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Abstract

Pairing is carried out by two steps, Miller loop and final exponentiation. In this manuscript,
the authors propose an efficient Miller loop for a pairing on the FK12 curve. A Hamming weight
and bit-length of loop parameter have a great effect on the computational cost of the Miller
loop. Optimal-ate pairing is used as the most efficient pairing on the FK12 curve currently. The
loop parameter of optimal-ate pairing is 6z + 2 where z is the integer to make the FK12 curve
parameter. Our method uses z which has a shorter bit-length than the previous optimal-ate
pairing as the loop parameter. Usually, z has a low Hamming weight to make final exponentia-
tion efficient. Therefore, the loop parameter in our method has a lower Hamming weight than
the loop parameter of the previous one in many cases. The authors evaluate our method by the
number of multiplications and execution time. As a result, the proposed algorithm leads to a
3.71% reduction in the number of multiplications and a 3.03% reduction in the execution time.
In addition, the authors implement other STNFS secure curves and evaluate these curves from
viewpoint of execution time.

Keywords: pairing based cryptography, STNFS, Miller loop

1 Introduction

A pairing on the elliptic curve is a special map which has two properties, bilinear and non-degenerate.
The pairing is used for innovative protocols such as ID-based cryptography and Attribute-Based
Encryption, however, the pairing computation is the bottleneck of implementation. Therefore, an
efficient pairing implementation is essential to use these innovative protocols practically. The safety
of pairing is based on the difficulties to solve a finite field discrete logarithm problem (FFDLP)
and an elliptic curve discrete logarithm problem (ECDLP). However, the Tower of Number Field
Sieve (TNFS) [1, 2] and special TNFS (STNFS) [3, 4] are improved in these years. These methods
solve the FFDLP which is one of the safeties of the pairing. Especially, STNFS is an attacking
method for the extension field that is used for pairing implementation. To against these attacking
methods, new parameters and new curves are proposed. In [5], STNFS secure curves are listed. The
Fotiadis-Konstantinou curve with embedding degree 12 (FK12) is one of the STNFS secure curves
and according to [6], it has high efficiency as well as the BLS12 curve which is known as one of the
best STNFS secure curves at the 128-bit security level. For the final exponentiation of pairing on
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the FK12 curve, Ikesaka et al. improved the algorithm to compute it in [7]. In this manuscript, we
improve the efficiency of pairing on the FK12 curve.

The pairing on an elliptic curve is carried out by two steps which are called the Miller loop and
the final exponentiation and there are many optimization methods corresponding to curves on which
pairings are defined. In this manuscript, the authors focus on the Miller loop. The efficiency of the
Miller loop depends on a loop parameter. In other words, a loop parameter is desired to have a low
Hamming weight and short bit-length for an efficient Miller loop. For pairing on various curves, ate
pairing and optimal-ate pairing are known as methods to make an efficient Miller loop. In [6], an
optimal-ate pairing on the FK12 curve is proposed. A loop parameter of the optimal-ate pairing on
the FK12 curve is 6z+2, where z is an integer to parameterize the elliptic curve. If we make a loop
parameter smaller, the Miller loop becomes more efficient. Therefore, in this manuscript, we aim to
make a more efficient pairing by using z as a loop parameter for the Miller loop.

In the case of pairing on the BN12 curve, a loop parameter of the optimal-ate pairing is 6z + 2
by applying [8]. To reduce the computational cost of the Miller loop for pairing on the BN12 curve
Nogami et al. proposed Xate pairing in [9]. This work proved that z which has a shorter bit-length
than 6z + 2 can be a loop parameter for pairing on the BN12 curves. Xate pairing is based on
relation with p, r, t where p, r, t are parameters of BN12 curve. Nogami et al. made Xate pairing
from ate pairing by using the relation with p, r, and t. There is the possibility to make smaller loop
parameters for pairing on the FK12 curve by applying the Xate pairing method.

For pairing on the FK12 curve, we find the relationship with p, r, t and construct a pairing
on FK12 that has the shortest Miller loop parameter z, which is called the Xate pairing on FK12
for convenience. To ensure the validity of the obtained pairings, the authors prove the bilinearity
of Xate pairing on the FK12 curve. The authors also estimate the calculation cost of optimal-ate
pairing and Xate pairing on FK12 based on the number of Fp-multiplication to compare the efficiency
of them. Finally, the authors implement them with C programming language and compare their
execution times. As a result, the proposed algorithm leads to a 3.71% reduction in the number of
multiplications and a 3.03% reduction in the execution time.

This paper is an extended version of the authors’ previous work [10] in CANDAR’22. The
previous version provided Xate pairing on the FK12 curve and evaluate their efficiency of them. In
[5], several curves are listed as STNFS secure curves such as the BLS12 curve and Cocks-Pinch curve
with embedding degree k = 6, 8. These curves are listed with parameters for the 128-bit security
level. Therefore, the authors implement these curves and measure the execution times of pairing
on these curves. In this manuscript, the authors show the computational evaluation of the STNFS
secures curve which includes the FK12 curve.

The rest of this manuscript is organized as follows. Sect. 2 provides a brief background on
this research. Sect. 3 provides related works, optimal-ate pairing on FK12 and ate-like pairing on
BN12. In Sect. 4, the authors propose Xate pairing on the FK12 curve and verify the effect of the
proposed method. Sect. 5 provides the evaluation for execution times of the STNFS secure curve
which includes the FK12 curve. Finally, Sect. 6 is the conclusion of this research.

2 Background

In this section, the authors describe the background of this research. In this manuscript, let p be
a prime number that is larger than 3 and Fp be a prime field with characteristic p. Let Fq be an
extension field of degree m over Fp where m is a positive integer and q = pm.

2.1 Elliptic Curves on Finite Fields

An elliptic curve over Fp is defined as follows:

E/Fp : y2 = x3 + ax+ b.

Note that a and b are elements over Fp and they satisfy 4a3 + 27b2 ̸= 0. Let E(Fp) be a set of
rational points on the curve, including the infinity point O. In this set, the elliptic curve addition
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between P and Q is defined where P and Q are arbitrary rational points on the curve. Then,
E(Fp) performs an elliptic curve additive group, and the infinity point O is the unity of the group.
For a positive integer s, a point multiplication endomorphism, scalar multiplication, is defined by
[s] : E(Fq)→ E(Fq), P 7→ P +P + · · ·+P which involves (s− 1)-times additions. In this paper, the
order of the E(Fp) is denoted by #E(Fp). The order of the E(Fp) is given with Frobenius trace t
as follows:

#E(Fp) = p+ 1− t.

Let r be a prime that is not equal to p and r | #E(Fp). The set of curves which parameterized
p(x), r(x), t(x) is called a family of curves, if the three parameters p, r, t are given by polynomials
p(x), r(x), t(x). The smallest positive integer k that satisfies r | (pk − 1) is called the embedding
degree. Let πp be the Frobenius endomorphism defined as follows:

πp : E → E : (x, y) 7→ (xp, yp),

where x and y are x-coordinate and y-coordinate of rational points on elliptic curve, respectively.
The Frobenius endomorphism can be computed with low computational costs, therefore using the
Frobenius endomorphism efficiently is one of the important points in reducing the pairing computa-
tional costs.

2.2 FK12 Curves

In this section, the authors explain FK12. The FK family is one of the STNFS-secure pairing-friendly
curves[11]. Moreover, the FK12 curve is one of the efficient curves for STNFS-secure pairing at the
128-bit security level.

The FK12 curve is parameterized by the following parameters.
p(x) = 1728x6 + 2160x5 + 1548x4

+756x3 + 240x2 + 54x+ 7,
r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1,
t(x) = −6x2 + 1.

To identify the curve, an integer z is needed that p(z) and r(z) are prime numbers respectively. In
this manuscript, the authors use z = −272−246−28−2 as a parameter for the pairing at the 128-bit
security level. We define base-field and a trace-zero subgroup of E[r] defined as follows:{

G1 = E[r] ∩ ker(πp − [1])
G2 = E[r] ∩ ker(πp − [p]).

2.3 Divisor

Let f be a rational function on E defined over Fq. Let ordP (f) count the multiplicity of f at a point
P , which is positive if f has a zero at P , and negative if f has a pole at P . Then, a divisor of a
rational function f is defined as follows:

div(f) =
∑

P∈E(Fq)

ordP (f)(P ).

The divisor div(f) denotes a multi-set of intersection points and their multiplicities of f and E.
For two rational functions f and g, there are properties such that div(f · g) = div(f) + div(g),
div(f/g) = div(f)− div(g), and only if f = c · g with c ∈ F∗

q , div(f) = div(g).
For example, let lP,Q be a line function on E defined over Fq, which intersects points P,Q ∈

E(Fq). Indeed, lP,Q intersects E in three points, which are denoted as P , Q, and −(P + Q), all
with multiplicity 1. Note that lP,Q also intersects E with multiplicity −3 at O, i.e., l has a pole of
order 3 at O. Thus, a divisor of lP,Q is denoted as div(lP,Q) = (P ) + (Q) + (−(P +Q))− 3(O). If
P = −Q, i.e., lP,Q is a vertical line and is especially denoted as vP , a divisor of vP is denoted as
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div(vP ) = (P ) + (−P ) + (O)− 3(O) = (P ) + (−P )− 2(O). Then, a divisor of function lP,Q · vP is
given by div(lP,Q ·vP ) = div(lP,Q)+div(vP ) = 2(P )+(−P )+(Q)+(−(P +Q))−5(O). Any divisor
of a rational function on E can be expressed by using a combination of divisors of line functions,
i.e., any rational function can be built by line functions.

For an integer s, there is a rational function fs,P on E defined over Fq with divisor div(fs,P ) =
s(P ) − ([s]P ) − (s − 1)(O), which plays an important role in the pairing. In [12], Miller gave an
iterative algorithm for constructing fs,P with loop length log2 s, which is called Miller’s algorithm.
The following lemmas show the properties associated with this function.

Lemma 1 For integers a, b and d > 0, the followings are true.

(a) fab,P = f b
a,P · fb,[a]P ,

(b) fa+b,P = fa,P · fb,P ·
la[P ],[b]P

v[a+b]P
.

For P ∈ G1 and Q ∈ G2, the following is true.

(c) fa,πd
p(Q)(P ) = fpd

a,Q(P ).

Proof. (a) and (b) can be proved easily by writing down the divisors for the functions involved.
It is enough to show the left and right sides have the same divisors.

(a)

div(fab,P ) = ab(P )− ([ab]P )− (ab− 1)(O)
= ab(P )− b([a]P )− (ab− b)O + b([a]P )− ([ab]P )− (b− 1)O
= b(a(P )− ([a]P )− (a− 1)O) + (b([a]P )− ([ab]P )− (b− 1)O)
= b · div(fa,P ) + div(fb,[a]P )

= div(f b
a,P ) + div(fb,[a]P )

= div(f b
a,P · fb,[a]P ).

(b)

div(fa+b,P ) = (a+ b)(P )− ([a+ b]P )− (a+ b− 1)(O)
= a(P )− ([a]P )− (a− 1)(O) + b(P )− ([b]P )

− (b− 1)(O) + ([a]P ) + ([b]P )− ([a+ b]P )− (O)
= (a(P )− ([a]P )− (a− 1)(O)) + (b(P )− ([b]P )− (b− 1)(O))

+ (([a]P ) + ([b]P ) + (−[a+ b]P )− 3(O))− (([a+ b]P ) + (−[a+ b]P )− 2(O))
= div(fa,P ) + div(fb,P ) + div(l[a]P,[b]P )− div(v[a+b]P )

= div

(
fa,P · fb,P ·

l[a]P,[b]P

v[a+b]P

)
.

(c) Let P ∈ ∀G1 and Q1, Q2, Q3 ∈ ∀G2. fpd

a,Q(P ) is constructed with lQ1,Q2
(P ) and vQ3

(P ).

Since the following relations hold, fa,πd
p(Q)(P ) = fpd

a,Q(P ) is true.

(i) lp
d

Q1,Q2
(P ) = lπd

p(Q1),πd
p(Q2)(P ),

(ii) vp
d

Q3
(P ) = vπd

p(Q3)(P ).

Proof of (i)
We note that xQ1 , yQ1 , xQ2 , yQ2 , xP , yP are x and y coordinates of Q1, Q2, P respectively.
Then, the line function lQ1,Q2(P ) is given as follows:

lQ1,Q2
(P ) = λ(xP − xQ1

)− (yP − yQ1
),
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where λ is as follows:

λ =


yQ2
− yQ1

xQ2
− xQ1

Q1 ̸= Q2, xQ1
̸= xQ2

3x2
Q1

2yQ1

Q1 = Q2, yQ1
̸= 0

 .

Then, we obtain the following relation:

lQ1,Q2
(P )p

d
=

pd∑
k=0

(n
k

)
{λ(xP − xQ1

)}k(−1)n−k(yP − yQ1
)n−k

= {λ(xP − xQ1
)}p

d
+

pd−1∑
k=1

(n
k

)
λ(xP − xQ1

)k(−1)n−k(yP − yQ1
)n−k + (−1)p

d
(yP − yQ1

)p
d

= {λ(xP − xQ1
)}p

d
+

pd−1∑
k=1

(n
k

)
λ(xP − xQ1

)k(−1)n−k(yP − yQ1
)n−k − (yP − yQ1

)p
d

∵ pd is odd

The second term of the above equation can be ignored because it is a multiple of p. Similarly
to the above, we obtain the following relation:

lQ1,Q2(P )p
d

= λpd

(xpd

P + (−1)p
d

· xpd

Q1
)− (yp

d

P + (−1)p
d

· yp
d

Q1
)

= λpd

(xP − xpd

Q1
)− (yP − yp

d

Q1
). ∵ xP , yP ∈ Fp

Furthermore, λpd

is similarly given as follows:

λpd

=



(
yQ2
− yQ1

xQ2
− xQ1

)pd

Q1 ̸= Q2, xQ1
̸= xQ2

(
3x2

Q1

2yQ1

)pd

Q1 = Q2, yQ1 ̸= 0



=


yp

d

Q2
− yp

d

Q1

xpd

Q2
− xpd

Q1

Q1 ̸= Q2, xQ1 ̸= xQ2

3(xpd

Q1
)2

2yp
d

Q1

Q1 = Q2, yQ1
̸= 0

 .

Therefore, we obtain the following relation:

lp
d

Q1,Q2
(P ) = lπd

p(Q1),πd
p(Q2)(P )

Proof of (ii)
We note that xQ3 , yQ3 are x and y coordinates of Q3 respectively. Then, the vertical function
vQ3(P ) is given as follows:

vQ3
(P ) = xP − xQ3

.

Then, we obtain the following relation similarly as proof of (i):

vp
d

Q3
(P ) = (xP − xQ3

)p
d

= xpd

P − xpd

Q3
.

= xP − xpd

Q3
. ∵ xP ∈ Fp
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Therefore, we obtain the following relation:

vp
d

Q3
(P ) = vπd

p(Q3)(P ).

□

Lemma 2 For an integer d > 0 and rational point Q ∈ G2, fpd,Q = fd·pd−1

p,Q .

Proof. We have following relation πp(Q) = [p]Q,where Q ∈ G2 from definition of G2. Therefore,
the following relation is obtained:

fp
pk,Q

= fp
pk,Q

= (fpk−1

p,Q · fpk−1,[p](Q))
p (applying Lemma 1 (a))

= (fpk−1

p,Q · fpk−1,πp(Q))
p (from definition of G2)

= fpk

p,Q · f
p
pk−1,πp(Q)

. (1)

Additionally case (a) in Lemma 1 with a = p leads to

fbp,Q = f b
p,Q · fb,[p]Q (Lemma 1 (a) with a = p)

= f b
p,Q · fb,πp(Q) (from definition of G2)

= f b
p,Q · f

p
b,Q. (from Lemma 1 (c)) (2)

Then, applying b = pd−1 to the above relation, we have the following result.

fpd,Q = fpd−1·p,Q

= fpd−1

p,Q · fp
pd−1,Q

(applying b = pd−1 to Eq (2))

= fpd−1

p,Q · fpd−1

p,Q · fp
pd−2,Q

(from Eq (1))

= fpd−1

p,Q · fpd−1

p,Q · fpd−1

p,Q · fp
pd−3,Q

(from Eq (1))

...

= fpd−1

p,Q · fpd−1

p,Q · · · fpd−1

p,Q · fp
p,Q (from Eq (1))

= fpd−1

p,Q · fpd−1

p,Q · · · · fpd−1

p,Q · fp
1,Q (from Eq (1))

= fpd−1

p,Q · fpd−1

p,Q · · · · fpd−1

p,Q︸ ︷︷ ︸
d − 1 times multiplications

= fd·pd−1

p,Q .

□

2.4 Pairings on Elliptic Curves

The pairing on elliptic curves is the map that has two inputs and one output as follows:

e : G1 ×G2 → GT .

One of the inputs is an element over G1 and the other one is an element over G2. G1 and G2 are
base-field and trace-zero subgroup of E[r] defined as follows:{

G1 = E[r] ∩ ker(πp − [1])
G2 = E[r] ∩ ker(πp − [p]),

The output is an element over GT where GT is a multiplicative subgroup in Fpk of order r. When
restricting the subgroup to G1 and G2, a pairing can be constructed by using Theorem 1.
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Theorem 1 Let λ ≡ p (mod r). Then, the following map defines a bilinear pairing on G2 ×G1.

(Q,P ) 7→ fλ,Q(P )
pk−1

r ,

where fλ,Q is a rational function on E with divisor div(fλ,Q) = λ(Q)− ([λ]Q)− (λ− 1)(O).
Proof. Please refer to [13]. □

Since r | #E(Fp), it is obvious that t − 1 ≡ p (mod r). This leads to a pairing, which is called an
ate pairing, defined by

αt−1 : (Q,P ) 7→ ft−1,Q(P )
pk−1

r .

The above equation shows that this ate pairing requires Miller’s algorithm with loop length log2(t−1).
Miller’s algorithm is shown in Alg. 1. In Alg. 1, an input s is called a loop parameter because the
number of iterations depends on the bit length of s. Therefore, the bit length of s is an important
factor to consider in the calculation cost of Miller’s loop. Additionally, the Hamming weight of s
is also an important factor because the count of ADD step and SUB step depends on Hamming
weight. To make Miller’s algorithm efficient, selecting a loop parameter that has a short bit-length
and low Hamming weight is necessary.

Algorithm 1 Miller’s algorithm

Require: s, P ∈ G1, Q ∈ G2;

Ensure: fs,Q(P );

f ← 1, T ← Q;

for i = ⌊log2(s)⌋ − 1 downto 1; do

f ← f2 · lT,T (P )

v[2]T (P )
;

T ← [2]T ; ▷ DBL

if s[i] = 1; then

f ← f · lT,Q(P )

vT+Q(P )
;

T ← T +Q; ▷ ADD

else if s[i] = −1; then
f ← f · lT,−Q(P )

vT−Q(P )
;

T ← T −Q; ▷ SUB

end if

end for

return f ;

More generally, the ate pairing corresponding to λ ≡ p (mod r) is one of the special cases of
pairings given by Theorem 2.

Theorem 2 Let k′ = ϕ(k) and
∑k′

i=0 cip
i ≡ 0 (mod r) where function ϕ is Euler’s phi function.

Then, the following map defines a bilinear pairing on G2 ×G1.

(P,Q) 7→

k′−1∏
i=0

fci,Q(P )p
i

·
k′−2∏
i=0

lsi+1Q,cipiQ(P )

vsiQ(P )


pk−1

r

,

where si =
∑k′−1

j=i cjp
j, lsi+1Q,cipiQ and vsiQ(P ) are line functions in Fq(E) with the divisors

div(lsi+1Q,cipiQ) = (si+1Q)+(cip
iQ)+(−(si+1+cip

i)Q)−3(O) and div(vsiQ(P )) = (siQ)+(−siQ)−
2(O), respectively.
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Proof. Please refer to [8]. □

A pairing constructed by Theorem 2 is called an ate-like pairing. One can find
∑k′

i=0 cip
i ≡ 0 (mod

r) which leads to a pairing with a short length of Miller’s algorithm. We say that a pairing with one
of the shortest lengths log2 r/ϕ(k) is an optimal ate pairing.

3 Related Works

In this section, the authors explain previous works related to our proposed method. The first
subsection shows an optimal-ate pairing on the FK12 curve by the previous work in [6]. The authors
explain the Xate pairing on the BN12 curve in the following subsection.

3.1 Optimal-Ate Pairing on FK12 Curve.

The loop parameter of the Miller loop for ate pairing on FK12 is t − 1 = −6z2. Therefore, an ate
pairing on the FK12 curve is defined as follows:

eate : G2 ×G1 → GT , (Q,P ) 7→ f−6z2,Q(P )
p12−1

r .

There is a relation 6z + 2 ≡ p + p2 + p3 (mod r) and this gives rise to an ate-like pairing by
Theorem 2 given as follows [6]:

eopt : G2 ×G1 → GT ,
(Q,P ) 7→ (f(6z+2),Q(P ) · l(6z+2)Q,−πp(Q)(P )·

l(6z+2)Q−πp(Q),−π2
p(Q)(P ))

p12−1
r .

For the efficient optimal ate pairing, a parameter should be low Hamming weight with z and 6z+2.

3.2 Ate-like Pairing on BN12 Curve

In this subsection, the authors explain ate-like pairings on the BN12 curve i.e., an optimal ate pairing
and Xate pairing.
The BN12 curve is parameterized by the following parameters. p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1,

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1,
t(x) = −6x2 + 1.

(3)

In the case of the BN curve, same as the FK curve, z is used as the parameter to identify only one
curve.

The loop parameter of the Miller loop for ate pairing on BN12 is t − 1 = −6z2. Therefore, an
ate pairing on the FK12 curve is defined as follows:

eate : G2 ×G1 → GT , (Q,P ) 7→ f−6z2,Q(P )
p12−1

r .

3.2.1 Optimal-Ate Pairing on BN12 Curve

According to [8], applying Theorem 2 with a relation p3 − p2 + p ≡ −6z − 2 (mod r),

eopt : G2 ×G1 → GT ,
(Q,P ) 7→ (f(6z+2),Q(P ) · l(6z+2)Q,πp(Q)(P )·

l(6z+2)Q+πp(Q),π2
p(Q)(P ))

p12−1
r .

For the efficient optimal ate pairing, a parameter should be low Hamming weight with z and 6z+2.
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3.2.2 Xate Pairing on BN12 Curve

In [9], Nogami et al proposed another ate-like pairing, which is called Xate pairing as follows:

exate : G2 ×G1 → GT ,

(Q,P ) 7→ (f1+p+p3+p10

z,Q (P ) · lzQ,zπp(Q)(P )·
lzπ3

p(Q),zπ10
p (Q)(P ) · lzQ+zπp(Q),zπ3

p(Q)+zπ10
p (Q)(P ))

p12−1
r .

The loop parameter of the Miller loop for Xate pairing on BN12 is z and it is shorter than the
optimal ate’s one. The Xate pairing is based on the relation 6z = 1 + p + p3 + p10 (mod r). The
Xate pairing doesn’t need Theorem 2 but applying Theorem 1 and transform.

4 Proposal

In this section, the authors propose a pairing on the FK12 curve with a shorter loop length log z of
Miller’s algorithm than the previous optimal ate pairing. We say the pairing as the Xate pairing on
FK12 since the basic approach is based on the Xate pairing on BN12 curve given in [9].

4.1 Xate Pairing on FK12 Curve

The concrete equation is described in Theorem 3 with the following proof.

Theorem 3 The following map defines a bilinear pairing on G2 ×G1.

ez : (Q,P ) 7→(
f1+p7+p9+p10

z,Q · lπ9
p([z]Q),π10

p ([z]Q) · lπ7
p([z]Q),π9

p([z]Q)+π10
p ([z]Q)·

l[z]Q,π7
p([z]Q)+π9

p([z]Q)+π10
p ([z]Q)

) pk−1
r

.

For proof of Theorem 3, we need Lemmas 3 and 4.

Lemma 3 The following maps define bilinear pairings on G2 ×G1.

(a) (P,Q) 7→ fp,Q(P )
pk−1

r ,

(b) For an integer a ̸= 0 such that a ∤ r, (P,Q) 7→ fp,[a]Q(P )
pk−1

r .

Proof of Lemma 3. (a) This is one of the cases of Theorem 1. (b) Since (a) is true, we can write

fp,[a]Q(P )
pk−1

r = fp,Q(P )a
pk−1

r . This clearly leads to the map being a bilinear pairing. □

Lemma 4 Let f and g be certain rational functions on E such that (Q,P ) 7→ f(Q,P )
pk−1

r and

(Q,P ) 7→ g(Q,P )
pk−1

r being bilinear maps on G2 × G1. Then, for any integers m,n ̸= 0, e :

(P,Q) 7→ (f(Q,P )m · g(Q,P )n)
pk−1

r is a bilinear map on G2 ×G1.

Proof of Lemma 4. It is enough to show that e([a]Q, [b]P ) = e(Q,P )ab for any integers a, b ̸= 0. We

can easily see that

e([a]Q, [b]P ) = (f([a]Q, [b]P )m · g([a]Q, [b]P )n)
pk−1

r

= f([a]Q, [b]P )m
pk−1

r · g([a]Q, [b]P )n
pk−1

r

= f(Q,P )abm
pk−1

r · g(Q,P )abn
pk−1

r

= (f(Q,P )m · g(Q,P )n)ab
pk−1

r

= e(Q,P )ab.
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□

Proof of Theorem 3. The parameters p = p(z) and r = r(z) for FK12 satisfy −6z ≡ 1 + p7 + p9 +
p10 (mod r). Thus, it is obtained that −6z2 ≡ z · (1 + p7 + p9 + p10) ≡ p (mod r). According to
Theorem 1, this allows us to have the following definition of a bilinear pairing.

(Q,P ) 7→ fz·(1+p7+p9+p10),Q(P )
pk−1

r .

When applying Lemma 1 and Lemma 2,

fz·(1+p7+p9+p10),Q

= f1+p7+p9+p10

z,Q · f1+p7+p9+p10,[z]Q,

f1+p7+p9+p10,[z]Q

= f1,[z]Q · fp7+p9+p10,[z]Q ·
l[z]Q,[z·(p7+p9+p10)]Q

v[z·(1+p7+p9+p10)]Q
,

fp7+p9+p10,[z]Q

= f7·p6

p,[z]Q · fp9+p10,[z]Q ·
l[z·p7]Q,[z·(p9+p10)]Q

v[z·(p7+p9+p10)]Q
,

fp9+p10,[z]Q

= f9·p8

p,[z]Q · f
10·p9

p,[z]Q ·
l[z·p9]Q,[z·p10]P

v[z·(p9+p10)]P
.

The above shows that

fz·(1+p7+p9+p10),Q

= f1+p7+p9+p10

z,Q · f1,[z]Q · f7·p6

p,[z]Q · f
9·p8

p,[z]Q · f
10·p9

p,[z]Q

·
l[z·p9]Q,[z·p10]P

v[z·(p9+p10)]P
·
l[z·p7]Q,[z·(p9+p10)]Q

v[z·(p7+p9+p10)]Q
·
l[z]Q,[z·(p7+p9+p10)]Q

v[z·(1+p7+p9+p10)]Q

According to Lemma 3, (P,Q) 7→ fp,[z]Q is a bilinear pairing. Since here we have two bilinear
pairings that can be applied to Lemma 4, the following equation defines a bilinear pairing.

(Q,P ) 7→ (fz·(1+p7+p9+p10),Q(P ) · f−7·p6

p,[z]Q(P )·

fp,[z]Q(P )−9·p8

· fp,[z]Q(P )−10·p9

)
pk−1

r

(Q,P ) =

(
f1+p7+p9+p10

z,Q · f1,[z]Q ·
l[z·p9]Q,[z·p10]P

v[z·(p9+p10)]P

·
l[z·p7]Q,[z·(p9+p10)]Q

v[z·(p7+p9+p10)]Q
·
l[z]Q,[z·(p7+p9+p10)]Q

v[z·(1+p7+p9+p10)]Q

) pk−1
r

.

When eliminating the terms that the final exponentiation brings to 1 ∈ Fpk ,

(Q,P ) 7→
(
f1+p7+p9+p10

z,Q · l[z·p9]Q,[z·p10]P ·

l[z·p7]Q,[z·(p9+p10)]Q · l[z]Q,[z·(p7+p9+p10)]Q

) pk−1
r .

Applying the Frobenius mapping πp on E, we finally have the equation given in Theorem 3. □
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4.2 Cost Estimation and Implementation

The authors construct the following tower of extension field for pairing on the FK12 curve.

Fp2 = Fp[α]/(α
2 + 1),

Fp4 = Fp2 [β]/(β2 − (α+ 1)),

Fp12 = Fp4 [γ]/(γ3 − β).

The authors estimate the computational cost based on multiplication m1 in Fp. Since 6z + 2 has
75 as bit-length and 8 as Hamming weight where the parameter z = −272 − 246 − 28 − 2, ADD step
and DBL step in Miller loop take 80m1 and 99m1 respectively where m1 is Fp-multiplication and
SUB step in the Miller loop is presumed to be the same cost as ADD step. For optimal ate pairing
on the FK12 curve, 7 ADD or SUB steps and 75 DBL steps are required to compute f(6z+2),Q(P ).
Additionally, we have to compute πp(Q),π2

p(Q), and 2 SUB steps. These 2 SUB steps are required to
compute l(6z+2)Q,−πp(Q)(P ) and l(6z+2)Q−πp(Q),−π2

p(Q)(P ). Please note that the last SUB step can

reduce operations practically and as a result, it takes only 55m1. πp(Q),π2
p(Q) take 6m1 respectively.

Then, the total cost of the Miller loop for optimal ate pairing on the FK12 curve is obtained as
follows:

(costopt) = 7× (80m1) + 75× (99m1) + 80m1 + 55m1 + 6m1 + 6m1

= 8132m1

In the case of Xate pairing, 3 SUB steps and 72 DBL steps are required to compute fz,Q(P )
because z has 72 as bit-length and 4 as Hamming weight. Additionally, we have to compute

f1+p7+p9+p10

z,Q , [z · p7]Q, [z · p9]Q, [z · p10]Q, and 3 ADD steps. Three Frobenius endomorphism

and three Fp12 -multiplications are required to compute f1+p7+p9+p10

z,Q from fz,Q(P ) and total cost of

them is 207m1. Addtionally, it takes 51m1 to compute [z ·p7]Q, [z ·p9]Q, and [z ·p10]Q. Additional
3 ADD steps are required to compute l[z·p9]Q,[z·p10]P , l[z·p7]Q,[z·(p9+p10)]Q and l[z]Q,[z·(p7+p9+p10)]Q.
Note that the last ADD step can reduce operations as we mentioned in the case of optimal ate pair-
ing. Then, the total cost of the Miller loop for optimal ate pairing on the FK12 curve is obtained
as follows:

(costxate) = 3× (80m1) + 72× (99m1) + 207m1 + 51m1 + 2× (80m1) + 55m1

= 7841m1

In Table 1, it is shown that the proposed algorithm leads to 3.71% reduction of the calculation of
the Miller loop from the view of the number of multiplications in Fp.

Table 1: The calculation costs of the Miller loopfor the pairing at the 128-bit security level.
Calculation costs

Previous [6] 8132m1

This work 7841m1

The authors implemented the Xate pairing and optimal-ate pairing and compared the execution
time of the Miller loop. Table 2 shows the experimental environment and Table 3 shows the results
of the execution time. Note that these results are remeasured for this paper from [10]. In the
experiment, the authors measured 1000000 trials of the execution time of the Miller loop and obtained
the average execution time. From the viewpoint of execution time, this work leads to a 3.03%
reduction in the calculation of the Miller loop.
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Table 2: Experimental environment
PC

CPU 11th Gen Intel(R) Core(TM) i9-11900K @ 3.50GHz
OS Ubuntu 20.04

gcc ver 9.4.0
Optimize option O2

Memory 64GB

Table 3: Experimental results
Execution time [ms]

Previous [6] 0.887
This work 0.861

5 Evaluation for Execution Times of the STNFS Secure Curves

In this section, the authors show the evaluation of pairings on the STNFS secure curve. The authors
implement pairing on BLS12 curve , BN12 curve, Cocks-Pinch curve with k = 6, 8, FK12 curve,
KSS16 and the cyclotomic family of curves with k = 10, 11, 13, 14. The following subsections show
the parameters of these curves.

5.1 BLS12 Curve

The BLS12 curve[14] is parameterized by the following parameters. p(x) = (x− 1)2(x4 − x2 + 1)/3 + x
r(x) = Φ12(x) = x4 − x2 + 1,
t(x) = x+ 1,

where ΦN (·) is the N -th cyclotomic polynomial. To specify the curve, the authors use

x = −274 − 273 − 263 − 257 − 250 − 217 − 20 (4)

as a parameter for a 128-bit security level in this experiment.

5.2 BN12 Curve

The BN12 curve is parameterized Eq. 3. To specify the curve, the authors use

x = 2110 + 236 + 20 (5)

as a parameter for a 128-bit security level in this experiment.

5.3 Cocks-Pinch Curve

Guillevic et al. constructed pairing-friendly curves with embedding degree k = 5, 6, 7, 8 by using
Cocks-Pinch method in [15] and they are called Cocks-Pinch curves. In this paper, the authors
implemented Cocks-Pinch curves with embedding degree k = 6, 8. To parameterize Cocks-Pinch
curve, we define Et and Ẽ such that E(Fpk)[r] ≃ Ẽ(Fpk/d)[r]. Et is the quadratic twist of an

elliptic curve E and Ẽ is the d-th twist of E. Cocks-Pinch curve with embedding degree k = 6 is
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parameterized with the following parameters. The elliptic curve E is defined as y2 = x3 − 1 defined
over Fp where

p =0x9401ff90f28bffb0c610fb10bf9e0fefd59211629a7991563c5e468

d43ec9cfe1549fd59c20ab5b9a7cda7f27a0067b8303eeb4b31555cf4

f24050ed155555cd7fa7a5f8aaaaaaad47ede1a6aaaaaaaab69e6dcb

and

r = 0xe0ffffffffffffc400000000000003ff10000000000000200000000000000001

In addition, the following relation holds. Note that pN is a prime of N bits.

#E(Fp) = 22 · p414 · r,
#Ẽ(Fp) = 3 · p414 · r,
#Et(Fp) = 22 · 3 · 7 · p665,
#Et(Fp) = 13 · 19 · p664.

These parameters can be expressed with hy and x as follows:
p(x) = {(9h2

y + 6hy + 4)x4 + (−18h2
y − 6hy − 12)x3+

(27h2
y + 18hy + 16)x2 + (−18h2

y − 12hy)x+ (9h2
y + 12hy + 4)}/12

r(x) = Φ6(x) = x2 − x+ 1,
t(x) = −x2 + 2x.

To fix the curve, the authors use the following integers x and hy.

hy = 280 − 270 − 266 − 214 + 25

x = 2128 − 2124 − 269

Cocks-Pinch curve with embedding degree k = 8 is parameterized similarly.

p =0xbb9dfd549299f1c803ddd5d7c05e7cc0373d9b1ac15b

47aa5aa84626f33e58fe66943943049031ae4ca1d2719b

3a84fa363bcd2539a5cd02c6f4b6b645a58c1085e14411

and

r = 0xff0060739e18d7594a978b0ab6ae4ce3dbfd52a9d00197603fffdf0000000101

In addition, the following relation holds.

#E(Fp) = 22 · 32 · 5 · 41 · p275 · r,
#Ẽ(Fp2) = 2 · 89 · p824 · r,
#Et(Fp) = 24 · p540.

5.4 KSS16 Curve

The KSS family is one of the families of curves proposed by Kachisa, Schaefer, and Scott in [16].
There are five embedding degrees for KSS curves, {16, 18, 32, 26, 40}. In this paper, the authors
refer to KSS curves defined over Fq with embedding degree k = 16 (KSS16 curve). The KSS16 curve
is parameterized as follows:

p(x) = (x10 + 2x9 + 5x8 + 48x6 + 152x5+
240x4 + 625x2 + 2398x+ 3125)/980,

r(x) = (x8 + 48x4x+ 625)/61250,
t(x) = (2x5 + 41x+ 35)/35.

Let z be an integer such that p(z) and r(z) are prime. The necessary condition for z is z = 25 or 45
(mod 75) and ρ = (log2p(z))/log2r(z) ≃ 1.25.
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5.5 Cyclotomic Family of Curves

In [5], Guillevic et al. proposed the cyclotomic family of pairing-friendly curves with embedding
degree k = 10, 11, 13, 14 with the Brezing-Weng method. The curve with k = 10, D = 15 and
ρ = 1.75 is parameterized as follows.


p(x) = (4x14 + 4x13 + x12 − 12x11 − 12x10 − 7x9

+11x8 + 17x7 + 15x6 − 3x5 − 11x4 + x3 − 2x2 + 3x+ 6)/15,
r(x) = Φ30(x)

= x8 + x7 − x5 − x4 − x3 + x+ 1,
t(x) = x3 + 1.

The authors used x = 232 − 226 − 217 + 210 − 1 for this curve.

The curve with k = 11, D = 11 and ρ = 1.60 is parameterized as follows.


p(x) = (x16 + 2x15 + x14 − 12x− 3x11 − x5 + 9x4 − x3 + x+ 3)/11,
r(x) = Φ11(x)

= x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1,
t(x) = x4 + 1.

The authors used x = −226 + 221 + 219 − 211 − 29 − 20 as a parameter to specify the curve.

The curve with k = 13, D = 3 and ρ = 1.17 is parameterized as follows.


p(x) = (x28 + x27 + x26 + x15 − 2x14 + x13 + x2 − 2x+ 1)/3,
r(x) = Φ39(x)

= x24 − x23 + x21 − x20 + x18 − x17 + x15 − x14

+x12 − x10 + x9 − x7 + x6 − x4 + x3 − x+ 1,
t(x) = x3 + 1.

The authors used x = 211 + 28 − 26 − 24 to fix the curve.

The curve with k = 14, D = 3 and ρ = 1.33 is parameterized as follows.


p(x) = (x16 + 4x15 + x14 − x9 + 2x8 − x7 + x2 − 2x+ 1)/3,
r(x) = Φ42(x)

= x12 + x11 − x9 − x8 + x6 − x4 − x3 + x+ 1,
t(x) = x8 − x+ 1.

To fix the curve, the authors used x = 221 + 219 + 210 − 26.

5.6 Experimental

The authors implement the STNFS secure curves with the parameters mentioned before and mea-
sured execution times of the Miller loop and final exponentiation. For pairing on the FK12 curves,
we implement two pairings. The first one is based on [6]. The second one’s Miller loop is used Xate
pairing which I mentioned in this paper and [7] is used for final exponentiation. The experimental
environment is the same in Table 2. Table. 4 shows the execution time of pairings on the STNFS
secure curve.
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Table 4: Execution time of pairings on STNFS secure curve
Curves,(k,D, ρ) Miller’s alg [ms] Final exp [ms] Total [ms]

BLS12 (12, 3, 1.50) 0.872 0.979 1.851
BN12 (12, 3, 1.00) 1.359 0.777 2.135
Cocks-Pinch (6, 3, 2.63) 0.910 0.844 1.755
Cocks-Pinch (8, 4, 2.13) 0.717 1.133 1.850
Curve-10 Cyclo (10, 15, 1.75) 1.135 0.973 2.109
Curve-11 Cyclo (11, 11, 1.60) 2.126 2.049 4.176
Curve-13 Cyclo (13, 3, 1.17) 2.700 3.264 5.964
Curve-14 Cyclo (14, 3, 1.33) 1.414 1.469 2.883
FK12 [6] (12, 3, 1.50) 0.887 1.095 1.982
FK12 (Ours) (12, 3, 1.50) 0.861 0.942 1.803
KSS16 (16, 1, 1.25) 0.774 1.946 2.719

Pairing on the Cocks-Pinch curve with embedding degree 6 has the fastest execution time and
pairing on the FK12 curve with the proposed method has the second fastest execution time. However,
we have to note that the efficiency of pairing depends on parameters which make p, r and t in other
words depends on x. In this experiment, the BLS12 curve is made by a parameter x whose Hamming
weight is 7 and if we use the parameter whose Hamming weight is lighter, the execution time of the
BLS12 curve can be faster.

6 Conclusion

The authors proposed and evaluated the Xate pairing on the FK12 curve which is known as the
STNFS secure curve. By using this method, a loop parameter of the Miller loop has a shorter
bit-length and lighter hamming weight than the optimal-ate’s one. Moreover, the authors get a
3.03% reduction of the execution time to compute the Miller loop for pairing on the FK12 curve.
In addition, to evaluate the pairing on the FK12 curve, the authors implement and compare other
efficient STNFS curves such as the BLS12 curve and Cocks-Pinch curves with k = 6 and 8. The
FK12 curve is not the fastest one however, the execution is the second fastest in this experiment. In
future works, the authors would like to compare more curves which are made by other parameters
x. And the authors would like to keep considering Xate pairing on the FK12 curve since the Xate
pairing on the FK12 curves possibly depends on a parameter x.
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