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Abstract

For an undirected graph G = (V,E) and a k-non-negative integer vector p = (p1, . . . , pk), a
mapping l : V → N∪{0} is called an L(p)-labeling of G if |l(u)− l(v)| ≥ pd for any two distinct
vertices u, v ∈ V with distance d, and the maximum value of {l(v) | v ∈ V } is called the span of l.
Originally, L(p)-labeling of G for p = (2, 1) is introduced in the context of frequency assignment
in radio networks, where ‘close’ transmitters must receive different frequencies and ‘very close’
transmitters must receive frequencies that are at least two frequencies apart so that they can
avoid interference. L(p)-Labeling is the problem of finding the minimum span λp among L(p)-
labelings of G, which is NP-hard for every non-zero p. L(p)-Labeling is well studied for specific
p’s; in particular, many (exact or approximation) algorithms for general graphs or restricted
classes of graphs are proposed for p = (2, 1) or more generally p = (p, q). Unfortunately, most
algorithms strongly depend on the values of p, and it is not apparent to extend algorithms for
p to ones for another p′ in general. In this paper, we give a simple polynomial-time reduction
of L(p)-Labeling on graphs with a small diameter to Metric (Path) TSP, which enables
us to use numerous results on (Metric) TSP. On the practical side, we can utilize various
high-performance heuristics for TSP, such as Concordo and LKH, to solve our problem. On the
theoretical side, we can see that the problem for any p under this framework is 1.5-approximable,
and it can be solved by the Held-Karp algorithm in O(2nn2) time, where n is the number of
vertices, and so on.
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1 Introduction

For an undirected graph G with n vertices and m edges, and a k-nonnegative integer vector p =
(p1, . . . , pk), a mapping l : V → N ∪ {0} is an L(p)-labeling of G if |l(u) − l(v)| ≥ pd for any two
distinct vertices u, v ∈ V with distance d, the maximum value of {l(v) | v ∈ V } is called the span
of l. The notion of L(p)-labeling for p = (2, 1) can be seen in Hale [18] and Roberts [30] in the
context of frequency assignment in radio networks, where ‘close’ transmitters must receive different
frequencies and ‘very close’ transmitters must receive frequencies that are at least two frequencies
apart so that they can avoid interference. L(p)-Labeling is the problem of finding the minimum
span λp among L(p)-labelings of G, which is NP-hard for every non-zero p. Since L(p)-Labeling
for k = 1 is the ordinary coloring problem, the cases of k ≥ 2 are essential to study L(p)-Labeling
under its name. In particular, the problem for p = (p1, p2) = (p, q) is called the L(p, q)-Labeling
problem and intensively and extensively studied.

Among infinite settings of (p, q), probably L(2, 1)-Labeling is most studied. It is shown that
L(2, 1)-Labeling is NP-hard even for restricted classes of graphs, such as planar graphs, bipar-
tite graphs, chordal graphs [6], graphs with diameter 2 [17], and graphs of tree-width 2 [13]. In
contrast, only a few graph classes are known to be solvable in polynomial time. For example,
L(2, 1)-Labeling can be solved in polynomial time for paths, cycles, wheels [17], co-graphs, and
trees [8, 21]. These algorithms are straightforward (paths, cycles, wheels) or strongly depend on
the properties of graphs (co-graphs and trees). In fact, the NP-hardness for graphs of tree-width
2 implies that the polynomial-time solvability for trees (graphs of tree-width 1) depends on not a
tree-like structure but the tree structure itself; it might be difficult to extend or generalize algorithms
for trees to superclasses of trees. Note that the algorithm of [21] for trees is quite involved though
its running time is linear. Furthermore, L(p, q)-Labeling is NP-hard even for trees, if p and q do
not have a common divisor.

Another direction of research for intractable problems is to design exact exponential-time algo-
rithms whose bases or exponents are small. For example, Junosza-Szaniawski et al. [25] present an
algorithm for L(2, 1)-Labeling whose running time is O(2.6488n), which is currently the fastest.
This algorithm uses the exponential size of memories. The current fastest exact algorithm with
polynomial space for L(2, 1)-Labeling is proposed by Junosza-Szaniawski et al. [26], and it runs
in O(7.4922n) time. These algorithms are specialized in L(2, 1)-Labeling. As more generalized
algorithms, Cygan and Kowalik presented an exact algorithm for a more general labeling problem,
called channel assignment problem. It is based on the fast zeta transform in combination with the
inclusion-exclusion principle [11]. The algorithm solves L(p, q)-Labeling in O∗((max{p, q} + 1)n)
time and L(2, 1)-Labeling in O∗(3n) time, where polynomial factors are omitted in O∗ notation.

In summary, L(p)-Labeling is well studied in the fields of algorithm design, but most of the
developed algorithms are tailored to p and graph classes, and it is hard to generalize them.

1.1 Our contribution

In this paper, we address the L(p)-Labeling problem on graphs with a small diameter, which is
known to be NP-hard. Our approach is simple; we just solve the problem via TSP. Namely, our
main contribution is an O(nm)-time reduction from L(p)-Labeling for graph G with diameter at
most the dimension of p, say k, to Metric Path Traveling Salesman Problem (TSP) under
the assumption that pmax ≤ 2pmin, where pmin = min{p1, . . . , pk} and pmax = max{p1, . . . , pk}.
Note that the most well-studied setting p = (2, 1) satisfies this condition. Although this reduction
is available only for graphs with a small diameter and p satisfying the above condition, it enables
us to use numerous results of (Metric) TSP.

On the practical side, since many practical algorithms for (Metric) TSP have been developed,
they can be applied to solve L(p)-Labeling for graphs with a small diameter with a minor mod-
ification. For example, the Lin-Kernighan heuristic for symmetric TSP [29] and its variants are
known to have outstanding performance, and there are several excellent implementations [1, 24].
Such implementations can be used to solve our problems as engines practically.

On the theoretical side, the reduction leads to several algorithms with performance guarantees,
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such as an O(2nn2)-time algorithm and a 1.5-approximation algorithm for L(p)-Labeling if the
diameter of an input graph is at most k and if pmax ≤ 2pmin. Both of the results imply that a small
diameter and the setting p may make the problem easier; it is only known that L(p, q)-Labeling for
general graphs can be solved in O∗((max{p, q}+1)n) time and be O(min{∆,

√
n+p/q})-approximable

in polynomial time, where ∆ is maximum degree. Particularly, in case of k = 2, our reduction reduces
the problem (i.e, L(p, q)-Labeling) to Path TSP with 2-valued edge weights, which can be solved
via Partition into Paths. Since Partition into Path is known to be fixed-parameter tractable
for modular-width [16], so is our problem. On the other hand, we point out that L(p, q)-Labeling
for graphs with diameter 2 is W[1]-hard for clique-width, which could show a frontier between fixed
parameter (in)tractability.

In passing, we can show that L(1, . . . , 1)-Labeling on general graphs is fixed-parameter tractable
for modular-width. Although the parameterized complexity of L(p, q)-Labeling for modular-width
remains open in general, L(p)-Labeling becomes pmax-approximable in FPT time for modular-
width by the FPT result for L(1, . . . , 1)-Labeling.

Finally, we investigate the polynomial-time solvability of L(2, 1)-Labeling on subclasses of split
graphs whose diameters are at most 3. Though the problem is NP-complete on split graphs of
diameter 2 [6], we show that it can be solved in linear time on block split graphs and threshold
graphs.

1.2 Related work

1.2.1 Distance-Constrained labeling

The original notion of distance-constrained labeling can be seen in Hale [18] and Roberts [30] in the
context of frequency assignment. In frequency assignment, ‘close’ transmitters must receive different
frequencies, and ‘very close’ transmitters must receive frequencies that are at least two frequencies
apart to avoid interference. Then, Griggs and Yeh formally introduced the notion of L(p, q)-labeling
in [17]. Since p and q could be any natural numbers, there are infinite settings of L(p, q)-labeling,
but L(2, 1)-labeling is most studied. One of the reasons is the context of more general frequency
assignment because the setting explained above is interpreted as L(2, 1)-labeling. In the context of
frequency assignment, it is natural to consider the setting of p ≥ q. Also, q = 1 might be natural
because it decides the unit. Another reason why L(2, 1) is most popular is that the setting of p = 2
and q = 1 seems the most natural and fundamental among the settings represented by L(p, q)-
labeling. Indeed, L(1, 1)-labeling of G is equivalent to the ordinary coloring on the square of G; we
do not need to study L(1, 1)-labeling itself in this name.

As introduced in the previous sections, the L(p, q)-labeling problem or specifically the L(2, 1)-
labeling problem is NP-hard even for restricted classes of graphs. Thus polynomial-time algorithms
for particular classes of graphs and exact exponential-time algorithms are developed. We list here
other results than those mentioned before. As for approximation, L(p, q)-Labeling is NP-hard to

approximate within factor better than n
1
2−ε. On the other hand, there is an asymptotically tight

O(min{∆,
√
n + p/q})-approximation algorithm where ∆ is the maximum degree of G [19].

For the parameterized complexity, the L(2, 1)-Labeling problem is fixed-parameter tractable for
vertex cover number [14], clique-width plus maximum degree, or twin cover number plus maximum
clique size [20]. Although it is less critical to study L(1, . . . , 1)-Labeling (we write L(1)-Labeling
hereafter) in this name, L(1)-Labeling can be used for approximating L(p)-Labeling; L(1)-Labeling
yields pmax-approximation of L(p)-Labeling, pmax = maxd∈[k] pd. For this reason, we are interested
in the complexity of L(1)-Labeling or Coloring of powers of graphs. It is known that L(1, 1)-
Labeling is W[1]-hard for the tree-width [14], even though the ordinary Coloring is FPT, but
L(1)-Labeling is in XP for clique-width [31], which implies that it is in XP for tree-width. Hanaka
et al. also show that L(1, 1)-Labeling is fixed-parameter tractable when parameterized by twin
cover number [20].

The generalized setting, L(p), is also studied but is less popular. Bertossi and Pinotti present
approximation algorithms of L(p)-Labeling for trees and interval graphs [5]. L(p)-Labeling is
fixed-parameter tractable for the neighborhood diversity, pmax, plus k [12]. Further related work for
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L(p)-Labeling can be found in the following surveys [7, 22].

1.2.2 (Metric Path) TSP

Traveling Salesman Problem (TSP) might be the most studied combinatorial optimization
problem from both practical and theoretical points of view. Thus, we here list only a few of the
results.

On the practical side, an enormous number of works have been devoted to developing efficient
algorithms for TSP for a long time. For example, as mentioned before, implementations of the Lin-
Kernighan type algorithms [29] have outstanding performance, and it was reported even in 2003 [3]
that an implementation of the chained Lin-Kernighan can constantly find near-optimal solutions
for instances with 100,000 cities or more. Moreover, some implementations, such as Concorde and
LKH [1, 2], are available on the Web. Developments are continuing, and improvements are still
reported [33,37].

On the theoretical side, TSP has been studied from various aspects. For example, the Held-Karp
algorithm with time complexity O∗(2n) was proposed in 1962 [4, 23], and the existence of an exact
algorithm with time complexity O∗(cn) for some c < 2 is still open [35]. For approximation, the
general symmetric TSP has no approximation algorithm unless P=NP, whereas the Metric TSP,
which is a restricted version of TSP whose edge-weights satisfy the triangle inequality, is known to be
1.5-approximable by the Christofides algorithm [9]. Recently, this bound has been slightly improved
by a randomized algorithm whose approximation ratio is at most 1.5 − 10−36 [27]. Note that our
reduction is not to Metric TSP but to Metric Path TSP. Naive applications of algorithms
for Metric TSP to Metric Path TSP do not preserve approximation guarantees, though it is
shown that α-approximation algorithm for TSP can be used to obtain an (α + ε)-approximation
solution of Path TSP for arbitrary ε > 0 [34]. For Metric Path TSP, Zenklusen recently gives
a deterministic 1.5-approximation algorithm [36]. By combining the results on [27] and [34], a
randomized algorithm can obtain an approximate solution whose ratio is slightly better than 1.5.

2 Preliminaries

2.1 Definitions and notations

We assume basic knowledge of graph theory. Throughout the paper, let G = (V,E) be an undirected
and connected graph where n = |V | and m = |E|. The distance between two vertices u, v in G
is defined by the shortest path length between u and v in G and denoted by distG(u, v). The
diameter of G is defined by diam (G) = maxu,v∈V distG(u, v). For a vertex v ∈ V , let NG(v) =
{u ∈ V | {u, v} ∈ E} denote the set of adjacent vertices of v in G. The degree of a vertex v in G
is defined by |NG(v)|. For a vertex subset S ⊆ V , G[S] is defined as the subgraph induced by S,
that is, G[S] = (S,E[S]), where E[S] = {{u, v} ∈ E | {u, v} ⊆ S}. The complement graph of G is
denoted by G, i.e., G = (V, Ē), where Ē =

(
V
2

)
\E. Also, the k-th power of graph G, denoted by Gk,

is defined by the vertex set V and the edge set Ek, where {u, v} ∈ Ek if and only if distG(u, v) ≤ k.
Given a positive integer k, we define [k] = {1, 2, . . . , k}. Also, given nonnegative integer k and
k′(≥ k), we define [k, k′] = {k, k + 1, . . . , k′}. For an integer vector p = (p1, . . . , pk), we define
pmin = min{p1, . . . , pk} and pmax = max{p1, . . . , pk}. Let 1 = (1, . . . , 1) be a vector such that each
element is 1. A subset S of the vertex set V is called a clique of G if every two vertices in S are
adjacent in G. A subset S of the vertex set V is called an independent set of G if every two vertices
in S are not adjacent in G.

2.2 Graph parameters

A vertex subset M ⊆ V is a module of a graph G if any pair of u, v in M satisfies that NG(u) \M =
NG(v) \M .

Definition 1 (Modular-width). A graph G = (V,E) has modular-width at most ℓ (≥ 2) if it
satisfies (i) |V | ≤ ℓ, or (ii) there is a partition (V1, . . . , Vℓ) of V such that for each i ∈ [ℓ], Vi is a
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module and G[Vi] has modular-width at most ℓ. The minimum ℓ such that G has modular-width at
most ℓ is denoted by mw(G).

There is a polynomial-time algorithm that computes mw(G) and its decomposition [32].

Definition 2 (Neighborhood diversity). A graph G = (V,E) has neighborhood diversity at most ℓ if
there is a partition (V1, . . . , Vℓ) of V such that every pair of vertices u, v in Vi satisfies NG(u)\{v} =
NG(v) \ {u} for each i ∈ [ℓ]. The minimum ℓ is denoted by nd(G).

Note that each of Vi’s in Definition 2 is a module of G and it forms either an independent set or
a clique. As with modular-width, there is a polynomial-time algorithm for computing nd(G) and its
partition [28].

Proposition 1. For any graph G = (V,E), mw(G) = mw(G) holds.

Proof. It is sufficient to show that if G has modular-width at most ℓ, then G has modular-width at
most ℓ. We show this claim by induction on the number of vertices n. First, if n ≤ ℓ, then both G
and G clearly satisfy condition (i), so the claim holds.

Next, assume that n > ℓ and that the claim holds for any graph whose number of vertices
is less than n. Let (V1, . . . , Vt) be a partition of V such that each Vi is a module and G[Vi] has
modular-width at most ℓ. Note that t ≤ ℓ. Then, for each pair of u, v ∈ Vi, it holds that:

NG(u) \ Vi = (V \NG(u)) \ Vi

= (V \NG(v)) \ Vi

= NG(v) \ Vi.

Therefore, Vi is module of G. Furthermore, since G[Vi] = G[Vi], G[Vi] has modular-width at most ℓ
by the assumption of induction. Therefore, G satisfies condition (ii) of Def.1.

Proposition 2. For any connected graph G = (V,E), nd(G2) ≤ mw(G) holds, where G2 is the second
power of G.

Proof. If |V | ≤ mw(G), we are done as nd(G2) ≤ |V |. Otherwise, consider a partition (V1, . . . , Vℓ) of
V such that Vi is a module for each i ∈ [ℓ] where ℓ ≤ mw(G). Since G is connected, any module is
adjacent to at least one module, and vertices between two modules are completely joined; that is, for
the two modules Vi and Vj , there is an edge {u, v} between any pair of u ∈ Vi and v ∈ Vj . Thus, the
distance of each pair of vertices in a module is at most 2, and hence each module forms a clique in G2.
Furthermore, for each pair of u, v ∈ Vi, NG2(u)\Vi = NG2(v)\Vi follows from NG(u)\Vi = NG(v)\Vi.
Therefore, NG2(u) \ {v} = NG2(v) \ {u} holds, which implies nd(G2) ≤ mw(G).

Finally, we introduce the clique-width cw(G) of G, which is a more general graph parameter than
tree-width, modular-width, and neighborhood diversity. Namely, if some problem is not in FPT for
tree-width, modular-width or neighborhood diversity, it is also not in FPT for clique-width. It is
defined by some tree structures like tree-width.

Definition 3 (Clique-width). Let w be a positive integer. The w-graph is a vertex-labeled graph
with {1, 2, . . . , w}. The clique-width cw(G) of a graph G is the minimum integer w such that G can
be constructed by applying the following operations repeatedly:

� Add a new vertex labeled by i ∈ {1, . . . , w}.

� Take a disjoint union of two w-graphs G1 and G2.

� Take two labels i and j and then add edges between every pair of vertices with label i and
vertices with label j.

� Relabel the vertices labeled by i label j.
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Figure 1: The construction of H for L(p1, p2, p3)-Labeling on G with diameter 3.

Clique-width is a well-studied graph parameter, and many results are known. For example,
cographs are the graph class of clique-width at most 2. We refer readers to [10]. In order to show
the W[1]-hardness of L(2, 1)-Labeling on graphs with diameter 2 when parameterized by clique-
width in Section 4, we prove that Hamiltonian Path is W[1]-hard.

Theorem 1. Hamiltonian Path is W[1]-hard for clique-width.

Proof. We reduce Hamiltonian Cycle, which is W[1]-hard for clique-width [15]. Given a graph
G = (V,E) of clique-width cw(G), pick arbitrary vertex v and add a new vertex v′ that is adjacent
to vertices in N(v). That is, v and v′ are false twins. Then we further add two vertices w,w′ that
are adjacent to v and v′, respectively. It is easily seen that G has a hamiltonian cycle if and only
if the constructed graph G′ has a hamiltonian path from w to w′. Since adding a vertex that is a
false twin for some vertex to G does not change the clique-width and adding a leaf vertex increases
the clique-width by at most 2, cw(G′) ≤ cw(G) + 4 holds. This completes the proof.

3 Main results

In this section, we show a polynomial-time reduction from L(p)-Labeling to Metric Path TSP.
Path TSP is the problem to finding a hamiltonian path of minimum weight on an edge-weighted
complete graph. Furthermore, Metric Path TSP is the restricted version of Path TSP such that
the edge-weights of the input graph satisfy the triangular inequality.

Theorem 2. If pmax ≤ 2pmin, L(p)-Labeling on graphs of diameter at most k can be reduced to
Metric Path TSP in O(nm) time.

Proof. First, we define an edge-weighted complete graph H = (V,
(
V
2

)
, w) from an input graph G

(see Figure 1). For a pair of vertices u, v ∈ V with distG(u, v) = d, the edge weight of {u, v} in
H is defined by w(u, v) = pd. Note that since diam(G) ≤ k, w(u, v) is well-defined. Furthermore,
pmin ≤ w(u, v) ≤ 2pmin holds by pd ≤ 2pmin for each d ∈ [k], and thus w satisfies the triangle
inequality.

For a permutation π : V → [n], we say that an L(p)-labeling ℓ is an L(p)-labeling for π if it
satisfies ℓ

(
π−1(1)

)
≤ ℓ

(
π−1(2)

)
≤ · · · ≤ ℓ

(
π−1(n)

)
. We denote by λp(G, π) the minimum span

among all of L(p)-labelings for π. Here, we observe that any minimum L(p)-labelings for π satisfies
ℓ
(
π−1(1)

)
= 0. If not, we obtain another labeling ℓ′ such that ℓ′((π−1(i)) = ℓ((π−1(i)) − 1, which

contradicts the minimality of ℓ.
Given a permutation π, let ℓ be an L(p)-labeling for π with minimum span λp(G, π) on G. In

the following, we denote vi = π−1(i) and wi,j = w(vi, vj) for simplicity. Then we show the following
key claim, which implies that ℓ (vi) is the length (sum of weights) of path (v1, v2, · · · , vi) on H.
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Claim 1. For the edge-weighted complete graph H, the labeling ℓ satisfies that ℓ (vi) =
∑i−1

t=1 wt,t+1

for any i ∈ [n].

Proof. We prove the claim by induction on i. As the base case, we have that ℓ(v1) = 0. Furthermore,
we consider the case of i = 2. Since ℓ is a minimum L(p)-labeling for π, it satisfies that 0 = ℓ (v1) ≤
ℓ (v2) ≤ · · · ≤ ℓ (vn). Since 0 = ℓ (v1) ≤ ℓ (v2), we have ℓ (v2) ≥ ℓ (v1) + pdistG(v1,v2) = w1,2.
Moreover, ℓ(v2) ≤ w1,2 follows from ℓ (v2) ≤ · · · ≤ ℓ (vn) and the minimality of ℓ. Thus, the claim
holds when i = 2.

In the induction step, assume that the claim holds for each j ∈ [i − 1]. By the minimality of ℓ
and ℓ (v1) ≤ · · · ≤ ℓ (vn), the label of vi can be expressed as:

ℓ (vi) = min
{
x | x ≥ ℓ (vj) + pdistG(vj ,vi),∀j ∈ [i− 1]

}
= min {x | x ≥ ℓ (vj) + wj,i,∀j ∈ [i− 1]}
= max

j∈[i−1]
{ℓ (vj) + wj,i} .

For each j ∈ [i− 2], it holds that

ℓ (vi−1) − ℓ (vj) =

i−2∑
t=1

wt,t+1 −
j−1∑
t=1

wt,t+1

=

i−2∑
t=j

wt,t+1

≥ wi−2,i−1 ≥ pmin.

Furthermore, wi−1,i − wj,i ≥ pmin − 2pmin = −pmin holds. Thus, for any j ∈ [i− 2], we have:

(ℓ (vi−1) + wi−1,i) − (ℓ (vj) + wj,i)

= (ℓ (vi−1) − ℓ (vj)) + (wi−1,i − wj,i)

≥ pmin − pmin = 0.

Consequently, we obtain

ℓ (vi) = max
j∈[i−1]

{ℓ (vj) + wj,i+1}

= ℓ (vi−1) + wi−1,i

=

i−1∑
t=1

wt,t+1.

Claim 1 means that λp(G, π) = l(vn) is equivalent to the length of the hamiltonian path π on
H. Since λp(G) = minπ {λp(G, π)}, Path TSP on H is equivalent to L(p)-Labeling on G.

Finally, we discuss the running time of the reduction. For the construction of H, we create the
distance matrix of G. This can be done in O(nm) time by the breadth-first search for each vertex.
We then construct the weighted adjacency matrix of H from the distance matrix of G. Clearly, it
can be constructed in O(n2) time. Thus, the total running time is O(nm) + O(n2) = O(nm).

As a corollary, we can obtain an optimal solution in O(2nn2) time and a 1.5-approximate solu-
tion in polynomial time by applying algorithms for Metric Path TSP proposed in [23] and [36],
respectively, after the above reduction.

Corollary 1. If pmax ≤ 2pmin, L(p)-Labeling on graphs of diameter at most k can be solved in
O(2nn2) time. Furthermore, it is approximable within 1.5 in polynomial time.

Further observation shows that our problem is fixed-parameter tractable for modular-width.
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Figure 2: Paths P1, . . . , P5 consisting of only edges of weight p along π correspond to paths in G.

Corollary 2. The L(p, q)-Labeling problem on graphs of diameter at most 2 is fixed-parameter
tractable for modular-width.

Proof. Let G be a graph of diameter at most 2 and H be the weighted complete graph obtained
from G as in Theorem 2. Notice that the weight of an edge in H is either p or q.

First, we consider the case that p ≤ q. For a permutation π of V , we define:

Aπ = {i ∈ [n− 1] | wi,i+1 = p}
Bπ = {i ∈ [n− 1] | wi,i+1 = q} .

Note that {π−1(i), π−1(i + 1)} for i ∈ Aπ corresponds to an edge in E.

Since the weight of an edge in H is either p or q, the following equation holds:

λp(G, π) =

n−1∑
i=1

wi,i+1 =
∑
i∈Aπ

p +
∑
i∈Bπ

q

= (n− 1)p + (q − p) |Bπ| .

Therefore, we have λp(G) = (n − 1)p + (q − p) minπ |Bπ|. Since n, p, q are constant, solving L(p)-
Labeling for G is equivalent to finding π that minimizes |Bπ| on H.

Here, let P1, . . . , Ps be paths along π such that each Pi contains only edges with weight p (see
Figure 2). Note that some Pi could be one vertex. By the definition of such paths, s = |Bπ|+ 1. We
observe that edges in Pi corresponds to edges in G. Thus, minimizing |Bπ| on H is equivalent to
the Partition into Paths problem, which is the problem to minimize the number of paths that
partition V in G. This can be computed in f(mw(G))nO(1) time [16].

For the case that p > q, we can similarly solve L(p, q)-Labeling by computing Partition into
Paths on the complementary graph G of G. Since mw(G) = mw(G) by Proposition 1, it can also be
computed in f(mw(G))nO(1) time.

4 Related results

4.1 Parameterized complexity

In the previous section, we showed that L(p, q)-Labeling is fixed-parameter tractable for modular-
width on graphs of diameter 2. In this section, we first point out that L(2, 1)-Labeling is W[1]-hard
for clique-width even on graphs of diameter 2.

Theorem 3. L(2, 1)-Labeling on graphs with diameter 2 is W[1]-hard for clique-width.
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Proof. In [17], Griggs and Yeh give a reduction from Hamiltonian Path to L(2, 1)-Labeling on
graphs with diameter 2. Given a graph G = (V,E) as an instance of Hamiltonian Path, the
reduced graph of L(2, 1)-Labeling is constructed by taking the complementary graph G of G and
adding a universal vertex x that is adjacent to all the vertices in V . Since cw(G) ≤ 2cw(G) holds
for any graph G [10] and adding a universal vertex x increases the clique-width of G by at most 1,
the clique-width of the reduced graph in [17] is at most 2cw(G) + 1. This completes the proof.

Note that L(1, 1)-Labeling on graphs with diameter 2 is trivially solvable because the graph
power G2 of a graph of diameter 2 is a complete graph.

The fixed-parameter tractability of L(p, q)-Labeling for modular-width remains open in general.
On the other hand, we show that L(1, 1)-Labeling and even L(1)-Labeling on general graphs are
fixed-parameter tractable by modular-width in contrast to L(p, q)-Labeling.

Theorem 4. L(1)-Labeling on general graphs is fixed-parameter tractable for modular-width.

Proof. As mentioned in [12], nd(G) ≥ nd(Gk) holds for any graph G and any positive integer
k ≥ 1. By Proposition 2, we have mw(G) ≥ nd(G2) ≥ nd(Gk) for any positive integer k ≥ 2.
Also, L(1)-Labeling on G is equivalent to Coloring on Gk. We know that Coloring is fixed-
parameter tractable for neighborhood diversity [28]. Solving Coloring on Gk, one can compute
L(1)-Labeling in f(mw(G))nO(1) time.

As the corollary of Theorem 4, we obtain an FPT-approximation algorithm for L(p)-Labeling
with respect to modular-width.

Corollary 3. There is a pmax-approximation fixed-parameter algorithm for L(p)-Labeling on
general graphs with respect to modular-width.

Proof. For any constant c, λcp = cλp holds. Thus, we have λp ≤ λpmax1 ≤ pmaxλ1. By Theorem 4,
we obtain a pmax-approximation fixed-parameter algorithm by modular-width.

4.2 Subclasses of Split Graphs

Bodlaender et al. showed that L(2, 1)-Labeling is NP-complete on split graphs of diameter at most
2 [6]. Although this implies that there unlikely exists a polynomial-time algorithm to solve L(2, 1)-
Labeling for (general) split graphs, we may expect polynomial-time algorithms by setting the target
smaller classes of graphs. In this section, we show that the problem is solvable in polynomial time
on block split graphs and threshold graphs. Note that the polynomial-time solvability on threshold
graphs is deduced from that on co-graphs, a superclass of threshold graphs [8]. Here, we give a
simple recurrence for the optimal L(2, 1)-Labeling on threshold graphs, which provides an explicit
polynomial-time algorithm.

4.2.1 Block split graphs

We first see the definitions of split graph, block graph, and block split graph. A graph G = (V,E)
is called a split graph if V can be partitioned into a clique and an independent set of G. A graph G
is called a block graph if every biconnected component of G forms a clique. A graph G is called a
block split graph if G is a block graph and a split graph. By the definitions of block graph and split
graph, a block split graph forms a clique with pendant vertices, i.e., vertices with degree 1.

Theorem 5. L(2, 1)-Labeling on block split graphs can be solved in linear time.

Proof. We first mention that λ2,1(G) ≥ max{2(ω(G) − 1),∆(G) + 1} holds for a graph G, where
ω(G) is the maximum clique size of G and ∆(G) is the maximum degree of G. Notice that if the
bound ∆(G) + 1 is tight, a vertex with degree ∆(G) (called a major vertex ) is labeled by either 0
or ∆(G) + 1; otherwise, it is easy to see that a label greater than ∆(G) + 1 is necessary.

Suppose that G is a block split graph, and ω(G) and ∆(G) are respectively denoted by ω and
∆ in the following. We start the argument. We consider two cases, (i) ∆ ≤ 2ω − 4, and (ii)
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∆ > 2ω − 4. We first consider case (i). In this case, we claim that λ2,1 is 2(ω − 1) by giving a
concrete labeling. We first label the vertices in the largest clique in G by 0, 2, . . . , 2(ω− 1). We then
label pendant vertices. For a vertex in the clique, at most ∆−(ω−1) pendant vertices are connected.
Consider a pendant vertex adjacent to a vertex labeled with 2a, where a ∈ {0, 1, . . . , ω − 1}. Such
a pendant vertex can be labeled with a label in {1, 3, . . . , 2(ω − 1) − 1} \ {2a − 1, 2a + 1}. Since
|{1, 3, . . . , 2(ω − 1) − 1} \ {2a− 1, 2a + 1}| ≥ ω − 3 ≥ ∆ − (ω − 1), all pendant vertices adjacent to
a vertex with label 2a can be properly labeled with these labels; this matches the lower bound, and
the labeling is optimal.

We next consider case (ii), and further divide it two subcases (ii-1) there are at least three major
vertices, (ii-2) there are at most two major vertices. For case (ii-1), we claim that λ2,1 = ∆ + 2. We
first see that the vertices in G can be labeled with 0, . . . ,∆+2. As case (i), we first label the vertices
in the largest clique in G by 0, 2, . . . , 2(ω − 1). We then label at most ∆ − (ω − 1) pendant vertices
adjacent to a common vertex with label 2a in the clique, where a ∈ {0, 1, . . . , ω−1}. Such a pendant
vertex can be labeled with a label in {2(ω−1)+1, . . . ,∆+2}∪{1, 3, . . . , 2(ω−1)−1}\{2a−1, 2a+1}.
Since |{2(ω−1)+1, . . . ,∆+2}∪{1, 3, . . . , 2(ω−1)−1}\{2a−1, 2a+1}| = ∆+2−2(ω−1)+(ω−3) =
∆ − (ω − 1), all pendant vertices adjacent to a vertex with label 2a can be properly labeled. That
is, G can be labeled by {0, . . . ,∆ + 2}. Here, we consider the condition that there are at least three
major vertices. In this case, it is impossible to label all the major vertices by either 0 or ∆(G) + 1,
because they are adjacent in the clique. Thus, the lower bound ∆(G) + 1 on λ2,1 is not tight, and
actually, we have lower bound ∆(G) + 2 for this case, which matches the above labeling.

We then consider (ii-2) there are at most two major vertices. If we have just one major vertex,
we give label 0 to the major vertex and label the other vertices in the clique by {2, 4, . . . , 2(ω− 1)}.
We then label at most ∆ − (ω − 1) pendant vertices adjacent to a common vertex with label 2a
in the clique, where a ∈ {0, 1, . . . , ω − 1}. Such a pendant vertex can be labeled with a label in
{2(ω− 1) + 1, . . . ,∆ + 1} ∪ {1, 3, . . . , 2(ω− 1)− 1} \ {2a− 1, 2a+ 1}. In fact, the value |{2(ω− 1) +
1, . . . ,∆ + 1}∪ {1, 3, . . . , 2(ω− 1)− 1} \ {2a− 1, 2a+ 1}| is ∆ + 1− 2(ω− 1) + (ω− 2) = ∆− (ω− 1)
for a = 0, and ∆ + 1 − 2(ω − 1) + (ω − 3) = ∆ − ω for a > 0. For the ∆ − (ω − 1) pendant
vertices adjacent to the major vertex (with label 0), they can be properly labeled by {0, . . . ,∆ + 1}.
Since a vertex of degree at most ∆ − 1 has at most ∆ − ω pendant vertices, they can be labeled
again by {0, . . . ,∆ + 1}. The lower bound ∆ + 1 guarantees that this labeling is optimal. If
there are two major vertices, we give them labels 0 and ∆ + 1 and label the other vertices in the
clique by {2, 4, . . . , 2(ω − 2)}. We then label at most ∆ − (ω − 1) pendant vertices adjacent to a
common vertex with label 2a in the clique, where a ∈ {0, 1, . . . , ω − 2}. Such a pendant vertex can
be labeled with a label in {2(ω − 2) + 1, . . . ,∆ + 1} ∪ {1, 3, . . . , 2(ω − 2) − 1} \ {2a − 1, 2a + 1}
by a similar argument to the above. For the pendant vertices adjacent to the major vertex with
label ∆ + 1, they can be labeled by {1, 3, . . . , 2(ω − 2) − 1} ∪ {2(ω − 2) + 1, . . . ,∆ − 1}; since
|{1, 3, . . . , 2(ω − 2) − 1} ∪ {2(ω − 2) + 1, . . . ,∆ − 1}| = ω − 2 + (∆ − 1 − 2(ω − 2)) = ∆ − (ω − 1),
this labeling is also available and optimal.

4.2.2 Threshold graphs

A graph G is called a threshold graph if there is a weight function w on V and a real number
(threshold) θ such that u and v are adjacent in G if and only if w(u) + w(v) ≥ θ. If a graph G is
a threshold graph, G is also a split graph. It is known that a threshold graph can be obtained by
repeatedly adding an isolated vertex or a dominating vertex, i.e., a vertex connected to all other
vertices.

Suppose that G = (V,E) is a threshold graph and constructed as above. Let k be the number of
dominating vertices added in the construction and xi be the dominating vertex added at i-th step
among k steps. Let I1 be the set of the isolated vertices added before x1, and Ii be the set of the
isolated vertices added between xi−1 and xi in the construction (i ∈ [2, k]). Since G is connected, xk

is added last in the construction. Note that K = {x1, . . . , xk} and I =
⋃k

i=1 Ii form a clique and an

independent set, respectively. Furthermore, we have V = K∪I and E =
(
K
2

)
∪
⋃k

i=1 Ii×{xi, . . . , xk}.
For each i ∈ [k], let Ki = {x1, . . . , xi},Vi = Ki ∪

⋃
j∈[i] Ij , ni = |Vi|, and Gi = G[Vi]. Note that

n = nk, G = Gk, and every Gi is a threshold graph. If k = 1, then G is a star with the center x1

35



Solving Distance-constrained Labeling Problems via TSP

and the optimal labeling can be easily obtained, so we hereafter assume k ≥ 2. Also, without loss
of generality, we assume that I1 ̸= ∅.

Lemma 1. [8] For a graph G, the L(p, q)-labeling of G such that it is injection is called the
L′(p, q)-labeling of G. We denote the minimum span among all L′(p, q)-labelings of G by λ′

p,q(G).
Also, for each disjoint graphs G and H, we define G ∪ H = (V (G) ∪ V (H), E(G) ∪ E(H)) and
G+H = (V (G)∪V (H), E(G)∪E(H)∪{{u, v} | u ∈ V (G), v ∈ V (H)}). Then, the following holds:

(1). λ′
2,1(G ∪H) = max{λ′

2,1(G), λ′
2,1(H), |V (G)| + |V (H)| − 1},

(2). λ2,1(G + H) = λ′
2,1(G + H) = λ′

2,1(G) + λ′
2,1(H) + 2.

Theorem 6. Suppose that G1, G2, . . . , Gk = G be a sequence of threshold graphs defined above.
Then, we have λ2,1(G1) = n1 and λ2,1(Gi) = max{ni, λ2,1(Gi−1) + 2} for i ∈ [2, k].

Proof. For each i ∈ [k], let Ei = (Ii, ∅), Xi = ({xi}, ∅). Then, G1 = E1+X1 and Gi = (Gi−1∪Ii)+Xi

(i ∈ [2, k]) hold. Using this representation and Lemma 1, we calculate the labeling number for each
Gi. First, we get λ′

2,1(Ei) = max{0, |Ii| − 1} and λ′
2,1(Xi) = 0 immediately, so the following is

obtained from Lemma 1 (2):

λ2,1(G1) = λ′
2,1(G1) = λ′

2,1(E1) + λ′
2,1(X1) + 2 = max{2, n1} = n1.

Next, for each i ∈ [2, k], we get

λ′
2,1(Gi−1 ∪ Ii) = max{λ′

2,1(Gi−1), λ′
2,1(Ii), ni−1 + |Ii| − 1}

= max{λ2,1(Gi−1),max{0, |Ii| − 1}, ni−1 + |Ii| − 1} = max{λ2,1(Gi−1), ni − 2}

from Lemma 1 (1). Therefore, the following is obtained from Lemma 1 (2):

λ2,1(Gi) = λ′
2,1(Gi) = λ′

2,1(Gi−1 ∪ Ii) + λ′
2,1(Xi) + 2 = max{λ2,1(Gi−1) + 2, ni}.

By using this theorem, we can concretely find an optimal L(2, 1)-labeling for each Gi as follows:
We can immediately obtain an optimal L(2, 1)-labeling of G1 since G1 is a star graph. For each
i ∈ [2, k], by using an optimal labeling ℓ of Gi−1, we construct an optimal labeling of Gi . Let
Di = [0, λ2,1(Gi−1)]\ℓ(V (Gi−1)), that is, Di is the set of labels unused in an ℓ among [0, λ2,1(Gi−1)].
We assign labels to the |Di| vertices in Ii in Di, and assign the other max{0, |Ii| − |Di|} vertices to
integers starting from λ2,1(Gi−1) + 1. This assignment is an L′(2, 1)-labeling of Gi−1 ∪ Ii and its
span is

λ2,1(Gi−1) + max{0, |Ii| − |Di|} = λ2,1(Gi−1) + max{0, |Ii| − (λ2,1(Gi−1) + 1 − ni−1)}
= max{λ2,1(Gi−1), ni − 2}.

Then, by assigning xi to the label that is exactly 2 larger than the above span, we obtain an L(2, 1)-
labeling of Gi with span max{λ2,1(Gi−1) + 2, ni}. This span is equal to λ2,1(Gi) since Lemma 6.
Also, we can construct K and I1, I2, . . . , Ik in linear time.

Figure 3 shows an example of constructing an optimal labeling for a threshold graph.

5 Concluding Remarks

In this paper, we studied distance-constrained labeling problems for small diameter graphs. Our
main contribution is a polynomial-time reduction from L(p)-Labeling on graphs of diameter at
most k to Metric Path TSP. This reduction allows us to exploit various results of TSP such as
exact exponential-time algorithms and approximation algorithms for solving L(p)-Labeling. We
further investigated the parameterized complexity and the computational complexity on subclasses
of small diameter graphs.

One direction of future work is to consider whether the condition in the Theorem 2 that the
diameter is at most k can be generalized. Also, the parameterized complexity of L(p)-Labeling
for modular-width remains open. Finally, it is worth investigating the computational complexity of
L(2, 1)-Labeling on block graphs, which is a superclass of trees and block split graphs.
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Figure 3: Construction of an optimal labeling ℓ for a threshold graph G
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ized complexity of distance labeling and uniform channel assignment problems. Discrete Applied
Mathematics, 248:46–55, 2018.

37



Solving Distance-constrained Labeling Problems via TSP
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[19] Magnús M Halldórsson. Approximating the L(h, k)-labelling problem. International Journal of
Mobile Network Design and Innovation, 1(2):113–117, 2006.

[20] Tesshu Hanaka, Kazuma Kawai, and Hirotaka Ono. Computing L(p, 1)-labeling with combined
parameters. Journal of Graph Algorithms and Applications, 26(2):241–255, 2022.

[21] Toru Hasunuma, Toshimasa Ishii, Hirotaka Ono, and Yushi Uno. A linear time algorithm for
L(2, 1)-labeling of trees. Algorithmica, 66(3):654–681, 2013.

[22] Toru Hasunuma, Toshimasa Ishii, Hirotaka Ono, and Yushi Uno. Algorithmic aspects of distance
constrained labeling: a survey. International Journal of Networking and Computing, 4(2):251–
259, 2014.

[23] Michael Held and Richard M Karp. A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied mathematics, 10(1):196–210, 1962.

[24] Keld Helsgaun. An effective implementation of the lin–kernighan traveling salesman heuristic.
European journal of operational research, 126(1):106–130, 2000.

[25] Konstanty Junosza-Szaniawski, Jan Kratochv́ıl, Mathieu Liedloff, Peter Rossmanith, and Pawel
Rzazewski. Fast exact algorithm for L(2, 1)-labeling of graphs. Theor. Comput. Sci., 505:42–54,
2013.

[26] Konstanty Junosza-Szaniawski, Jan Kratochv́ıl, Mathieu Liedloff, and Pawel Rzazewski. De-
termining the L(2, 1)-span in polynomial space. Discret. Appl. Math., 161(13-14):2052–2061,
2013.

[27] Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric tsp. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2021, page 32–45, New York, NY, USA, 2021. Association for
Computing Machinery.

[28] Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012.

[29] Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations research, 21(2):498–516, 1973.

[30] Fred S. Roberts. T -colorings of graphs: recent results and open problems. Discrete Mathematics,
93(2):229–245, 1991.

38



International Journal of Networking and Computing

[31] Karol Suchan and Ioan Todinca. On powers of graphs of bounded NLC-width (clique-width).
Discrete Applied Mathematics, 155(14):1885–1893, 2007.

[32] Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul. Simpler linear-time mod-
ular decomposition via recursive factorizing permutations. In International Colloquium on
Automata, Languages, and Programming, pages 634–645. Springer, 2008.

[33] Renato Tinós, Keld Helsgaun, and Darrell Whitley. Efficient recombination in the lin-kernighan-
helsgaun traveling salesman heuristic. In Anne Auger, Carlos M. Fonseca, Nuno Lourenço,
Penousal Machado, Lúıs Paquete, and Darrell Whitley, editors, Parallel Problem Solving from
Nature – PPSN XV, pages 95–107, Cham, 2018. Springer International Publishing.

[34] Vera Traub, Jens Vygen, and Rico Zenklusen. Reducing path TSP to TSP. SIAM Journal on
Computing, 51(3):STOC20–24–STOC20–53, 2022.

[35] Gerhard J. Woeginger. Exact Algorithms for NP-Hard Problems: A Survey, pages 185–207.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[36] Rico Zenklusen. A 1.5-approximation for path TSP. In Proceedings of the thirtieth annual
ACM-SIAM symposium on discrete algorithms, pages 1539–1549. SIAM, 2019.
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