
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 13, Number 2, pages 273–286, July 2023

Memory Analysis Based Estimation of Hook Point by Virtual Machine Monitor

Masaya Sato�1, Taku Omori�2

�1 Faculty of Computer Science and Systems Engineering,
�2 Graduate School of Computer Science and Systems Engineering,

Okayama Prefectural University
Soja, Okayama, 719-1197, Japan

Toshihiro Yamauchi�3, Hideo Taniguchi�4

�3 Faculty of Environmental, Life, Natural Science and Technology,
�4 Graduate School of Environmental, Life, Natural Science and Technology,

Okayama University
Okayama, Okayama, 700-8530, Japan

Received: February 15, 2023
Revised: May 5, 2023
Accepted: June 1, 2023

Communicated by Toru Nakanishi

Abstract

The behavior of virtual machine (VM) programs are monitored by virtual machine monitors
(VMMs) for security purposes. System calls are frequently used as a monitoring point. To
monitor the system calls, the VMM inserts a breakpoint, called a hook point, into the mem-
ory of the monitored VM. The hook points are determined based on experimental knowledge.
However, reading the source codes of operating systems (OSes) requires specialized knowledge.
In addition, the appropriate hook point differs among OSes and OS versions. Analyzing the
source code in each OS update is impractical. Searching for the appropriate hook point for
various OSes is also difficult. To address these problems, we propose a method for estimating
the hook point using a memory analysis technique. The proposed method acquires the memory
of the monitored VM and then searches for an appropriate instruction appropriate to hook.
The search instructions depend on the processor architecture. In addition, we also proposed a
method for searching the appropriate instruction using a single step execution. This version re-
duces the cost for searching the instructions and improve robustness for various Linux versions.
The experimental results showed that the proposed method precisely estimates the hook point
for various OS versions and OSes. In addition, the overhead of the proposed method is small,
considering the boot time of the monitored VM.

Keywords: System Call, Virtual Machine Monitor, Operating System

1 Introduction

A virtual machine monitor (VMM) is used for the security monitoring of virtual machines (VMs). A
VMM has the privilege of accessing the memory used for the VM, as well as intermediate hardware
access. Therefore, VMMs are suitable for the security monitoring of VMs. Analysis of malicious

273



Hook Point Estimation by Virtual Machine Monitor

software (i.e., malware) is a representative application of VMs. To analyze malware, separating
infected and analysis environments is important because sophisticated malware can attack the anal-
ysis environment [7]. Because VMs are separated from each other, malware infection of a VM does
not affect on other VMs or VMMs. Therefore, VMs are suitable for malware analysis. Security
monitoring is also used to detect and prevent malicious activities on VMs [5, 2]. VMs are used
as infrastructure for cloud computing; therefore, detecting and preventing malicious behavior from
outside of the VMs is required. Security monitoring using a VMM enables us to passively or actively
monitor the behavior of programs from outside of the VM.

System call monitoring is a representative method of actively monitoring VMs [3, 12, 6, 9, 14].
We can collect valuable information from system calls. For example, sequences of system calls are
used to detect malicious processes acting on VMs [6, 9, 14]. The use of a breakpoint is a method for
monitoring system calls using a VMM. There are two types of breakpoints: software- and hardware-
based. In this study, we focused on hardware breakpoints. To set a hardware breakpoint, the VMM
must store the address of the VM in a debug register. By setting the breakpoint, the VMM can
monitor the system call invocation by capturing the debug exception that occurs at the address.
This point is called the hook point. The hook point must be set to an appropriate address such
that valuable information may be collected from the VM. Therefore, determining the address for
the hook point requires specialized knowledge.

To monitor a system call, a hook point is set in the Linux kernel. One study used a system call
entry point for monitoring [9]. However, this is insufficient for acquiring process information because
the stack is not switched to the kernel stack at the point. A previous study [10] analyzed the source
code of an operating system (OS) to search for appropriate instructions for the breakpoint. There
are two methods for determining the hook points. The first method involves setting a hook point
with a static address. The other method involves setting a hook point with an offset from the entry
point of the system call. However, these methods have two problems: frequent updates of the Linux
kernel and address space layout randomization. The Linux kernel is updated frequently (almost
every day); therefore, analyzing Linux kernels with every update is unrealistic. Moreover, recent
Linux kernels have a security feature called kernel address space layout randomization (KASLR) [1].
KASLR randomizes the starting address of the Linux kernel for each boot. This means that the
first method for setting the hook point is useless. Therefore, automation to determine a hook point
is a challenging problem.

In this study, we propose a method to estimate a hook point and automatically set a breakpoint
to the estimated address for system call detection. First, the VMM identifies the system call entry
point by observing the value of the IA32_LSTAR model specific register (MSR) on the target VM. The
VMM then copies the memory portion from the system call entry point and searches for machine
codes suited for a hook point. Finally, the VMM stores the found address in a debug register to set
a hardware breakpoint. We surveyed past Linux kernel versions and found that only three types
of machine code are appropriate for the hook point. Therefore, the proposed method can precisely
set the hook points in various Linux kernel versions without source code analysis. The evaluation
results showed that the proposed method precisely sets the hook point in three versions of the Linux
kernel, even with KASLR. In addition, the performance overhead incurred by the proposed method
is confirmed to be negligible in practical environments.

In addition to the above study, we extended the proposed method to reduce the cost to analyze
the source codes. The searching part of the proposed method consists of two phases. The first phase
is for searching an instruction for stack switching (the first target instruction). The second phase
is for searching the instruction following the first target instruction (the second target instruction).
The VMM estimates the second target as a hook point in the proposed method. However, the
searching phase is based on the heuristics what an instruction following the stack switching. The
first target is determined based on the structure of operating system but the policy for searching
the second target is based on the results of our survey on various versions of Linux’s source coeds.
This means the proposed method lacks robustness for the future Linux versions and other operating
systems. To address this problem, we employed a single step execution for searching the target
instruction following stack switching. In this paper, we detail the design and experimental results
of the extended version of the proposed method.

274



International Journal of Networking and Computing

The contributions made in this paper are as follows:

1. We proposed a method estimate a hook point for a system call monitoring by a VMM. The hook
point is determined by developers’ knowledge in related work. Our proposal helps developers
determining the hook point because the cost for analyzing source codes and memory content
is reduced. We proposed two methods for estimating the hook point: memory-analysis based
and single-step based. The memory-analysis based method can set the hook point based on
the knowledge of instructions used on the VM. This helps developers setting breakpoints in
accordance with their purposes. The single-step based method reduces the cost for analyze the
source codes and memory content of an OS on the VM. The single step mode is more versatile
on various OS versions and OSes.

2. We evaluated the availability of the proposed method and performance overhead. The exper-
imental results show that the proposed method is available on almost all versions of Linux on
x86-64 CPUs. Measurement results show the performance overhead of the proposed method
caused once at a boot time and small enough.

2 Related Work

2.1 Security Monitoring of Virtual Machines

VMMs are used for security monitoring of VMs [16, 5, 2, 3, 12, 6, 9, 14, 7]. VM is used for malware
analysis [3, 7], VM introspection [5, 12, 9, 11, 2], and VM protection [16, 17]. There is various
targets for monitoring including memory, file, and behavior of malicious processes. However, almost
all events are triggered by system call on the VM, thus, system call has an important role on all
of the above purposes. Even though the system call monitoring causes large performance overhead,
transparent monitoring is required. Inserting agents into VMs are efficient, and easy to deploy.
However, the agent-based approach is prone to attack and easily detected by malware or attackers.
For this reason, the system-call based approach is commonly used for transparency and security of
the monitoring mechanism.

2.2 System Call Detection using Breakpoints

A hardware breakpoint using debug registers is a method used to detect the invocation of system
calls on a VM from a VMM. Although there are various host-based tools for collecting system call
traces, including strace and auditd, we focus on system call detection from outside of the VM.
Figure 1 shows how the VMM hooks the invocation of a system call on a VM using a hardware
breakpoint. This method inserts a hardware breakpoint into a system call routine before the system
call service routines (e.g., open, read, and write) are called. In addition, the VMM modifies the
VM exit control field of data region of the virtual machine control structure to cause VM exit by
a debug exception. A system call invocation on the VM causes a debug exception, and VM exit
occurs in this situation. The VMM detects the system call invocation by capturing the VM exit.

The hook point varies for different purposes. Figure 2 shows an overview of system call execution
in Linux. The system call routine can be divided into three parts: an entry point, a call for system
call service routines, and an exit point. A hook at the entry point is suitable for collecting system call
numbers and arguments. To collect granular information (e.g., process ID and files opened by the
process), a hook at the call of the system call service routines or the exit is suitable [11]. Analyzing
the process information requires the address of the kernel stack; therefore, hooking at the address
after the instruction to switch the stack is required. In the SYSENTER instruction for 32-bit OSes, the
stack is automatically switched to a kernel stack. The VMM can access process information without
a workaround. However, in the x86-64 environment, SYSCALL does not switch the stack; therefore,
the breakpoint must be set after the stack is switched. If the researcher needs to monitor changes in
the process’ data while executing the system call, monitoring the exit point is required. Anomalies
can be detected by comparing the data between the entry and the exit points.

275



Hook Point Estimation by Virtual Machine Monitor

VMM

Guest OS

AP

Debug 
Register

Set

VMM

Guest OS

AP

Debug 
Register

(A) Setting a hardware 

breakpoint

(B) System call hook by 

capturing a debug exception

Debug
Exception

VM VM

System Call

Figure 1: Hooking system call by the hardware breakpoint.

In each phase, the address for setting a breakpoint must be determined. Two methods have been
used to determine the hook point. The first method statically determines the address of the hook
point by analyzing the source code of the Linux kernel. However, the address of the hook point
changes if the Linux kernel is updated and modified by users. In addition, randomization of the
starting address of the Linux kernel using KASLR accordingly changes the address of the system
call routine. Another method uses an offset from the entry point. Changes in Linux kernels cause
changes of the address of the system call routines. However, the offset is not frequently changed in
each Linux version. KASLR does not affect the offset, because randomization affects the starting
address of the Linux kernel. In addition, the entry point is available through the register for the
SYSCALL instruction. Therefore, using the offset to determine the address of the hook point is
preferable.

2.3 Memory Forensics

Memory forensics, a technique for investigating artifacts of malware or malicious activities from
memory images or live memory, is crucial in security monitoring and malware analysis [15, 13, 8].
Volatility [15] is a tool for extracting variables from a memory image. This tool is frequently used for
malware analysis but symbol information for each OS version is required to extract variables from
memory images. Autoprofile [8] addresses this problem by combining the memory image and source
codes. Rekall’s approach [13] is similar to Autoprofile. Memory forensics is basically conducted on
variables managed by the kernel on the VM. Our aim is to analyze the instructions from the VM’s
memory thus the target for analysis is different from these researches. In addition, we aim to analyze
the VM’s memory not with the source codes but with the features of the processor’s architecture.

Feng et al. proposed cross-version memory analysis for automatically constructing a profile for
memory forensics [4]. Cross-versions memory analysis compares the memory of an old and a new
version of a software. They focus on instruction accessing data structure required for constructing
profiles for memory forensics. Those instructions’ operands are statically determined at a compile
time. Then, the operands of those instructions are abstracted in their profile. If the same instruction
patterns are detected but the operands are different in the old and the new versions, the operands of
the new versions are used for the new profile. The approach is similar to our proposal that analyzes
and searches characteristic instructions from the VM’s memory. However, their target is to find such
characteristic instructions. In contrast, we aim to find instructions appropriate for hook point.

276



International Journal of Networking and Computing

User program
System call routine
(System call handler)

System call
service routineSYSCALL

SYSRET

Kernel spaceUser space

Exit point

Entry point

Function call for a system
call service routine

Switched to the
kernel stack

Figure 2: Overview of the system call execution flow in Linux.

3 Estimation of Hook Point

3.1 Challenges

There are two challenges encountered when determining the hook point:

1. Application to various OSes and OS versions
The implementation of system call is different in various OSes. In addition, system call routines
are changed in past Linux kernels, which means that the hook point may differ in future Linux
versions. Adopting the system call detection for various OSes requires reading of each OS
source code. Frequent updates for a Linux kernel make it difficult for developers to statically
determine a hook point. Changes in Linux kernels caused by Linux distributions may change
the address of the system call routine; therefore, the same problem can be observed.

2. Dynamic setting of a hook point to handle randomization by KASLR
Current Linux kernels randomize address spaces. In this situation, statically determined hook
points are useless because the starting address of the Linux kernel changes in each deployment
to the memory at the boot time. KASLR randomizes the starting address only once at the
boot time; therefore, the dynamic setting of a hook point solves the problem resulting from
the application of KASLR.

The method for determining the hook point using the offset from the entry point addresses
Challenge 2; however, Challenge 1 remains to be overcome. As the code for the system call routine
changes, the offset from the entry point changes. In addition, the method using the offset requires
the analysis of the Linux kernel. This analysis requires specialized knowledge about the structure
of the OS and processor architecture; therefore, we also aim to reduce the cost of determining the
hook point.

3.2 Assumed Environment

We assume that the system call is invoked through the SYSCALL instruction in x86-64 processors.
The target operating system in our study was a 64-bit Linux system running on a VM. The VMs were
constructed using the VT-x hardware virtualization extensions. System call information, including
system call numbers, arguments, process information, and kernel information, must be collected by
the VMM. This means that the VMM must hook the system call after the stack is switched to the
kernel stack. We do not rely on a memory forensic framework like volatility framework because it

277



Hook Point Estimation by Virtual Machine Monitor

requires symbol information of the analysis target OS [15]. Relying on tools reduces the cost for
analysis but dependency on other tools increases. Reducing such dependencies improves versatility
for various OSes and processor architectures.

3.3 Overview

To estimate the hook point, our proposal conducted on the following procedures.

1. Identification of the entry point to the system call

2. Search of the first target instruction (stack switching)

3. Search of the second target instruction (estimation target)

(a) Memory analysis based method

(b) Single-step based method

To set the hook point into the system call, the VMM identifies the entry point at first. Then, the
VMM copies the memory portion of the VM and searches for an instruction used for stack switching.
To collect detail information of each process, process control block of the VM’s process is required.
A pointer to the process control block is stored in the kernel stack. Thus, we need to set the hook
point after the stack is switched to the kernel stack. For this reason, the second target instruction
is the instruction following the first target instruction. The second target is the estimation target
on this research. We proposed two methods for the third procedure: the memory-analysis method
and the single-step method.

3.4 Identification of the Entry Point to the System Call

The proposed method uses the value stored in the IA32_LSTAR MSR as the entry point for the
system call. There are two methods for obtaining the entry point: calculating the static address by
analyzing the symbol table or reading the value from the IA32_LSTAR MSR. We decided to employ
the second method because the address in the symbol table is useless when KASLR is applied. By
contrast, the IA32_LSTAR MSR contains the address after KASLR randomizes the starting point of
the kernel. Consequently, the proposed method does not suffer from difficulties related to KASLR.

3.5 Memory Analysis

Figure 3 shows the flow for estimating the hook point using memory analysis. The details of each
step are as follows:

1. A program on the target VM executes an instruction that triggers a VM exit. A VM exit
occurs, and the VMM determines whether the VM exit is the first occurrence after a value is
stored in IA32_LSTAR MSR.

2. The VMM obtains the address of the system call entry point from the IA32_LSTAR MSR.

3. The VMM copies the memory from the VM. The starting address for copying is the entry
point. The copying unit size is determined in a later experiment.

4. The VMM searches for the target machine codes from the copied memory. If any target
machine code is found in the copied memory, the VMM stops copying and moves to the next
part. If no target machine code is found, the VMM repeats the processing from Step 3).

5. The VMM sets the found address as the hook point, and then returns the processing to the
target VM.

278



International Journal of Networking and Computing

VM VMM

(1) Write to MSR

Is the first VM exit
after the value is

stored to
IA32_LSTAR?

(2) Obtain the address of
the system call entry point

(3) Copy memory from
the VM

(4) Search for the target machine code

Is the target
machine code

found?

(5) Set the found address
as a hook point

VM exit

VM entry

No

Yes

Yes

No

Figure 3: Flow for determining the target machine code from the VM’s memory.

The target machine code in Step (4) is determined using our survey. We surveyed Linux versions
from 2.6.12 to 5.15.1 to determine what machine code is suitable for setting the hook point. Linux
2.6.12 is the oldest, and 5.15.1 is the latest version available on the GitHub repository for our survey.
The search for the target machine code consists of two phases. The first phase is to search for the
machine code used for switching the stack. This phase involves preparation for searching for the
hook points. The second phase searches for the next machine code that is commonly used in various
Linux versions.

The survey policy is as follows:

� The target machine code appears after the machine code switches from the user stack to the
kernel stack.

� The target machine code commonly appears in various kernel versions.

� The target machine code appears only once in the area from the entry point to the starting
address of the system call service routine.

In our survey, we found that system call flow changed twice in the surveyed Linux version.
Therefore, there were three system-call patterns. Considering the results of our survey, we decided
to employ the target machine code for the first phase as movq which stores an address to the stack
pointer for all versions and for the second phase as movq for Linux 2.6.12–4.0 and pushq $__USER_DS

for 4.1–5.15.1. In summary, the proposed method estimates the hook point by searching movq and

279



Hook Point Estimation by Virtual Machine Monitor

pushq $__USER_DS from the memory copied by the target VM. Therefore, the proposed method is
applicable to various Linux versions.

3.6 Searching the instruction following stack switching

Memory analysis method in Section 3.5 is applicable to various Linux versions, however, the found
instruction will change in future Linux versions. In addition, these instructions are differed in other
OSes. Thus, the method in Section 3.5 requires continuous analysis of source codes and memory in
future Linux versions.

The main reason of the above problems is that the instruction length of x86 processors is not
always the same in each instruction. Thus, the offset from the first to the second target instruction
is not always the same. The first target instruction is versatile to various OSes and OS versions
because the first target instruction is determined based on the characteristics of the processor’s
architecture. However, the second target instruction is not always the same in future OS versions. If
the second target instruction changed in future versions, we need to analyze the source code of those
versions. In addition, the instruction is differed in each OS. This degrades the robustness of the
proposed method to future Linux versions and other OSes. For example, in NetBSD and OpenBSD,
other instructions are used. Thus, the proposed method is not applicable to those OSes.

To overcome this problem, we extended the proposed method using a single step execution (single-
step method). The single step execution is a function of processors. If the single step execution is
turned on, the execution of each instruction causes an exception. The VMM can catch the exception
with the memory address causing the exception. For this reason, the VMM can acquire the memory
address of an instruction following the first target instruction.

Additionally, we employed a monitor trap flag to improve the transparency of the proposed
method. Basically, the single step execution is available through a trap flag. However, the trap flag
is visible to the guest OSes through register access. Malicious programs change their behavior if they
found themselves monitored by the VMM. In addition, the monitoring through the trap flag will be
disabled by modifying the register value by malware on the VM. Thus, using a trap flag degrades
the transparency and security of the monitoring. In contrast, the monitor trap flag and its exception
are not visible to the guest OS but visible to the VMM. Therefore, we used the monitor trap flag
to implement the single-step method. Note that the monitor trap flag is a function implemented in
x86-64 processor; therefore, the single-step method is depending on x86 processors.

Figure 4 shows the flow of the single-step method using a monitor trap flag. The detection
of the first target instruction is the same as the normal method. After detected the first target
instruction, the VMM sets the breakpoint into the found address and detects the execution of that
instruction. Then, the VMM sets the monitor trap flag and returns processing to the VM. The
execution of the next instruction on the VM causes a VM exit and the VMM gets the address of the
following instruction. Finally, the VMM sets the current address as the hook point and returns the
processing to the VM. This flow determines the hook point without knowledge of the instructions
used in the VM. Thus, the single-step method can set the breakpoint without knowing what an
instruction is following the stack switching. Memory analysis is required only once to find the first
target instruction (stack switching).

Additionally, the flow in Figure 4 is executed only once when the first system call is invoked on
the VM. Moreover, the additional flow does not require memory copy. Thus, the overhead caused
by the single-step method is estimated as twice the time for a VM exit (almost one microsecond or
less).

3.7 Discussion

3.7.1 Comparison of methods for detecting the second target

We proposed two methods for detecting the second target address in Sections 3.5 and 3.6. Table 1
shows strengths and weaknesses of the methods. As shown in the table, the memory-analysis method
is versatile from the viewpoint of processors architectures because it does not rely on a feature of
single-stepping. However, the memory-analysis method is prone to detect a wrong instruction as a

280



International Journal of Networking and Computing

VM VMM

(1) Execution of the first 
target instruction (stack 

switching)

(2) Set Monitor Trap Flag

(4) Get the address

VM exit (Debug Register)

VM entry

(3) Execution of the next 
instruction

VM exit (Monitor Trap Flag)

(5) Set the address as a 
hook point

VM entry

Figure 4: Flow of finding the address of the second target instruction using monitor trap flag.

Table 1: Comparison of two methods for detecting the second target
Memory-analysis method Single-step method

Strengths (1) Applicable without a single-
stepping feature of processors

(1) Effective when stack switching is
detected

(2) Smaller performance overhead
Weaknesses (1) Requires prior knowledge for

the instruction following the stack
switching

(1) Requires a single-stepping feature
of processors

(2) Possibilities of false positives and
false negatives are greater than the
single-step method

(2) Single-stepping causes an addi-
tional performance overhead

hook point (detailed in Section 3.7.2). In contrast, the single-step method is more resistant to this
problem. The performance overhead of the single-step method is greater than the memory-analysis
method.

To compare the performance overhead, we conducted an experiment to measure the time for
estimating a hook point. The experimental result show that the memory-analysis method is faster
than the single-step method and the performance overhead caused by the single-stepping is about 6
microseconds. For better performance, the memory-analysis method exceeds the single-step method;
however, the overhead is negligible because the hook point estimation works only once at a boot
time. In contrast, false positives are more problematic and should be reduced.

For this reason, the single-step method is superior to the memory analysis method if the single-
stepping feature is available on the processor. If the single-stepping feature is not available, the
memory-analysis method still remains as a method to estimate a hook point.

281



Hook Point Estimation by Virtual Machine Monitor

Table 2: Instructions used for stack switching.
OS Instructions for stack switching
FreeBSD 13.2-RELEASE movq PCPU(RSP0), %rsp

NetBSD 9.3-RELEASE leaq SP(0), %rsp

OpenBSD 7.3 xchgq %rax, %rsp

3.7.2 False Positives and False Negatives

In our study, a false positive is associated with wrongly detecting an instruction unrelated to stack
switching as a hook point. We found that the first target machine code is movq which stores an
address to the stack pointer and the second target machine codes were movq and pushq $__USER_DS.

For the first target, movq is common but accessing the stack pointer is limited. Thus, a false
positive on the first target is very limited. Additionally, the basic concept behind the proposed
method is effective. Although Linux employs other instructions to switch the stack, we can specify
the target code by gradually narrowing the range for detection.

For the second target, movq and pushq are common and are used in other operations. In our
survey of various Linux versions, detecting the above codes resulted in no false positive on current
Linux versions. However, there is no guarantee that the proposed method will be effective for the
future Linux versions. Therefore, we need to keep monitoring of newer Linux versions to utilize the
memory-analysis based method.

A false negative in our study indicates that the proposed method cannot detect any hook point.
This case is rare because movq and pushq are common instructions. We believe that this situation
will not change until the processor employs other instruction sets. Changes in the instructions used
for switching stacks affect the effectiveness of the proposed method. However, the proposed method
can be used to determine the instructions used for stack switching.

3.7.3 Applicability to Other OSes

The proposed method utilizes the characteristics of the processor’ architecture. An OS kernel must
switch the stack from a user stack to a kernel stack to isolate its execution from the user space.
Because this design is common to various OSes, the proposed method is applicable to other OSes.
From the above viewpoint, the proposed method is applicable when an OS uses a specific instruction
for stack switching.

We surveyed FreeBSD, NetBSD, and OpenBSD to confirm applicability of the proposed method.
Table 2 shows OSes and instructions used for stack switching in system call handlers. As shown
in the table, different OSes employ different instructions for stack switching. Only the instruction
of FreeBSD is the same as Linux, and NetBSD and OpenBSD use different instructions for stack
switching. Consequently, our proposal can be applied to OSes other than Linux and FreeBSD by
extending the target machine codes to support other instructions accessing the stack pointer.

3.7.4 Different Architectures

It is possible to extend the proposed method to other processor architectures (e.g., ARM and RISC-
V). The proposed method can be applied to other architectures (1) if the entry point of system call
can be detected by a VMM and (2) if the architecture requires an OS kernel to switch the stack
when the running mode of a program changes from a user mode to a kernel mode. If the processors
automatically switches the stack, there is no need for using the proposed method.

To explore this, we surveyed other processor architectures. Table 3 summarizes instruction for
system calls, entry point of system calls, and necessity for stack switching. Interrupt Vector Tabel
(IVT) and MSR can be detected by a VMM through registers; thus, the condition (1) is fulfilled in
all architectures. However, architectures other than RISC-V and x86-64 automatically switches the
stack; thus, the condition (2) is fulfilled only on RISC-V and x86-64. Consequently, we found our
proposal is applicable to RISC-V processors other than x86-64.

282



International Journal of Networking and Computing

Table 3: Processor architectures and applicability of the proposed method. Our proposal can be
applied when both (1) and (2) are Yes.

Architecture Instruction (1) A VMM can (2) Is a kernel Is our proposal
detect the entry responsible for applicable?
point of syscall? stack switching?

Arm swi Yes (IVT1) No No
Arm64 svc Yes (IVT) No No
MIPS syscall Yes (IVT) No No
RISC-V ecall Yes (IVT) Yes Yes
x86-32 sysenter Yes (MSR2) No No
x86-64 syscall Yes (MSR) Yes Yes

Table 4: Environment for evaluation.
CPU Intel Core i7-6700 (3.40 GHz, 4 cores)

VCPU Domain-0: 1
Measurement VM: 1

Memory Domain-0: 8 GB
Measurement VM: 4 GB

Table 5: Experimental results for detecting invocation of a system call on various Linux versions.
Detected Detected by the

Linux version Detected? (Offset) with KASLR? single-step method?
3.2 ✓(85) ✓ ✓

4.19.18 ✓(37) ✓ ✓
5.15.1 ✓(41) ✓ ✓

On the other hand, other processor architectures are inappropriate to utilize our proposals. For
example, the x86-32 architecture automatically switches the stack from a user stack to a kernel
stack. In this case, the proposed method does not play a significant role.

4 Evaluation

4.1 Purpose and Evaluation Environment

We evaluated the applicability and performance overhead of the proposed method. To verify the
applicability of the proposed method to various versions of Linux, we estimated a hook point for
three versions of Linux. In addition, we evaluated the applicability of the single-step method to the
Linux versions. Furthermore, we evaluated the performance impact of the proposed method on the
boot time.

Table 4 shows the evaluation environment. We used Xen 4.13.0 as a VMM and Linux 3.2, 4.19.18,
and 5.15.1 as guest OSes. Through our analysis, we found that there were only three types of system
call routines. Therefore, we applied the proposed method to these three Linux kernel versions with
different system call routines. Performance evaluation was conducted with Linux 4.19.18 as a guest
OS on the measurement VM.

4.2 Applicability to Various Linux Versions

We conducted experiments to verify the effectiveness of the proposed method using various Linux
versions. We also tested the applicability of the proposed method using KASLR.

283



Hook Point Estimation by Virtual Machine Monitor

14.6
11.2

8.8 7.4 7.0 6.2 6.4 7.6 8.4 7.6

1.15

1.15

1.15
1.15 1.15

1.15 1.15
1.15 0.55 1.15

0.25

0.25

0.25
0.25 0.25

0.25 0.25
0.25 0.25 0.25

0

5

10

15

20

8 16 32 64 128 256 512 1024 2048 4096

Ts

Ti

Tc

: Time for setting the breakpoint

: Time for searching a target instruction

: Time for copying memory from guest

Pr
oc

es
sin

g 
tim

e 
(in

 m
ic

ro
se

co
nd

s)
.

Copying unit size (in bytes).

Figure 5: Overhead of the proposed method.

Table 5 presents the experimental results. We conducted these experiments with Linux versions
3.2, 4.19.18, and 5.15.1. We surveyed Linux kernels from 2.6.12 to 5.15.1 and found that three types
of system call routines are used. The three Linux kernels indicated above have different system call
routines; therefore, we tested the proposed method using these kernels. As shown in the results,
the proposed method correctly estimated the hook points and successfully detected invocations of a
system call in each Linux version, even when KASLR was applied.

Table 5 lists the offset of the address from the entry point of the system call for each Linux
version. The offset differs for each Linux version; however, the proposed method determines the
target instruction precisely. In Linux 3.2, the machine code that was found is movq. In Linux
4.19.18 and 5.15.1, the machine code was pushq $__USER_DS. We confirmed that the above two
patterns do not appear in the system call routine. Therefore, there were no false positives in these
Linux versions. However, the instruction for searching may differ in future Linux versions. Therefore,
we plan to continue this analysis for future Linux versions to make the proposed method applicable
in future versions.

We also conducted the experiment to confirm the efficiency of the single-step method to the
above Linux versions. The experimental results show the single-step mode is applicable to the Linux
versions without knowing what an instruction is following the movq.

4.3 Performance Evaluation

We measured the time required to write a value to the MSR and evaluated the performance overhead
incurred by the proposed method. To measure the time required to estimate the hook point, we
measured the time required for writing a value to the MSR. The proposed method is triggered when
a VM exit occurs for the first time during OS’s boot time. In our study, the instruction that causes
VM exit on the Linux kernels is MSR_WRITE. Therefore, we evaluated the time required to write a
value to the MSR. We measured the time required for copying memory from the guest, searching for
a target instruction, and setting the hook point. The other part of the proposed method does not
require additional processing time for the unmodified Xen. To measure the performance overhead,
the processing time originating from the unmodified Xen was excluded.

Figure 5 shows the measurement results. Tc, Ti, and Ts are the times for copying memory from
the guest, searching for a target instruction, and setting the hook point, respectively. Because the
required memory size to be copied cannot be determined beforehand, the proposed method repeats
memory copies with some sizes. Therefore, we measured the overhead for various copying unit sizes.

We confirmed that the processing time for copying memory from the guest accounted for 80%
to 91% of the overhead using the proposed method. The offset of the target instruction from the
system call entry point is 37, and the number of copy changes ranges from five, three, two, and one

284



International Journal of Networking and Computing

for copying unit sizes of 8, 16, 32, and 64, respectively. The results are similar when the copying
unit size is greater than 64 bytes, because the copy occurs once. In this experiment, the overhead
was the smallest when the copying unit size was 256 bytes.

In addition to the above experiment, we compared the overhead with the boot time. The proposed
method was triggered only when a VM exit occurred for the first time. This implies that the
performance overhead affects the boot time. In our experiment, the booting time of a VM with
Linux 4.19.18 is approximately 3.75 s. Therefore, the performance overhead of the proposed method
is negligible.

5 Conclusions

We proposed a method to estimate the hook point for system call detection using a virtual machine
monitor. The proposed method helps developers and researchers determine the memory address
suitable for the hook point. By copying the memory from the target VM and searching for the
characteristic machine code, the VMM can automatically set a breakpoint. We determined the
target codes based on the architectural characteristics of the investigated system; therefore, our
approach can be applied to various versions of Linux.

In addition, we proposed a method using single step execution for determining the target code.
The memory-analysis method searches for two codes for setting the hook point. However, the single-
step method only requires one code (which is basically movq for stack switching) and the following
codes is automatically determined by single step execution. This version still requires the knowledge
of the codes but reduces the cost for analyzing the source codes and machine codes in future OS
versions.

The evaluation results show that the proposed method is applicable to various Linux versions,
even when KASLR is applied. The single-step method is also applicable to the Linux versions. Per-
formance evaluations showed that the overhead of the proposed method is less than 16 microseconds.
The evaluation result also shows the overhead is negligible compared to the VM’s boot time.

The experimental results show that the basic concept of the proposed method will be applied
for detecting other valuable instructions for developers and analysts. In this paper, we employed
the proposed method to detect the hook point for system call detection. In our future work, we will
extend the proposed method to other hook points, OSes, and architectures.

Acknowledgment

This work was partially supported by KAKENHI Grant Numbers JP19H04109 and JP22H03592.

References

[1] K. Cook. Kernel address space layout randomization. In Linux Security Summit, 2013.

[2] T. Dangl, B. Taubmann, and H.P. Reiser. Rapidvmi: Fast and multi-core aware active virtual
machine introspection. In The 16th International Conference on Availability, Reliability and
Security 2021, pages 1–10, 2021.

[3] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware analysis via hardware virtual-
ization extensions. In 15th ACM Conference on Computer and Communications Security, pages
51–62, 2008.

[4] Q. Feng, A. Prakash, M. Wang, C. Carmony, and H. Yin. Origen: Automatic extraction of
offset-revealing instructions for cross-version memory analysis. In Proceedings of the 11th ACM
on Asia conference on computer and communications security, pages 11–22, 2016.

[5] T. Garfinkel and M. Rosenblum. A virtual machine introspection based architecture for intrusion
detection. Ndss 2003, 3(2003):191–206, 2003.

285



Hook Point Estimation by Virtual Machine Monitor

[6] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection and monitoring through vmm-
based “out-of-the-box” semantic view reconstruction. ACM Trans. Inf. Syst. Secur., 13(12,
Issue 2):1–28, 2010.

[7] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach. Dynamic malware analysis in the modern
era—a state of the art survey. ACM Computing Surveys (CSUR), 52(5):1–48, 2019.

[8] F. Pagani and D. Balzarotti. Autoprofile: Towards automated profile generation for memory
analysis. ACM Transactions on Privacy and Security, 25(1):1–26, 2021.

[9] J. Pfoh, C. Schneider, and C. Eckert. Nitro: Hardware-based system call tracing for virtual
machines. In Proc. International Workshop on Security, pages 96–112, 2011.

[10] M. Sato, H. Taniguchi, and R. Nakamura. Virtual machine monitor-based hiding method
for access to debug registers. In 2020 Eighth International Symposium on Computing and
Networking (CANDAR), pages 209–214, 2020.

[11] S. Sentano, B. Taubmann, and H.P. Reiser. Virtual machine introspection based ssh honeypot.
In Proc. 4th Workshop on Security in Highly Connected IT Systems (SHCIS ’17), pages 13–18,
2017.

[12] M. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-vm monitoring using hardware virtual-
ization. In Proc. 16th ACM Conference on Computer and Communications Security, pages
477–487, 2009.

[13] A. Soca la and M. Cohen. Automatic profile generation for live linux memory analysis. Digital
Investigation, 16:S11–S24, 2016.

[14] J. Soni, N. Prabakar, and H. Upadhyay. Behavioral analysis of system call sequences using
lstm seq-seq, cosine similarity and jaccard similarity for real-time anomaly detection. In 2019
International Conference on Computational Science and Computational Intelligence (CSCI),
pages 214–219, 2019.

[15] volatilityfoundation. volatility. https://github.com/volatilityfoundation/volatility.

[16] J. Wang, M. Yu, B. Li, Z. Qi, and H. Guan. Hypervisor-based protection of sensitive files
in a compromised system. In Proceedings of the 27th Annual ACM Symposium on Applied
Computing, SAC ’12, page 1765–1770, New York, NY, USA, 2012. Association for Computing
Machinery.

[17] D. Zhan, L. Ye, B. Fang, X. Du, and Z. Xu. Protecting critical files using target-based vir-
tual machine introspection approach. IEICE TRANSACTIONS on Information and Systems,
100(10):2307–2318, 2017.

286


