seurin’s result is not straightforwardly applied to the MU-EUF-CMA case.

Let us briefly recap the security reductionRFPS of [14] that proves EUF-CMA from DL assumption.
Their security reduction RFPS can be depicted as in Fig. 4 2. The procedures of RFPS are divided
into the followings.

(P.I) As depicted at Line 2 in RFPS, on a given DL instance (G, q, g, y), RFPS invokes an EUF-CMA
adversary A of Sch with (G, q, g, y). Here, y is regarded as the challenge public key given
to A.

(P.II) As depicted in OFPS
H , when A makes a hash oracle query (cmt,m) ∈ G × {0, 1}ℓm , RFPS

returns its hash value cha ∈ Zq by emulating the hash oracle.

2In [14], a signature generated by Sch is defined by (cmt, res), whereas it is defined by (cha, res) in this paper. We
slightly modify the actual reduction RFPS to deal with our form of signatures. Such a modification would enable us
to explain the behavior of RFPS succinctly.
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(P.III) As depicted in OFPS
Sig , when A makes a signing oracle query m ∈ {0, 1}ℓm , RFPS returns a

signature σ = (cha, res) ∈ Z2
q by emulating the signing oracle.

(P.IV) As depicted at Lines 3–6 in RFPS, when A finally returns a forgery (m∗, (cha∗, res∗)), RFPS

finds the solution x ∈ Zq of the DL instance (G, q, g, y).

In a similar manner to [34], the special soundness of Sch is utilized to realize the process (P.IV).
The special soundness guarantees that we can extract the solution x of (G, q, g, y) from the two
transcripts (cmt∗, cha∗, res∗) and (cmt, cha, res) such that both tuples satisfy the verification formula
VfSch with respect to (G, q, g, y) and cmt∗ = cmt and cha∗ ̸= cha. Thus RFPS aims to find such two
transcripts.

The first transcript (cmt∗, cha∗, res∗) is obtained from the forgery (m∗, (cha∗, res∗)) by setting
cmt∗ = res∗ ·g−cha∗ ·y. This part corresponds to Lines 2–3 in RFPS. If A wins the EUF-CMA game,
this transcript (cmt∗, cha∗, res∗) satisfies VfSch with respect to (G, q, g, y). On the other hand, RFPS

aims to obtain another transcript by utilizing the emulation of the hash oracle and the algebraic
property of A. Now, we focus on the hash oracle query (cmt∗,m∗) from A which is expected to be
made before A finally returns the forgery (m∗, (cha∗, res∗)). Since A is supposed to be algebraic,
A is required to output a coefficient vector of cmt∗ ∈ G for the query (cmt∗,m∗). Moreover, the
basis of coefficient vectors is (g, y) ∈ G2. This is because (g, y) are only elements in G given to A.
Then the coefficient vector is of the form (γ∗, δ∗) such that cmt∗ = γ∗ · g + δ∗ · y. This implies
that (cmt∗,−δ∗, γ∗) satisfies VfSch with respect to (G, q, g, y). Observe that such a pair (δ∗, γ∗) is
recorded at Line 4 in OFPS

H and then it is retrived at Line 5 in R. Therefore we can employ the
special soundness if cha∗ ̸= −δ∗.

To show cha∗ ̸= −δ∗, we consider two situations depending on the appearance of (cmt∗,m∗) in
the signing oracle queries. First, consider the situation that (cmt∗,m∗) appears when m∗ is queried
to the signing oracle. We show that this situation never happens when A wins the EUF-CMA
game. The reason is as follows. Due to the mechanism of Sch, for any fixed pair (cmt∗,m∗), the
signature (cha∗, res∗) of m∗ is uniquely determined. In fact, cha∗ is the hash value of the fixed pair
(cmt∗,m∗), and there exists only one res∗ ∈ Zq such that the transcript (cmt∗, cha∗, res∗) satisfies

VfSch with respect to (G, q, g, y). Eventually, the reuse of (cmt∗,m∗) derives the reuse of the signature
(cha∗, res∗). Hence, such a transcript (m∗, (cha∗, res∗)) cannot be a forgery and leads to the game’s
loss.

Consider the opposite case where (cmt∗,m∗) does not appear in the signing oracle queries. Then
the hash value cha∗ is given from the hash oracle. RFPS emulates the hash oracle so that cha∗ ̸=
−δ∗ with only negligible error probability. Therefore, when A wins the EUF-CMA game, we have
cha∗ ̸= −δ∗ except the negligible probability. This means that the solution x is extractable from the
two transcripts (cmt∗, cha∗, res∗) and (cmt∗, γ∗,−δ∗) with overwhelming probability.

We now observe whether or not the strategy ofRFPS is straightforwardly applied toMU-EUF-CMA
case. In this setting, we cannot guarantee that the pair (cmt,m) that appeared in the sign-
ing oracle simulation is not reused as the forgery. In fact, MU-EUF-CMA adversary can return
(i∗,m∗, (cha∗, res∗)) even if A queried m∗ to the signing oracle with another index i ̸= i∗. More-
over, such behavior of adversaries is employed in the specific forger Ã of Theorem 1 to derive the
impossibility of MU-EUF-CMA in AGM+ROM.

This discussion suggests to us that we have to develop a new proof technique beyond the algebraic
reduction, or to find a new form of public keys other than that considered in Theorem 1 in order to
overcome our impossibility and prove MU-EUF-CMA of Sch with a tight reduction.

6 Concluding Remarks

For the security of Schnorr signature Sch, Fuchsbauer, Plouviez and Seurin [14] gave a tight reduction
that proves EUF-CMA in AGM+ROM from DL assumption, and Kiltz, Masny and Pan [28] con-
structed a tight reduction from EUF-CMA to MU-EUF-CMA in ROM. Then it is expected that we can
construct a tight reduction that proves MU-EUF-CMA of Sch in AGM+ROM from DL assumption.
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However, against the above expectation, we have given the impossibility of provingMU-EUF-CMA
of Sch in AGM+ROM only by combining their results in this paper. Our result is shown by focusing
on the algebraic reduction and a specific type of public keys given to an MU-EUF-CMA adversary
when a reduction invokes an adversary. We have also reviewed the previous result of [14]. We discuss
the reason why the security reduction of [14] proving EUF-CMA in AGM+ROM is difficult to be
applied to the multi-user case. Our result suggests that we have to develop a new proof technique
or to find a new form of public keys that does not fall into the condition considered in Theorem 1.
It remains open whether or not such a technique exists to overcome our impossibility barrier and
prove MU-EUF-CMA of Sch with a tight reduction.
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