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Abstract

A program’s architecture—how it organizes the invocation of application-specific logic—
influences important program characteristics including its scalability and security. Architecture
details are usually expressed in the same programming language as the rest of a program, and can
be difficult to distinguish from non-architecture code. Once defined, a program’s architecture
is difficult and risky to change because it couples tightly with application logic over time.

We introduce C-Saw: an approach to express a software’s architecture using a new embedded
domain-specific language (EDSL) designed for that purpose. It decouples application-specific
logic from architecture, making it easier to identify architectural details of software. C-Saw lever-
ages three ideas: (i) introducing a new, formally-specified EDSL to separate an application’s
architecture description from its programming language; (ii) reducing architecture implementa-
tion to the definition and management of distributed key-value tables, and (iii) introducing an
expressive state-management abstraction for distributed applications.

We describe a prototype implementation of C-Saw for C programs and use its implementation
to build end-to-end examples of expressing and changing the architecture of widely-used, third-
party software. We evaluate this on Redis, cURL, and Suricata and find that C-Saw provides
expressiveness and reusability, requires fewer lines of code when compared to directly using C
to express architectural patterns, and imposes low performance overhead on typical workloads.

Keywords: Key-Value Tables, Process Algebra, Coordination Language, Domain-Specific Lan-
guage

1 Introduction

Software’s architecture describes its fundamental information-processing structure [39] and varies
in its complexity. Examples of architecture include: a sequence of processing steps, a pipeline of
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concurrent stages, an event-handling system, a fan-out to worker instances, and a mix of these
patterns [27].

The choice of architecture influences important software characteristics such as security [30]
and performance [48]. For example, architecture affects how software can scale to meet demand by
harnessing additional resources to distribute the load from computation, communication and storage
demands.

Since both architecture and the application-specific logic are usually described using the same
programming language, there is no language-level distinction between them, and no obstacle to
them being tightly coupled over time. As a result, it can be difficult to alter one without affecting
the other [32]. The blurring of architecture and logic complicates the implementation of important
features that depend on architecture-level changes. Fig. 1 shows examples of such features which
include caching and load-balancing.

As a result of architecture’s poor visibility in source code and its coupling with non-architecture
code, architecture-level changes are high-friction: they take effort, risk introducing bugs, and create
a maintenance burden if the software diverges from an up-stream, canonical open-source version.
One could avoid architecture-level change by designing an overly-general architecture to begin with,
but this raises practitioners’ red flags because it risks “premature optimization” [33], “creeping
elegance” [22], and introducing a “bad smell” from needless complexity due to “speculative gener-
ality” [26]. Even then, general interfaces might not forestall the need for eventual revision since the
software’s requirements can evolve.

To avoid these problems, we need a low-friction method to express software’s architecture. It
needs to support a range of architecture patterns, be linguistically distinguished from application
logic, and induce low overhead. New and existing software could then be adapted more easily to
respond to new and changing needs that require architecture-level changes.

In this paper, we introduce C-Saw (“see-saw”): an approach to express a software’s architecture
using a new embedded domain-specific language (DSL) designed for that purpose. C-Saw relies
on distributed key-value tables to track both architecture-related state and application-logic state.
These tables are managed by DSL expressions. The DSL is inlined into the application source-
code and it is designed to work with existing software and languages—we prototyped this for the
C language and developed usage examples involving widely-used, third-party applications.

The DSL can express a set of architectures that serve commonly-occurring needs such as those
serviced by the examples in Fig. 1. These needs include: (i) availability through fail-over or repli-
cation; (ii) manageability through live migration or scale-out; (iii) performance through caching
for latency, load-balancing for throughput, or object-size sharding for lower scheduling overhead;
(iv) lower resource cost through scale-in or fusion of instances; (v) security through remote audit-
ing.

The key idea in C-Saw involves decoupling an application’s general architecture description from
its application-specific logic. C-Saw shrinks the scope of understanding and changing a software’s
architecture, thus lessening the effort and risk. The DSL has restricted expressiveness to limit
unwanted behaviors. It provides a concise syntax and formal semantics to channel intuition into
short and accurate architecture specifications.

We found that even intuitively-simple needs can have subtle and complex specifications, and
this underscored the importance of using a specialized language for describing architectures. For
example, we explored several formulations of fail-over logic that differed in redundancy, resourcing,
and complexity. Another benefit of using the DSL is that architecture specifications are more reusable
since they are decoupled from application-specific logic. We evaluate reuse of logic expressed using
the DSL in our prototype.

C-Saw is inspired by coordination languages [9], Architectural Description Languages (ADLs) [8],
and process algebrae [37], but it has important differences: (i) C-Saw is designed for use in existing
software and tool-chains rather than necessitate a rewrite into a new language, and (ii) Unlike process
algebrae, C-Saw was designed for use in deployment contexts that do not typically allow an all-to-all
communication model and higher-order channels between distributed components, in the interest of
improved security and lower overheads. Also, more emphasis is placed on the interface to the host
language which is used to describe application logic.
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Figure 1: Behavioral sketches of architectural configurations that provide important application
features. These diagrams give a simplified glimpse of architecture-related interactions over time. The
x-axis shows events occurring over time, such as state-snapshots, application invocations, failures, or
queries. The y-axis shows state synchronization occurring across specialized instances derived from
the original software. Instances are components of the original application that capture distinct non-
architectural features. Sketch ① describes fail-over, ② and ③ describe remote, integrity-preserving
auditing of a local process (the first is one-time and the second is continuously running), ④ describes
sharding, and ⑤ describes caching. These examples are detailed further in §2.

C-Saw’s prototype uses libcompart [44] as a distributed runtime that coordinates logic across
the program’s architecture. It provides configuration, communication, and fault-handling support.
Unlike microservices [13,35,47] and distributed OSs [38], C-Saw is focused on a language-level scope.
Broader OS-level scoping is left for future research.

C-Saw’s current design necessitates modification of the software’s source code to derive subpro-
grams that the DSL-expressed architecture will then interface with. Currently, this modification is
done manually, and we evaluate its intrusiveness for the third-party systems to which we applied
the C-Saw prototype. Automating this analysis and transformation is a separate research project
and is left as future work.

This paper makes the following novel contributions: (1) A design (§3) that integrates C-Saw
with existing C code-bases. (2) A formally-specified domain-specific language (§6) to separate an
application’s architecture description from its programming language. (3) A diverse suite of DSL-
encoded architectures (§5) covering all the examples shown in Fig. 1, all of which were implemented
on third-party software (Redis, cURL, and Suricata). (4) An expressive state-management abstrac-
tion (§9) that supports the DSL’s C prototype to provide distributed synchronization. (5) A proto-
type implementation of C-Saw’s DSL and state-management abstraction for C, and this prototype’s
evaluation (§10) for expressiveness, reusability, effort and performance on typical workloads.

The C-Saw prototype and evaluation suite are made freely available [5].

2 Software Architecture Use-Cases

Features such as those in (i)-(v) from the previous section are typically cross-cutting, application-
wide features that rely on architecture-level support. This section defines software architecture to
make this paper self-contained. It also gives examples of architectural modifications of widely-used,
open-source systems that are used to evaluate C-Saw later in the paper: cURL, Redis, and Suricata.

We define architecture to mean the code that defines the delivery system of work between other
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code that implements application logic. Architecture is generally dynamic: it does not only describe
a structure of application-logic invocations, but describes how that structure responds to external or
internal changes—such as changes in demand or in resource availability. Perry and Wolf [39] provide
an excellent further discussion of software architecture with examples.

Changing a software’s architecture can affect its capacity to do work, or differentiate kinds of
work from each other. In Fig. 1, example ① increases work capacity across a failure mode, and
example ② adds new work: capturing select state for remote auditing.

Redis is a widely-used [21] NoSQL database [16] that is implemented as a single-threaded
server [4]. We envisage three scenarios where architectural changes could benefit Redis, corre-
sponding to examples ④, ⑤ and ① in Fig. 1. (i) Scaling: Redis does not automatically scale
with the number of CPU cores. It is scaled by manually starting more Redis instances or by using
external harnesses such as Redis Cluster [19] but this relies on all-to-all TCP connections. It also
relies on Redis Cluster or external tools [31] for sharding [18]. By internalizing this feature we can
save overhead and resources. (ii) Availability: Redis employs a leader-follower system for repli-
cation [20]. The leader streams changes to the follower process. An architecture-level approach to
providing this feature involves on-demand checkpointing of Redis—the architecture would serialize
state from across an instance—and resuming Redis from a checkpoint. This approach also weakens
the requirement for the leader and follower to be synchronously active. (iii) Performance: Redis
instances are typically heavy users of memory, and by having a cache for frequently-accessed objects
we can evaluate configurations that outperform a instance [36].

cURL [46] is a library and client for transferring data using a variety protocols. It is widely-
used [45] and we envisage scenarios where its architecture is changed to support remote auditing—
such as examples ② and ③ in Fig. 1. For example, this could be used on employer-provided machines
or storage partitions as part of a security or compliance-checking policy for a company that allows
Bring-Your-Own-Device (BYOD) [10]. Or for device owners to better track their smart consumer
electronics [29]. We subdivide this scenario into two use-cases: The first captures program state at a
key point of an invocation, such as at the start of the program. The second captures program state
continuously, trading-off a higher runtime overhead to acquire more information. State is logged
remotely to protect its integrity. Both of these configurations rely on a state-snapshotting feature,
similar to that described for Redis above.

Suricata [25] is one of the three foremost systems used for network security monitoring [2].
It implements a graph-based abstraction for packet handling, reminiscent of Click [34]. Packet
analysis and threat detection tasks are interconnected in this graph, which is executed on a multi-
threaded abstraction of the underlying hardware. We envisage two scenarios for changing Suricata’s
architecture, corresponding to ① and ④ in Fig. 1. (i) Availability+Diagnostics: At present,
improving Suricata’s availability requires external infrastructure to create a live Suricata replica
that takes over in case of a crash. But whatever caused one Suricata instance to fail might cause
its replica to fail too unless the cause was non-deterministic or resource-related. We can create a
modified form of availability that involves continuously checkpointing Suricata state and resuming
from the checkpoint in case of a crash. If the replica fails too, then we can use the checkpoint to
reproduce the fault and understand it. To this end, we reuse the architectural pattern described
earlier for fail-over in Redis, and interface it with Suricata’s task graph. (ii) Flow-level resourcing
for performance: We reuse the sharding logic from the earlier change to Redis’ architecture, and
use this to reserve resources for specific network flows identified as a 5-tuple [52]. This architectural
configuration adds a policy layer on top of Suricata’s allocation of cores to reserve some cores to
process traffic of interest.

3 C-Saw

This section explains the workflow for adapting software to use C-Saw. The main steps in this
workflow are shown in Fig. 2. The abstract description of the workflow in this section introduces the
concepts of junctions, instances, and instance types. The sections that follow will provide concrete
examples of applying C-Saw.
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Figure 2: Workflow for C-Saw.

Adapting software to use C-Saw Step ① in Fig. 2 involves typifying a program: this involves
dividing it into different parts that can then be composed into a form described using the DSL.
We call these parts instance types (or simply types for short). Each part implements a subset of
the program’s behavior that is related to a specific feature. For example, a back-end instance type
includes the parts of a program that implement back-end behavior.

Types are then ② instantiated and named using the DSL to form instances. For example, a
back-end instance type could be instantiated multiple times to form separate back-end instances for
load-balancing. For another example, an application can implement fail-over between distributed
replicas that instantiate the same type—this is expanded into a detailed use-case description later.

A type is instantiated, configured and connected using the DSL to form different architectures.
The process of forming types depends on the feature-size granularity that is being sought. Our
approach to apply C-Saw to third-party programs involved forming DSL expressions based on the
coarse typifying of the programs to capture features that were described in §2. Our evaluation
shows that even a coarse typification can accommodate (1) different adaptations to a program’s
architecture once C-Saw is used, and that (2) the same architectural description can be reused in
different applications.

Types have one or more junctions: points in the control flow in which the instance type evaluates
a DSL expression. Junctions are used to structure the coordination between instances.

Fig. 3 shows an example of how the architecture is made explicit for an abstract sequential
program “H1;H2” and includes the C-Saw concepts that were described so far. Instances can only
communicate with each other through their type’s junctions. For example, in Fig. 3 instances f and
g (representing front-end and back-end instances respectively) can only send messages to a back-end
instance through the junctions—and specifically by using the ‘write’, ‘assert’, and ‘retract’ statements
in that example. This will be further illustrated using later examples such as Fig. 4 and Fig. 5.

Junctions and DSL expressions are embedded in the software’s programming language. Intro-
ducing junctions into a program’s source code involves inserting calls to C-Saw’s API binding in
the program’s source code. The choice of where to introduce junctions, and how many to intro-
duce, depends on the generality of the architecture sought: introducing more junctions creates more
opportunities for architecture specification using DSL expressions.

Each junction has its unique name, a DSL expression, and a key-value (KV) table that stores
state. The junction’s behavior can be conditional on the table’s contents. Instances communicate by
making changes to each others’ KV table when evaluating DSL expressions in junctions. Junctions
can update their tables and those of other junctions through the evaluation of DSL expressions. All
instances of a type share the same junction behavior but have a their own copy of the KV table.
Using an analogy from Object-Oriented Programming, instance types are like classes and instances
are like objects, but C-Saw does not support an inheritance hierarchy.

Instance types may have an arbitrary number of junctions, and each junction may communicate
with an arbitrary number of other instances. Examples in the next sections will help make this
clearer. Step ③ in Fig. 2 shows Ix having two junctions, J1 and J2, through which it exchanges
KV updates with Iy and Iz respectively.

As will be shown in later examples such as Fig. 4 and Fig. 5, in addition to the architecture’s
structure and the communication between instances, DSL expressions also describe architecture-
related logic that implements synchronization of KV-entries between instances, time-outs, retries,
and fan-out and fan-in behavior. The DSL’s constrained expressiveness makes it easier and safer to
change its code than the general programming code in which it is embedded. The DSL supports
limited recursion and it is not Turing complete.
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Architecting software using C-Saw Software architecture is realized using C-Saw through the
③ composition of instances using the C-Saw DSL, by defining the behavior of junctions.

Later, a typification can be ⑤ changed to support different junction behavior or granularity.
For the C-Saw prototype, we evaluate the changing of DSL expressions in an application modified to
use C-Saw without changing its typification, and the reuse of DSL expressions across applications.

Running software composed using C-Saw In addition to the modifications to the program’s
source code to use C-Saw, the program’s compilation is changed to link with a runtime system
that interconnects C-Saw instances. The C-Saw prototype implementation uses libcompart [44]:
a lightweight, portable runtime that provides channel abstractions for communication between in-
stances. Its channels wrap OS-provided IPC, including TCP sockets and pipes. Each instance
executes on the runtime. The runtime controls how instances interact with each other and under-
takes message-passing between them, under the control of DSL expressions. Messages may contain
serialized application data or control messages, as described in the next section. Serialization support
for C data is described in §9.

④ Running a program whose architecture is described using C-Saw involves starting a special
instance that computes the “main” function. In turn, this can start other instances that form the
program’s architecture, as we saw in Fig. 3.

InstanceTypes = {τf , τg}
Instances = {f : τf , g : τg}
def main() ◀ start f (g) + start g(f )
def τf :: junction(g) ◀ ➊
| init prop ¬Work
| init data n
⌊H1⌉; save(. . . , n);
write(n, g);
assert [g ] Work; ➋
wait [] ¬Work; ➌

def τg :: junction(f ) ◀
| init prop ¬Work
| init data n
| guard Work ➍
restore(n, . . .);
⌊H2⌉;
retract [f ] Work; ➎

Figure 3: Example in C-Saw DSL that typifies the program ‘H1;H2’ into τf (instantiated as f)
and τg (instantiated as g), and showing the special function ‘main’. Each ‘def ’ in this example
is a junction whose body is embedded in the host programming language. Taken together, these
definitions describe the architecture of the program. A detailed explanation of this example’s syntax
is given in §4.

4 Architecture Descriptions in C-Saw

The DSL is designed to describe a broad set of architectures that meet various needs, including those
in Fig. 1. This section outlines the language, which will be described in more detail in §6 after we
present illustrative use-cases.

The example in Fig. 3 will be used to introduce the DSL. The DSL describes a set of running
instances arranged into a topology that forms the software’s architecture. Instances are derived
from programs as described in §3 and are declared in the set Instances. They are given a single type
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from InstanceTypes, as shown in Fig. 3. Both instances and types are given names by the software
architect.

Instances communicate with each other through their junctions. Junctions are used to structure
concurrent execution on distributed state, and the DSL serves to make their coordination and
synchronization explicit. We will encounter examples with multiple junctions, but in Fig. 3, both
instances have a single junction, each called ‘junction’. A junction’s execution is scheduled by the
instance’s application logic—e.g., a junction might be called to service a client request. Scheduling
assumptions are made explicit using junction guards: on line ➊ of Fig. 3, junction ‘τf :: junction’
can be scheduled at any time, but line ➍ shows that ‘τg :: junction’ may only be scheduled when
proposition Work is true.

The Work proposition is used to coordinate between the pair of junctions for rate-limiting, in
this case by ensuring that only one instance is executing at a time. Instance f (the only instance of
τf ) asserts the proposition to instance g at ➋—this line updates the KV table of f and g, and is a
form of communication between instances. Instance f awaits the retraction of Work at ➌—it awaits
another instance to update its KV table. Retraction is done by g at ➎. In §5 we will see how these
language features are used to define more complex features like fault-tolerance and redundancy.

Junctions are examples of definitions. Definitions start with zero or more declarations. These
are prefixed by the pipe symbol (“| ”). For example, “| init prop ¬Work” declares the proposition
Work and initializes it to false. “| init data n” declares a variable n. Variables and propositions
form the junction’s state, and their values are stored in the junction’s KV table.

Definitions can reference code from the host language in which the DSL is embedded. We
use H to range over host-language statements. The notation ⌊H⌉{V⃗ } encloses code in the host

programming language and specifies writable state V⃗ . This notation separates application logic
from the architecture expression. Only junction state V⃗ may be written to by the host language
statement H. Arbitrary junction state may be read by H. Fig. 3 abstracts host-language code
as ⌊H1⌉ and ⌊H2⌉. Dropping the {. . .} means that neither H1 nor H2 may alter their containing
junction’s KV table.

5 Examples of C-Saw from Use-Cases

This section provides in-depth examples of using the DSL to implement architectural patterns from
Fig. 1.

5.1 Remote snapshots

Fig. 4 shows an implementation of example ② from Fig. 1: one-time remote snapshots. Act and
Aud are both single-junction instances. Act forms part of the application, and Aud forms part of
the remote logging system, reflecting the distributed architecture of the overall system. The logic
mostly consists of a simple extension of Fig. 3.

This architecture can be reused for continuous remote snapshots ③ if we repeatedly invoke Act
and Aud during a single execution of the overall system. This would repeatedly capture the same
variables for logging; if we need to capture different variables during a program’s lifetime then we
would need additional instances or junctions. A multi-instance architecture example is given next.

5.2 Sharding

We can implement sharding—example ④ in Fig. 1—through an architecture that routes queries
to different back-ends according to an N -way partitioned query-space. This architecture could be
repurposed to load-balance computations across an application rather than load-balance storage as
is being done here.

Fig. 5 shows an implementation of sharding in the DSL. It features two new behaviors when
compared to previous examples: (i) the DSL is interacting with the host language to obtain values
such as hashes that cannot be computed in the DSL because of its restricted expressiveness, and
(ii) abstracting over the number of backends, which is configuration parameter external to the DSL.
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InstanceTypes = {τActual, τAuditing}
Instances = {Act : τActual, Aud : τAuditing}
def main(t ➊) ◀ start Act(t) + start Aud(t)
def complain() ◀ . . .
def τActual :: (t) ◀
| init prop ¬Work
| init data n
⌊H1⌉; save(. . . , n);
⟨write(n, Aud);
assert [Aud ] Work;
wait [] ¬Work;
⟩ ➋ otherwise[t ] complain();

def τAuditing :: (t) ◀
| init prop ¬Work
| init prop ¬Retried
| init data n
| guard Work
restore(n, . . .);
⌊H2⌉;
retract [] Retried; ➍
case {➌
Work ⇒
retract [Act ] Work otherwise[t ]
if ¬Retried then assert [] Retried;
else complain();

reconsider ➎
otherwise ⇒ skip

}

Figure 4: Remote snapshot example. This extends the example from Fig. 3 with failure-awareness
and tolerance. The main differences from Fig. 3 are: ➊ accepting a timeout parameter, ➋ using this
time-out for failure-awareness and for ➌ retry-based failure-tolerance. The first time this junction
is scheduled, line ➍ is redundant since Retried is initialized to false, but line ➍ ensures that Retried
is reset each time that position is reached, before the logic that follows it.

Function Choose() is defined in the host language and computes which backend to target, by
allowing the tgt value to be written back to the DSL. We use the idx declaration syntax to allow the
DSL to use externally-provided indices. The number N of back-ends is a compile-time configuration
parameter. It affects the definition of Instances and line ➊ in Fig. 5.

Note that ⌊Choose();⌉{tgt} is sufficiently abstract to implement different types of sharding. The
simplest sharding is key-based. Using C-Saw we implemented a Redis extension that provides a
more complex, feature-based sharding based on object size to improve memory locality. We shard
by performing a look-up on a custom table that maps keys to object sizes, and we quantize sizes
into disjoint ranges: 0-4KB, 4KB-64KB, and >64KB.

6 Overview of the C-Saw DSL

After the illustrative examples presented in §5, this section describes the syntax and semantics of
the C-Saw DSL.

The DSL syntax is summarized in Table 1. To help explain the syntax, we will refer back to
earlier examples.
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T ::= break | next
| reconsider

F ::= P | false
| ¬F | F1 ∧ F2

| F1 ∨ F2 | F1 −→ F2

G ::= F | γ@F
V ::= P | S | I

E ::= ⌊H⌉{V⃗ } | ⟨E′⟩
| ⟨|E′|⟩ | return
| write(γ, n) | wait [n⃗] F
| save(n, x⃗) | restore(x⃗, n)
| E1; E2 | E1 + E2

| ∥n E⃗′ | E1 otherwise[t] E2

| stop ι | start ι γ1(p⃗) . . .
| assert [γ] P | retract [γ] P
| f (p⃗) | verify G
| skip | retry
| case {

F ⇒ E′; T
...

...
otherwise ⇒ E′′

}

Table 1: C-Saw DSL Syntax, described in §6. Symbols: E are expressions; T are terminators used
in case branches; F are propositional formulas and G are formulas that can be interpreted relative to
a specific junction; P are user-defined propositions like Work in Fig. 3; and V ranges over different
kinds of symbols: indices I, sets S, and propositions P .
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InstanceTypes = {τFront, τBack}
Instances = {Fnt : τFront, Bck1 : τBack, . . . , BckN : τBack}
def τFront :: (t) ◀
| init prop ¬Work
| init data n
| idx tgt of {Bck1, . . . , BckN} ➊
⌊Choose(); ➋⌉{tgt}; save(. . . , n);
⟨write(n, tgt ➌); assert [tgt] Work; wait [] ¬Work⟩
otherwise[t ] complain();

Figure 5: N -ary sharding over {Bck1, . . . , BckN}. This example builds on Fig. 4. The definition
of τBack is omitted because it closely follows τAuditing. The idx syntax used at line ➊ to declare an
index that can be updated by the host language. This update may occur on line ➋. An index over
a set can also be used as a cursor as seen on line ➌, which resolves to Bck tgt.

Notation We use ·⃗ to denote a collection of terms, and we use metavariables ranging over param-
eters p, instances ι, junctions γ, DSL-defined functions f , and named data n. Named data is stored
in a Key-Value (KV) table that is local to each junction; the name is the key and the data is the
value. The DSL is designed to clarify the logic governing the synchronization of these KV tables.

Host↔Junction sharing Junctions share data between their KV table and the host language by
using the ‘save’ and ‘restore’ primitives to move host data to and from the KV table. Data can be
pushed to other junctions’ tables using ‘write’ (see Fig. 3).

Junction↔Junction synchronization and communication Junctions synchronize parts of
their KV tables by using the ‘write’ primitive to push records to another junction, or using ‘assert’
or ‘retract’ for propositional symbols. This is done for Work at line ➌ in Fig. 3. The ‘wait’ primitive
blocks until a formula is true. It allows for specific records in the KV table to be updated by another
instance.

Composition This includes sequential (;) and parallel (+) composition. The special composition
‘otherwise’ is used for timed failure-handling. It is heavily used in examples (§5).

Control flow All DSL code is terminating except for calls to host-language code. As described
below, the DSL supports loops but they are unrolled at compile time. It also supports limited
branching: ‘reconsider’ (line ➎ in Fig. 4) branches to the containing ‘case’ expression if a different
match is made (i.e., if the propositions checked before the current guard have changed, or the current
guard no longer applies) otherwise the expression fails. ‘retry’ branches back to the beginning of a
junction and can only be invoked a fixed number of times within a single scheduling of a junction.

Blocks Code blocks differ in what happens if a failure is encountered in the block. When using a
transaction block ⟨|E⃗|⟩, a failure results in a clean rollback of the KV table. ⟨E⃗⟩ does not rollback
if E is not executed successfully—whatever changes have been made to the table up to that point
will persist. This matters because we get different behavior depending on where we put ‘otherwise’.

Start and stop The ‘start’ and ‘stop’ primitives control whether an instance is running or not.
Once started, an instance cannot be started again until it is stopped, otherwise the primitive would
fail. Similarly, a stopped instance cannot be stopped. At least one instance is started in ‘main’,
which can use and propagate parameters when starting instances. When an instance is started, its
junctions are started concurrently in an arbitrary order.
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Instance and junction references Junction names are always fully-qualified. The ‘::’ operator
is used to form junction names. The special names ‘me :: junction’ and ‘me :: instance’ refer to the
containing junction and the instance of an expression, respectively.

Distributed Key-Value (KV) table Each junction has a KV table that can be synchronized
between junctions. Junctions can push, but cannot pull: that is, they may write to both their and
other junctions’ tables, but may only read their local table. C-Saw adapts the tuple-space idea [14]
but restricts readability to junctions.

Junction state An executing junction can receive remote updates to its table through write,
assert and retract. These updates are not made to the table until the junction is next scheduled for
execution. ‘write’ can only be used on data that has been generated by ‘save’—i.e., so-called named
data. We can ‘restore’ any values except for read-only ones, such as parameters (described further
below).

A junction can discard parallel KV updates through the ‘keep’ primitive. This primitive is
idempotent and can be applied to propositions and data. Local updates to the table, performed
using save, assert and retract, are visible immediately to the junction and overwrite pending updates
from other junctions. There can be a race condition when updating and reading these values unless
the logic is carefully structured. To help with this structuring and to selectively permit external
updates while the junction is running, the ‘wait’ primitive blocks execution until a formula is satisfied,
and allows the junction’s table to reflect changes to propositions in that formula and a set of data
keys. If the formula is immediately true, then the statement returns immediately. The ‘otherwise’
primitive can be used to impose a time limit on the blocking statement.

Names The following entities are named: propositions, data, instances and junctions, and variables—
these can consist of parameters and for-bound symbols, and may range over sets and set elements; the
latter can be propositions, data, and instances and junctions. Names can be indexed, as described
next.

Parameters, data types, indexing Definitions can accept parameters of different types of data.
Propositions, named data, sets, and host-language data are all legal parameters. Examples can be
seen in §5. A definition must be given the right number of parameters in the right order for the
program to be well-formed. main can take an arbitrary number of parameters. These are usually
distributed among the instances that it starts.

In this paper, parameter variables are indicated as p to distinguish them from other types of
names, such as for-bound symbols p̃. Both definition parameters and ‘for’ variables are constant
variables: that is, they can be read but not assigned to.

Sets have a fixed size at compile time and can contain any kind of data but not other sets. For
example, sets can contain references to instances—an example is given in §7.3.

Sets may be provided literally, as seen at ➊ in Fig. 5, or declared using the set syntax and
provided as a compile-time parameter, or derived from another set. A set may be derived from
another set in two ways:

1. As a mapping, as done for the set Backend at ➊ in Fig.10,

2. Using the subset declaration syntax to allow external code, through ⌊. . .⌉ syntax, to populate
a set as a subset of a previously-defined set.

All sets and subsets are necessarily finite, and it is always possible to iterate over them.
Sets can be indexed using other data except for sets. Indices can be formed in two ways:

1. Using for-bound symbol, such as in InitBackend[b̃] and
Backend[t̃gt ] in Fig. 10.

2. Using the idx declaration syntax. This allows external code in the host language—through
⌊. . .⌉ syntax—to provide a choice function over a given set or subset.
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Indices and sets, including subsets, can be passed as definition parameters. This can be seen
for sets with the backends parameter to τf :: b in Fig. 10. An example of indices being passed by
parametsr is shown in §7.3.

Neither indices nor sets should be serialized or transmitted between junctions, because they
might not have valid interpretations at the receiving end.

A contract with the host language requires that the externally-definable subsets and indices must
have valid values relative to the sets to which they are defined.

Functions and brackets Functions are templates that are expanded at compile time. They
are similar to named equivalents of the ⟨E⟩ syntax that gathers a composition of expressions in
a common scope. This is not a scope for definitions, but one for fate [17]: that is, if part of the
expression fails then the whole expression fails unless there is some suitable handling logic. ⟨|E|⟩
brackets have an added behavior: upon failure, a roll-back of state (the KV table) is carried out,
restoring it to the point before the brackets were entered. The ⌊. . .⌉ syntax is not allowed in ⟨|E|⟩
since roll-back is undefined for it.

More on branching ‘skip’ is a no-op, and ‘return’ leaves a fate scope. Both operations can only
succeed. Since functions are expanded templates, ‘return’ in a function will leave the junction, not
just return from the function to the junction. ‘case’ is a key control-flow syntax used in this language.
Each arm of a case-expression terminates in one of a fixed number of ways. ‘break’ leaves the case
expression, ‘next’ retries the case, but can only match after the arm that succeeded, and ‘reconsider’
was described in §6. There are additional validity constraints on case constructs: they cannot be
empty or only contain an ‘otherwise’ branch, nor can ‘next’ be used immediately before ‘otherwise’.

Recursion Recursion is restricted in this language. It can take place through template-based
recursion on expressions, formulas or declarations—these are described further below. Bounded
recursion can also occur through ‘reconsider’ which retries a case-expression, or ‘retry’ which retries
a junction.

Template-based Recursion: Expressions/Formulas The sugaring ‘for ñ ∈ N⃗m op I[ñ]’,
where I[n] is either E or F and possibly has n free, expands into

I[N1] op . . . op I[Nm]

where op ∈ {∨,∧, ; ,+, ∥, otherwise[t]}.
There are no other constraints on recursion. For example, operator application may be nested—

the example

for p̃ ∈ {E1, E2, E3} otherwise[t] E[p̃]

becomes:

E[E1] otherwise[t] ⟨E[E2] otherwise[t] E[E2]⟩

(Note that operators associate to the right.)
Another example showing the loop’s unwinding:

for p̃ ∈ {E1, E2, E3} ; E[p̃]

becomes:

E[E1]; ⟨E[E2]; E[E2]⟩

Using ‘break’ we can exit the loop early.
When ‘for’ iterates over a singleton set, the loop evaluates only to one instantiation:

for ñ ∈ {E1} op E[n] = E[E1]
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When the set is empty:
for p̃ ∈ {} ∨ E[p̃] = false
for p̃ ∈ {} ∧ E[p̃] = ¬false

And for other operators,
for p̃ ∈ {} op E[p̃] = skip

Template-based Recursion: Declarations We use ‘for’ to initialize a set of propositions using
init, as seen in Fig. 10. In the same example we can see ‘for’ being used in a ‘case’ expression. In
both cases, the code is inlined at compile time. With the ‘case’ expression, we can mix different
types of recursion, for example:

for x̃ ∈ {. . .} (for ỹ ∈ {. . .} ∧ (Foo[x̃ ] ∨ Bar[ỹ ])) ⇒
# ‘y’ is free here, but ‘x’ is bound.

Communication to self Junctions cannot send data to themselves—applying ‘write’ to them-
selves would be redundant. Junctions may assert or reject propositions, but these are not “commu-
nicated” to the junction—the change is made locally. That is, assert [] Prop may be executed in a
junction j (assuming that Prop has been properly declared there), but assert [j ] Prop may not.

Initialization Junction definitions use init syntax to declare and initialize proposition (prop)
and data (data) variables. The latter are always initialized with the special undef . This is not a
valid value—trying to write or restore it results in an error. A data variable is given its first valid
value using save. undef is also used to initialize subset and idx. set must be specified at load
time.

Junction safety conditions verify is used to state properties that should hold in different parts
of the system, upon those parts being reached in the control flow. We rely on ternary logic—verify
will return an error if it needs to evaluate f@P and f is not running.
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7 Additional Architecture Examples

Section 5 provides several examples of how the language can be used to capture architectural patterns
that support the implementation of important features. Examples of such features were given in
Fig. 1 of the paper.

This section builds on the paper to provide additional examples of how to use the DSL to
implement important features.

7.1 Parallel sharding

InstanceTypes = {τFront, τBack}
Instances = {Fnt : τFront, Bck1 : τBack, . . . , BckN : τBack}
def τFront :: (t) ◀
| init prop ¬Work
| init data n
| set Backs # Assigned to {Bck1, . . . , BckN} ➊

| for t̃gt ∈ Backs init prop ¬ActiveBackend[t̃gt ] ➋
| subset tgt of Backs ➌
| init prop ¬HaveAtLeastOne
⌊Choose();⌉{tgt}; save(. . . , n);
retract [] HaveAtLeastOne;

for b̃ ∈ tgt + ➍

if ActiveBackend[b̃] then

⟨| write(n, b̃); assert [b̃] Work; wait [] ¬Work; ➎
assert [] HaveAtLeastOne; ➏

|⟩ otherwise[t ] retract [] ActiveBackend[b̃];
# Complain if not one backend is viable.

if ¬HaveAtLeastOne complain();

Figure 6: Snippet of N -ary sharding to a set of back-ends. The syntax is explained in §7.1.

The code in Fig. 5 of the paper is limited to using a single back-end at a time. This can be
improved to use all the back-ends in parallel. One way of doing this involves making Work into a
set indexed by tgt, and changing the penultimate line of Fig. 5 to the following:

⟨wait [] ¬Work[tgt]; write(n, tgt); assert [tgt] Work[tgt]⟩

Extending this idea further, Fig. 6 shows how the sharding logic can be extended to sets of back-
end targets. It restructures the architecture to achieve higher availability. Similar architectures
could optimize for throughput and latency through load-balancing. In Fig. 6 we see ➊ set syntax
used to declare a set defined at compile-time, ➋ a derived set called ActiveBackend to track which
back-ends are usable, ➌ subset syntax used to declare a runtime-defined subset of an existing set
(note that a different kind of “tgt” is being used here than that in ➋), ➍ iteration through a set in
parallel (i.e., using the ‘+’ operator), ➎ the same core line from the paper, ➏ use of a proposition to
determine if no viable back-ends exist, to alert the operator that the computation cannot terminate
successfully.

7.2 Caching

Recall that use-case ⑤ from in Fig. 1 described how caching can be used to avoid repeating expensive
or time-consuming operations. This section describes an implementation of an inline cache that
memoizes function calls. Not all functions are amenable to memoization—functions need to be
pure. For amenable functions, the cache reduces the response time for clients, and reduces the
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pressure on the resources needed to compute a function. If the architecture separates the part of
the system where the function is computed from the rest of the system, then the cache also reduces
pressure on the communication resources between the two parts of the system.

The features of the cache, such as its sizes and eviction strategy, are orthogonal to the architec-
ture, and are therefore outside of the DSL’s scope. They are expressed and implemented in the host
language or provided by linked libraries.

The implementation described in this section interfaces with external functions (in the host
language) that classify the request’s type. This classification determines whether the cache should
be consulted. For cacheable operations, the implementation performs a cache look-up, calls the
requested function, and caches the result.

Fig. 7 shows the cache’s implementation. Note that τFun is closely based on τAuditing in Fig. 4
⌊F ⌉ implements the function to be computed (and whose results can be memoized).

This code uses two data objects: n and m. The state held in junctions’ KV-tables and the state
held by the host language interact in the following ways:

� n is affected by the context at entry into the junction, and it serializes components that are
needed in the remainder of the computation.

� ⌊CheckCacheable⌉ affects Cacheable, which is made explicit by the syntax:
⌊CheckCacheable⌉{Cacheable}.

� ⌊LookupCache⌉ affects Cached.

� ⌊F ⌉ affects m, which is used in generating the response.

7.3 Fail-over

A fail-over architecture can be implemented in various ways that provide different trade-offs between
availability and overhead. Different implementations can also differ subtly in their tolerance of
different kinds of faults that might arise—such as short losses of synchronization between parts of
the system.

This section describes a full implementation in C-Saw that supports fault-tolerance and multiple
fail-over stages.

In this architecture, we typify the application logic into a single-instance front-end and at least
two instances of back-end. Back-ends provide redundancy: as long as one back-end works then the
system can continue to function. This fail-over design handles a subsystem restarting or reappearing
after a transient network outage. The entire system is parametrized by timeouts to discover faults
early.

The architecture’s logic is not tightly coupled to application logic, and in our prototype the
same logic is applied to both Redis and Suricata. Fig. 8 sketches the two instance types and their
junctions. The front-end’s junctions face clients (τf ::c) or back-ends (τf ::b). Code for the latter is
provided in Fig. 10 which shows how that junction behaves during the Starting phase when contact
is made between back-ends and the front-end, and the subsequent phase where client requests are
handled. The logic of the architecture is summarized in Fig. 11 for the back-end and Fig. 9 for the
front-end. The implementation of the description, client and backend are shown in Fig. 12, Fig. 10
and Fig. 14 respectively.

The implementation described in this section provides an implicit fail-over between warm replicas
of back-end instances. While adequate for the design goal, it can be made (i) less conservative, and
lower latency, by not requiring all the back-ends to respond before returning a response to the
client—a single back-end responding would be sufficient; (ii) use less network overhead by only
having a single back-end return a pre-response; (iii) scale better than the current linear scaling
overhead when additional back-ends are added by structuring sets of back-ends to make the cost
logarithmic. To show another point in the design space, an alternative design featuring a watchdog
instance is given in §7.4.
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InstanceTypes = {τCache, τFun}
Instances = {Cache : τCache, Fun : τFun}
def main(t) ◀

start Cache(t) + start Fun(t)
def complain() ◀ . . .

def τCache :: (t) ◀
| init prop ¬Work | init prop ¬Cacheable
| init prop ¬Cached | init prop ¬NewValue
| init data n | init data m
⌊CheckCacheable⌉{Cacheable};➊
case {

Cacheable ⇒ ➋

⌊LookupCache⌉{Cached};➌
next➍

¬Cacheable ∨ (Cacheable ∧ ¬Cached) ⇒ ➎

save(. . . , n);
⟨write(n, Fun);
assert [Fun] Work;
wait [m] ¬Work; restore(m, . . .);
assert [] NewValue;
⟩ otherwise[t ] complain();

next
Cacheable ∧NewValue ⇒ ➏

⌊UpdateCache⌉; break
}

def τFun :: (t) ◀
| init prop ¬Work | init prop ¬Retried
| init data n | init data m
| guard Work
restore(n, . . .);
⌊F ⌉;
retract [] Retried;
case {

Work ⇒
⟨save(. . . , m); write(m, Cache);
retract [Cache] Work⟩ otherwise[t ]
if ¬Retried then assert [] Retried;
else complain();

reconsider
otherwise ⇒ skip

}

Figure 7: Adding an application-specific caching layer. This examples builds on Fig. 4, whose
τAuditing we largely reuse here as τFun. The main differences from previous examples involve the
interfacing with externally-defined functions. The key steps in this junction are: ➊ determine
whether a request’s response could be cached; ➋ have the DSL code react to changes made by
external code—e.g., Cacheable is set by ⌊CheckCacheable⌉; ➌ the “case” statement is redone but
will not reconsider this branch; ➍ performs the lookup using ⌊LookupCache⌉; ➎ call the function if
the result cannot be cached, or if the cache misses; ➏ update the cache if the result is cacheable.

7.4 Watched fail-over

One of the take-aways of this research was how the same architectural concept can be implemented
in different ways using C-Saw, leading to different architectural features. This section presents an
alternative architecture to the fail-over feature described in §7.3.

The architecture in this example supports two back-ends, o and s, where o is preferred to s,
and s is used when o is unavailable. This design also features a watchdog that arbitrates back-end
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Figure 8: The fail-over architecture described in §7.3 relies on two instance types: back-end and
front-end, shown as τb and τf in our code. They have three and two junctions respectively. This
diagram shows important interactions between junctions: ① the junction τb :: startup registers the
back-end instance with τf :: b, which in turn makes τf :: c aware of which back-ends are available
for failing-over; ② once at least a single back-end is available, τf :: b signals τf :: c to start handling
requests from clients; ③ client requests are dispatched to back-ends; ④ τf ::b oversees the canonical
state of the system, to initialize additional back-ends that come online; ⑤ after a period of inactivity
by a backend, possibly brought about by a network failure, the back-end attempts to register itself
anew with the front-end.
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Figure 9: States of the backend-facing junction in the front-end instance. The system is in full
capacity (left-most state) if both back-ends are online and synchronized. It fails (right-most state)
if both back-ends are unavailable—making fail-over impossible. If at least one back-end is available
then the system can operate but there is no fail-over capacity. If a back-end fails then it can recover
when its state is resynchronized during the registration step with τf ::b.

liveness. The front-end focuses on engaging with only one of the two back-ends—unlike the other
design which involved engaging with all backends.

The system starts by picking a back-end on which to focus. It then traverses states depending
on faults that can arise. The system can continue to function unless both back-ends become un-
responsive, or unless the single synchronized back-end becomes unresponsive. The high-level state
diagram for the design front-end is shown in Fig. 15. That diagram reuses the notation introduced
in Fig. 11, showing the transitions between states of the system. Transitions are denoted by arrows
indicating whether the transition is made externally (via scheduling) or internally by the system
(through one or more changes in instances or their configuration).

The states are composed of the states of instances: the white circle denotes a front-end, and the
two blue circles denote back-ends. Within the circles we find an indication of their internal state: 0
means that they are initialized but not synchronized, and m and n are two distinct synchronization
points. The black edge between the front-end and one of the back-ends denotes the focus of the
front-end, i.e., which of the two back-ends is currently picked as being the leader.

In Fig. 15 we see a back-end being chosen for focus upon succesful startup, and the system
then transitioning between states depending on whether one or both back-ends become unavailable.
The system continues functioning through the orange states, and attempts to recover back into a
green state. Should both back-ends become unavailable, the system enters a red state and must be
restarted.

56



International Journal of Networking and Computing

def τf ::b(backends, t) ◀
| init data state
| init prop Starting | init prop ¬Active
| init prop ¬Activating | init prop ¬Retried
| for t̃gt ∈ backends init prop ¬Backend[t̃gt ]➊
if Starting then

for b̃ ∈ backends +

⟨wait [] InitBackend[b̃] otherwise[t ] skip⟩;
retract [] HaveAtLeastOne;

for b̃ ∈ backends ;

if InitBackend[b̃] then

⟨| Initialize(b̃);
# Next line relies on idempotence.

assert [] HaveAtLeastOne;
|⟩ otherwise[t ] skip;

if ¬HaveAtLeastOne then complain;
retract [] Retried;
case {
Starting ⇒

# Progress f::c beyond Starting.

retract [f ::c] Starting otherwise[t ]
if ¬Retried then
assert [] Retried;

else complain();
reconsider

otherwise ⇒ skip
}

else
case {
Call ⇒
⟨ verify ¬Active;

write(state, f ::c);
assert [f ::c] Active;
wait [state] ¬Active;

⟩ otherwise[t ] complain();
retract [] Call;
break

for b̃ ∈ backends ¬Call ∧ InitBackend[b̃] ⇒
Initialize(b̃) otherwise[t ] skip;

retract [] InitBackend[b̃];
break

otherwise ⇒ skip
}

Figure 10: Code for the backend-facing junction in the front-end instance sketched in Fig. 9. The
syntax at line ➊ shows the formation of a set from another set: Backend is a set of propositions that
is indexed by a backend identifier.
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Figure 11: States of a back-end instance. After the instance is created, the τb :: startup junction is
scheduled as described in Fig. 8. This either times out, resulting in τb :: reactivate being scheduled,
or the instance is subsequently used to serve client requests through schedules of τb :: serve. This
diagram also explains visual cues used in later diagrams.

InstanceTypes = {τf , τb}
Instances = {f : τf , b1 : τb, b2 : τb}
def main(t) ◀
start b1 startup(t) serve(t) reactivate(⌊3 ∗ t⌉)+
start b2 startup(t) serve(t) reactivate(⌊3 ∗ t⌉)+
start f b({b1 ::serve, b2 ::serve}➊, t)
c({b1 ::serve, b2 ::serve} , t)

def complain ◀ ⌊. . .⌉; return
def Initialize(tgt) ◀ ➋

verify ¬Activating ∧ ¬Active;
write(state, tgt);
assert [tgt ] Activating; ➌
wait [] ¬Activating;
assert [tgt ] Active;
# If we fail on this, the backend won’t be used

# by f::c, and the backend will reattempt

# reactivation later after a period of inactivity

# expires.

# ‘f::c’ below can be made into a parameter.

assert [f ::c] Backend[tgt ]; ➍
retract [] Active;

Figure 12: Part of the architecture description for the fail-over architecture described in §7.3.
Initialize is a function called to initialize a newly-registered backend tgt . Location ➊ shows an
example of passing set parameters in the DSL, and ➋ shows the declaration of the tgt parameter the
is used as a destination junction in ➌, and as an index in ➍. These language features are described
further in §6.
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def τf ::c(backends, t) ◀
| init prop Starting | init prop ¬Active
| init prop ¬Req | init prop ¬Call
| init prop ¬HaveAtLeastOne
| init data state | init data req
| init data preresp

| for t̃gt ∈ backends init prop ¬Backend[t̃gt ]
| for t̃gt ∈ backends init prop ¬Running[t̃gt ]
# Req is asserted externally

# to process client request.

| guard ¬Starting ∧ Req
retract [] Req;
verify ¬Call;
assert [f ::b] Call;
wait [state] Active;
restore(state, . . .);
retract [] Call;
⌊H1⌉;
save(. . . , req);

retract [] HaveAtLeastOne;

for b̃ ∈ backends +

if Backend[b̃] then

⟨| verify S(b̃) −→ b̃@Active ∧ ¬b̃@Running[b̃];

write(b̃, req);

assert [b̃] Running[b̃];

wait [preresp] ¬Running[b̃];
assert [] HaveAtLeastOne;

|⟩ otherwise[t ] retract [] Backend[b̃];

if ¬HaveAtLeastOne complain();
verify HaveAtLeastOne;

restore(preresp, . . .);
save(. . . , state);
write(f ::b, state);
⌊H3⌉;
retract [f ::b] Active;

Figure 13: Code for the client-facing front-end junction in the fail-over architecture described in §7.3.
The code for the backend-facing front-end junction is shown in the paper.
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def τb ::serve(t) ◀
| init prop ¬Active | init prop ¬Activating
| init prop ¬RecentlyActive | init data preresp
| init data state | init data req
| init prop ¬Running[me :: junction]
| guard Activating ∨ (Active ∧ Running[me :: junction])
case {
Activating ⇒
restore(state, . . .);
# If the remote retraction fails,

# then b::reactivate will eventually

# retry the startup.

retract [f ::b] Activating otherwise[t ]
retract [] Activating;

break
otherwise ⇒
assert [me :: instance ::reactivate] RecentlyActive
restore(req , . . .);
⌊H2⌉;
save(. . . , preresp);
⟨ write(f ::c, preresp);

retract [f ::c] Running[me :: junction];
⟩ otherwise[t ] retract [] Active

}

def τb ::startup(t) ◀
| init prop ¬InitBackend[me :: instance ::serve]
| guard ¬me :: instance ::serve@Active
assert [f ::b] InitBackend[me :: instance ::serve]
otherwise[t ] skip

def τb ::reactivate(t) ◀
| init prop ¬RecentlyActive
| init prop ¬Active
retract [] RecentlyActive;
wait [] RecentlyActive otherwise[t ]
⟨retract [me :: instance ::serve] Active;
retract [me :: instance ::serve] Activating⟩;

Figure 14: Code for the back-end in the fail-over architecture sketched in §7.3
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Figure 15: States of the front-end of the “watched” fail-over system described in §7.4.
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InstanceTypes = {τf , τw, τo, τs}
Instances = {f : τf , w : τw, o : τo, s : τs}
def main(t) ◀(

start w co() cs() cunrecov() + start o(t) + start s(t)
)
; start f (t)

def complain ◀ . . .

def RunBackend(n, t , tgt) ◀
⟨|write(n, tgt); assert [tgt ] Run[tgt ]|⟩

otherwise[t ] complain();

def τf :: (t) ◀
| init prop ¬Reply

| for t̃gt ∈ {o, s} init prop ¬Run[t̃gt ]
| init prop ¬failover | init prop ¬nofailover
| init data n | init data m
# Junction won’t be scheduled until ¬Reply.
| guard ¬Reply
⌊H1⌉; save(. . . , n);
verify ¬Run[o] ∧ ¬Run[s] ∧ ¬Reply
verify ¬ (failover ∧ nofailover)
case {

failover ∧ ¬nofailover ⇒
RunBackend(n, t , s);
break

¬failover ∧ nofailover ⇒
RunBackend(n, t , o);
break

otherwise ⇒
RunBackend(n, t , o) + RunBackend(n, t , s)

otherwise[t ] complain();

# Here could implement more robust handling,

# to retry RunBackend () for example.

};
# Don’t wait too long for completion, prioritize

# throughput.

wait [m] Reply otherwise[t ] return;
# If Reply hasn’t been reset in line above then this

# junction won’t be scheduled again because of guard.

retract [] Reply;
restore(m, . . .);
⌊H3⌉;

def Watch(tgt , prop) ◀
| for t̃gt ∈ {o, s} init prop ¬Run[t̃gt ]
| init prop ¬prop
⟨|assert [tgt ] prop; assert [f ] prop|⟩ otherwise complain()

def τw ::cs() ◀
| guard ¬S(o) ∧ S(s) ∧ S(f )
Watch(s, failover)

def τw ::co() ◀
| guard ¬S(s) ∧ S(o) ∧ S(f )
Watch(o, nofailover)

def τw ::cunrecov() ◀
| guard ¬S(s) ∧ ¬S(o) ∨ ¬S(f )
complain()

Figure 16: First half of the code for §7.4. Note the proposition name being passed as the second
parameter to the function Watch; it must be resolvable at compile-time since functions behave as
templates in this language.
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def reply(t , other) ◀
verify ¬Reply@f
# Condition below isn’t too strong since

# either ‘s’ or ‘o’ may Reply,

# so we ensure that the other backend isn’t

# currently in Reply mode.

verify ¬Reply@other
⟨save(. . . , m);
write(m, f );
assert [f ] Reply;
⟩ otherwise[t ] complain();

def τs :: (t) ◀
| for t̃gt ∈ {s} init prop ¬Run[t̃gt ]
| init prop ¬Reply
| init data n | init data m
| guard Run[s]
verify ¬Reply
restore(. . . , n);
⌊H2⌉;
retract [f ] Run[s];
otherwise[t ] complain();

case {
failover ⇒

reply(t , o);
retract [] Reply;
break;

otherwise ⇒ ⌊skip⌉
};

def τo :: (t) ◀
| for t̃gt ∈ {o} init prop ¬Run[t̃gt ]
| init prop ¬Reply
| init data n | init data m
| guard Run[o]
verify ¬Reply
restore(. . . , n);
⌊H2⌉;
retract [f ] Run[o];
otherwise[t ] complain();

reply(t , s);
retract [] Reply

Figure 17: Second half of the code for §7.4.
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Sched f

Wrf (n, ∗)

Wrg(n, ∗)

Wrf (Work, tt) Wrg(Work, tt)

Rdf (Work, ff)

Unsched f

Rdg(Work, tt)

Rdg(n, ∗)

Sched g

Wrf (Work, ff)

Wrg(Work, ff)

Unsched g

Figure 18: Part of the event structure for Fig. 3. All arrows are enablement arrows, but arrows are
dotted to emphasize cross-junction enablement. Scheduling events are shown boxed for emphasis.

[[⌊. . .⌉{V⃗ }]]J =

⋃
v∈V⃗

{WrJ (v, ∗)} , ∅, ∅

 [[save(. . . , n)]]J =

({WrJ (n, ∗)} , ∅, ∅) [[write(γ, n)]]J = ({Wrγ(n, ∗)} , ∅, ∅)

[[E1 + E2]]J = (S[[E1]]J ∪ S[[E2]]J , ≤ [[E1]]J ∪ ≤ [[E2]]J , #[[E1]]J ∪ #[[E2]]J )

Figure 19: Semantic rules for part of the language syntax—the syntax is shown in Table 1.

8 Semantics

This section uses event structures [49] to give formal semantics to the C-Saw DSL. Intuitively, event
structures describes enablement and conflict between events. This approach for describing semantics
has been used to characterize concurrency of distributed and weakly-consistent systems [15], and it
seemed like a suitable approach to use for C-Saw.

Fig. 19 shows a subset of C-Saw’s semantics. Event structures are triples consisting of a set of
events, and the enablement and conflict relations. In the subset above, an event is represented by
a label describing that event such as “WrJ (v, ∗)”—which updates the value of data item v in the
memory of junction J . In this subset of rules, the top rules only introduce new labels, and the
bottom rule describes the parallel composition of the semantics. This form of composition simply
unifies two structures; other forms of composition, such as ‘;’, are more complex. Section 8.5 contains
the rest of the rules.

We take advantage of the graphical notation of event structures to give examples of system
behavior. Fig. 18 represents the system from Fig. 3. These semantics reduce DSL behavior to a small
set of general events, such as scheduling and unscheduling of a junction (Sched f and Unsched f ),
writes of data (Wrf (n, ∗)) and propositions (Wrf (Work, tt)), and reads (Rdf (Work, ff)). Symbols
tt and ff represent “true” and “false” in the semantics. In this example, event Wrf (Work, tt) occurs
when proposition Work is set to true in the memory of junction f ; and Rdf (Work, ff) occurs when
Work is read as false in the memory of junction f . This example does not involve conflict between
events, which can arise when code branches. Section 8.6 contains larger examples based on another
example of a DSL expression.

“Local priority” rule. Junctions execute concurrently and may send messages to each other in
parallel. Messages are used to perform updates to junctions’ KV-tables. While a junction is running,
updates are queued to take effect after the junction finishes executing, and before it is scheduled
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to execute again. If multiple updates to the same state occur then they are handled in the order
that they are received—races are avoided by the design of the sychronization logic expressed in the
DSL. A junction can only directly update another junction’s state if the latter is executing wait on
that state—for both propositions and data objects. If state updates arrive at a running junction,
and that junction updates that same state, then the pending update will be ignored. That is, local
updates have priority.

8.1 Event structures

This section starts by outlining the basic definitions of event structures [49] to make the description
more self-contained. The cited literature provides the details and discussion related to the basic
definitions of event structures.

An event is a triple (id , label , outward) consisting of a unique identifier drawn from an inex-
haustable set, a label, and a Boolean value labeled “outward”. The labels used in C-Saw’s semantics
are defined in §8.2. “Outward” is used to track whether an event can enable events through compo-
sition, for instance events related to exception-handling. All events start out with “outward“ being
true, and it will be manipulated by some statements.

An event structure is a triple (S,≤,#) consisting of: a set of events S, an enablement relation
≤ and a conflict relation #. The ≤ relation is reflexive and transitive. The # relation is irreflective
and symmetric. We previously encountered this triple in Fig. 19, and it will be used in §8.5 to give
the remainder of the language semantics.

To qualify as an event structure the following properties must hold:
conflict inheritence:

∀e1, e2, e3 ∈ S. s1#s2 ∧ s2 ≤ s3 −→ s1#s3

and finite causes:

∀e ∈ S. |[e]| ∈ N

where

[e] = {e ∈ S | e′ ≤ e}

Two events e1, e2 are concurrent if they are incomparable by enablement and are not conflicting:

e1 ̸≤ e2 ∧ e2 ̸≤ e1 ∧ ∀e′1 ∈ [e1], e
′
2 ∈ [e2]. ¬(e′1#e′2)

8.2 Labels

Labels represent the activity taking place during an event. Examples of labels were previously given
in §8, and in this section we describe the remaining labels that are used in C-Saw’s semantics.

The full set of labels is:

L ∈ {RdJ (K, V ), WrJ (K, V ), StartJ (γ), StopJ (γ),

Sched J , Unsched J , SynchJ (K⃗), WaitJ (K⃗,K) }

Further to the labels described in §8, SynchJ (K⃗) represents a synchronization barrier across con-
current event chains. This is an intermediate event that is inserted by the semantics during some
operations to preserve intuition, and an example will be seen soon. WaitJ (K⃗,K) is a placeholder
label that is decomposed into a pattern of network events at a later stage to simplify the semantics,
as will be described in §8.5.

The examples before abstract some behavior, such as the complain () function:

def complain() ◀ . . .

in Fig. 4. We represent this abstracted behavior using ad hoc labels such as the “complain” label
in §8.6.
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8.2.1 Graphical notation

Event structures can be represented graphically as shown in Fig. 18. This section describes the
notation more accurately. A larger example will be given in §8.6.

The graphical notation captures event structures’ formalization of enablement and conflict be-
tween events. In this notation, events are represented using their labels.

The notation relies on two key definitions. The first is immediate causality, represented by an

arrow between two events. This captures a minimal form of enablement: “ L1 L2 ” iff, taking ei

to correspond with Li: e1 ⪇ e2 and ¬∃e′. e1 ⪇ e′ ∧ e′ ⪇ e2.
The second is minimal conflict, represented by a zizag between two events. This captures a

minimal form of conflict: “ L1 L2 ” iff, taking ei to correspond with Li: e1#e2 and ∀e, e′. e ≤
e1 ∧ e′ ≤ e2 ∧ e#e′ −→ e = e1 ∧ e′ = e2. (Note that the arrow used here denotes material
implication, and is a different arrow than that used for immediate causality.)

The graphical notation can convey an intuition of the behavior of a system that is described by

an event structure. The notation L1 L2 means that L1’s event is necessary for L2 to occur.

Furthermore, fan-in events are conjunctive; that is, L3 below can only occur if both L1 and L2 occur:

L1

L2

L3

Fan-out events create parallel chains of event execution:

L1

L2

L3

And such parallel chains can be mutually exclusive if they are conflicting, as shown below:

L1

L2

L3

8.3 Supporting definitions

This section provides some definitions used when giving semantics to the C-Saw DSL.
The isolate function mutates an event to set its outward flag to false. This is used in the semantics

to capture event interactions for exception-handling, as will be seen by the semantics of ⟨| · |⟩ and
otherwise.

isolate ((id , label , outward)) = (id , label , ff)

This function will also be lifted to work on sets of events.
The DSL semantics will be expressed using [[·]]ηJ , where J is the junction in which the semantics

are being evaluated and η is a finite function that maps to DSL statements. It is initialized as
follows:

{sub 7→ skip, return 7→ skip, break 7→ skip,
reconsider 7→ skip, next 7→ skip}

The parameter η is used to give semantics to statements that affect control flow. sub tracks which
statement will be evaluated next in sequence, and the other values will depend on sub to some
extent—this will be made clear by the semantics. Parameter η will be changed while recursively
evaluating the semantics of DSL statements, but J will remain fixed. We will use the notation
η{return 7→ η(sub)} to denote the update of η such that return is changed to map to η(sub). When
redundant, J and η will be omitted from the notation.
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The next two definitions gather the rightmost and leftmost periphery of an event structure, and
are used when composing event structures together:

⇒
[[E]] =

{
S if “≤” = ∅
{e ∈ S | ̸ ∃e′. e ≤ e′} otherwise

⇐
[[E]] =

{
S if “≤” = ∅
{e ∈ S | ̸ ∃e′. e′ ≤ e} otherwise

To make fresh copies of event structures we use a map ♮(idx, [[E]]) where idx is an arbitrary object
used for indexing. This map creates a copy of events, updating their identifier to make them unique,
and preserves their enablement and conflict relations. This map is used to describe the semantics
of composition operators that lead to distinct but similar future behavior of a system, such as the
E1 otherwise E2 operator that maps arbitrary failure during E1 to execute E2. For e ∈ S[[E]], we
define ♮idxe to be the unique bijection to S♮(idx, [[E]]). The symbol idx is dropped when it is obvious
from the context or if it is trivial (unique).

The function N is used to decompose case statements and give semantics to the next terminator
by progressively reducing the cases that can apply.

N



case {
F1 ⇒ E1; T1

F2 ⇒ E2; T2

...
...

otherwise ⇒ En

}


7→


case {

F2 ⇒ E2; T2

...
...

otherwise ⇒ En

}

 if n > 2

This function is undefined if the case expression contains only one case—in which case next cannot
be used—or is malformed.

Another supporting definition involves a scheme to decompose a formula F into primitive events
that relate to each proposition involved in F . For this we first convert F into its disjunctive normal
form [28] (DNF): ∨∧

{P,¬Q, . . .}

Next, that is converted into sets of sets of literals (propositions or their negations):

{. . . , {P,¬Q, . . .} , . . .}

Finally, these are mapped these into read-event labels:

{. . . , {RdJ(P, tt),RdJ(Q, ff), . . .} , . . .}

Each element set represents a combination of reads than can guard subsequent logic. Each element
set is structured into parallel events that are collectively prefixed by a Synch, and such that each
element set is a strict alternative:

SynchJ

RdJ (P, tt)

RdJ (Q, ff)
. . .

SynchJ . . .
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8.4 Program semantics

Mapping programs into event structures involves the following steps:

1. Functions are inlined. They have no distinct semantic meaning since they are templates (see
§6).

2. Expressions only consist of formulas, ranged over by the metavariable F in Table 1 of the
paper, and are in converted to DNF as described above.

3. Statements, including junction definitions, are mapped using the definitions in §8.5.

4. A post-processing step described in §8.5 expands placeholder events into atomic events.

5. A start-up portion, described next, is added to complete the program-level semantics.

Start-up. The start-up portion of a program initializes and starts instances from a distinguished
start-up instance. In involves two special names:

� The externally-occuring main event enables the subsequent events as defined by the semantics
of the program’s main statement:

def main ◀ . . .

� The distinguished init junction represents the instance responsible for start-up.

The start-up behavior of the example in Fig. 4 from the paper is shown below. The rest of its
semantics is visualized in §8.6.

main

Startinit(Act)

Startinit(Aud)

WrAud(Work, ff)

WrAud(Retried, ff)

WrAct(Work, ff)

8.5 DSL statement semantics

This section provides a general, infinitary version of the semantics for a DSL. That is, events have
finite support as required by the definition of event structures, but branches may have infinite depth
because subsumed subtrees are not filtered—a proposition that is set to false might later be used
to define behavior when the proposition’s value is true. This expands the semantics with redundant
behavior that can be eliminated—either during a later deflationary pass or by construction. Formal-
izing a more accurate semantics is left as future work. The language’s implementation only requires
a weaker version of this semantics where unnecessary program behavior is curtailed.

Fig. 20 shows the semantic definitions for most statements. Two statements are handled sepa-
rately because their behavior requires more explanation.

The first is the case expression. Let E be:

case {
F1 ⇒ E1; T1

F2 ⇒ E2; T2

...
...

otherwise ⇒ En

}

In order to define [[E]]η we make some intermediate definitions, starting with adaptations of η:

η′ = η{break 7→ η(sub), reconsider 7→ E}
η′i = η′{next 7→ E′

i} where i < n
η′n = η′{next 7→ undef}
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where E′
i (where i < n) is:

case {
Fi+1 ⇒ Ei+1; Ti+1

...
...

otherwise ⇒ En

}
The remaining intermediate definition is:

case(i) =



[[Fi]]
η′
i

[[Ei; Ti]]
η′
i

[[¬Fi]]
η′
i

case(i+ 1)

if i < n

[[En]]
η′
n if i = n

Finally, [[E]]η = case(0),
The second is the wait statement. It is initially mapped to a “WaitJ (n⃗, F )” event which can

generally interconnect with other events as shown below:

A1

...

An

WaitJ (n⃗, F )

B1

...

Bm

We then expand WaitJ (n⃗, F ) into a set of two kinds of events. First, events that include the
DNF-expansion of F , shown here as a q-ary set of disjuncts: DNF(F )1, . . . ,DNF(F )q. Second, the
reads of data state n⃗: RdJ (n1, ∗), . . . ,RdJ (np, ∗)

These sets of events are then interconnected as shown below. This is designed to stage the
evaluation of the wait statement: first determine that F is satisfied, then read n⃗.

A1

...

An

DNF(F )1

...

DNF(F )q

RdJ (n1, ∗)
...

RdJ (np, ∗)

. .
.

. . .

RdJ (n1, ∗)
...

RdJ (np, ∗)

B1

...
Bm

B1

...
Bm

8.6 Example

This section uses the graphical notation described in §8.2.1 to illustrate the event structure for the
example described in §5.1. The start-up behavior of this example was shown in §8.4.

There are two instances in this example. The behavior of Act is shown next, and that of Aud
is shown in Fig. 22.

The instances interact implicitly by updating propositions in each other’s KV-tables. Act en-
gagesAud at the occurrence of eventWr{Act,Aud}(Work, tt), and is engaged back when RdAct(Work, ff)
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Sched Act

WrAct(n, ∗)

WrAud(n, ∗) complain

Wr{Act,Aud}(Work, tt) complain

RdAct(Work, ff) complain

Unsched Act

Figure 21: Event structure for Act .

occurs. The complexity of Aud ’s behavior in Fig. 22 arises from the combination of τAuditing’s retry
logic and its failure-handling.

8.7 Topology

The topology of a C-Saw-architected system, showing the communication paths between components,
is derived from the definition of Topo:

Topo =
⋃

ι∈Instances

⋃
γ∈Junctions(ι)

{
(γ, γ′) | γ′ ∈ Topoγ(Eγ)

}
Topo produces a directed graph whose nodes are junctions and whose edges indicate communication
from one junction to another. Its definition depends on the following definitions:

� Instances (see §4)

� Junctions(ι), which maps an instance to its set of junctions (by analysis of C-Saw expressions),

� Eγ , which is the DSL statement of junction γ.

� Topoγ(E), which recursively computes the set of communication targets for junction γ by ana-
lyzing the syntax of the junction’s DSL expression. For example, the statements “assert [γ′] P”
“retract [γ′] P” and “write(γ′, n)” would return the set {γ′}; “⟨E′⟩” evaluates to Topoγ(E

′);
and “E1; E2” evaluates to Topoγ(E1) ∪ Topoγ(E2).
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RdAud(Work, tt)

RdAud(n, ∗)

Sched Aud

WrAud(Retried, ff)

RdAud(Work, ff)

Unsched Aud

RdAud(Work, tt)

RdAud(Retried, tt)

complainWr{Act,Aud}(Work, ff)

RdAud(Work, ff)

Unsched Aud

RdAud(Retried, ff)

WrAud(Retried, tt)

RdAud(Work, ff)

Unsched Aud

RdAud(Work, tt)

RdAud(Retried, tt)

complainWr{Act,Aud}(Work, ff)

RdAud(Work, ff)

Unsched Aud

Figure 22: Behavior of the Aud instance from §5.1.
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9 Serialization Framework

Data-structure serialization is an important supporting primitive for C-Saw’s definitional approach
to software architecture. Different architectures might require program data to flow differently
across instances, and serialization provides the means to capture that data. In languages like C, it is
difficult to serialize data structures using existing tools without either (i) limiting the types of data
structures that can be expressed or (ii) burdening the programmer with custom serialization of data
types. The challenges encountered when working with C datatypes include: a) void pointers which
can represent any data type, b) arbitrary casting, and c) implicit size of memory objects that are
managed by C’s standard library allocator or by a custom allocator.

Various solutions have been devised over the years, including new DSLs [3] intended for imple-
menting RPC, template-based schemes [1] for general types but requiring programmer effort to use
their API, techniques to ensure memory safety [41], and specialized approaches for datatypes used
in network protocols [12].

C-Saw builds on the C-strider [42] approach for the C language. C-strider implements a type-
aware traversal of specific heap objects at runtime, and is guided by user-defined callbacks. It
statically analyzes the source code to generate information about each type and generates serializa-
tion calls for each field of a type.

Unlike C-strider, C-Saw avoids having the programmer modify their source code or definitions—
instead, they #include automatically-generated definitions by the C-Saw serializer. This serializer
consists of a new libclang-based tool that analyzes C datatype definitions. To use the C-Saw serial-
ization tool, the user specifies the type to serialize, answers some size-related questions if required
by the tool, and the serialization file is produced. This tool sacrifices some flexibility but it has been
sufficient for the complex datatypes involved in the third-party software that was used to evaluate
C-Saw. Though the approach is general, our prototype only supports recursive datatypes up to a
maximum, though configurable, recursion depth. For instance, linked lists are only serialized up to a
maximum length. Though this might seem like a limitation, it protects against overflowing the seri-
alization buffer. Supporting more flexible serialization through runtime analysis and buffer-resizing
is left as future work.

10 Evaluation

We evaluate the behavior of features implemented in C-Saw (§10.1) by using reference work-
loads to measure the effect of DSL-implemented features (from Fig. 1) on performance and reliability.
We evaluate DSL cost and benefit (§10.2) by measuring the effort of using the DSL when com-
pared to using the host programming language directly; and the performance overhead (§10.3)
of a C-Saw-based system compared to the original version.

These experiments target Redis v2.0.2, cURL v7.72.0-DEV, and Suricata v6.0.3. All these ex-
periments were carried out on Ubuntu 16.04.7 LTS under Linux kernel version 4.4.0-198-generic,
on an Intel i7-3770 CPU machine clocked at 3.4 GHz and with 8GB RAM. Experiments ran in
separate VMs allocated 1GB RAM. Experiments were repeated 20 times and averaged and reported
with their standard deviation, except for the cumulative distribution function (CDF) data which we
obtained directly from redis-benchmark.

10.1 Behavior of features implemented in C-Saw

This section evaluates different, newly-added features to Redis and Suricata. Deployments usu-
ally build features around Redis and Suricata, but in this work we internalize important features
(Checkpointing, Sharding, Caching) by using the DSL. For Redis we generated workloads by us-
ing redis-benchmark using its default parameters. For Suricata we used bigFlows.pcap, a public
packet-capture benchmark that contains several flows from different applications [6].
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Figure 23: Behavior of Redis reconfigurations. All three graphs show averaged results, and the bars
show standard deviation.
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Figure 24: Behavior of Suricata reconfigurations and normalized performance overhead of check-
pointing.
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Figure 25: Overhead graphs for rearchitected software.
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Checkpointing Checkpointing is a building block for migration and roll-back of state. Fig. 23a
shows the results for checkpointing Redis. Redis itself has a default crash handler but it does not
checkpoint at intervals. While this handler improves availability, it does not minimize data loss.
In this experiment we carry out checkpoints at 15-second intervals and simulate a Redis crash to
observe its recovery. A crash is indicated by the vertical red line in the graph. Note that the y-axis
starts at 8.0 to show the fine detail of the behavior—the dips in the graph are actually more subtle if
we start the y-axis at 0. The same checkpointing logic was used in Suricata and the result is shown
in Fig. 24a.

Sharding We extended Redis using the DSL to implement two types of sharding, based on i) key
and ii) object-size [23]. In both cases we sharded data into four classes, where each class is serviced
by a separate back-end Redis instance. We subjected both types of sharding to even and uneven
workloads. Uneven workloads place different pressure on different back-ends. Fig. 23b shows the
results for sharding by key, which we hash using the djb2 hashing algorithm [51]. The graph shows the
uneven behavior resulting from this workload; we confirmed that the ratio between shards matches
that of the workload. The key-based sharding logic was adapted to implement packet-steering in
Suricata, with the result shown in Fig. 24b. The 5-tuple of each packet (source and destination IP
and port, and protocol) is hashed to determine which of four back-end Suricata instances should
process it. The graph shows that the workload is distributed in ratios across the four instances.
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Figure 26: Additional graphs from experiments to Fig. 23, 24, 25
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Caching We modified Redis to internalize a cache that is consulted before Redis’ own look-up.
We used a read-heavy workload to model a scenario where memory-burdened KV databases face
a high skew in requests, modeling real-world scenarios [11, 50]. In our scenario, 90% of requests
are directed at 10% of the entries. Fig. 23c shows response to this workload. Note that the y-axis
starts at 5.6 to show the fine detail of the behavior; the gain from caching on this setup is around
200 queries per second (QPS).

10.2 DSL cost and benefit

We measure cost and benefit by using lines of code (LoC) as a proxy metric for programmer effort.
The Suricata and Redis codebases are at a comparable level of difficulty to understand—both are
professional projects that are battle-tested by real-world usage. Since the DSL code is embedded as a
C library, we give each LoC of DSL code the same weight as a LoC of C code for simplicity, although
DSL code is arguably simpler than C syntax since it lacks various operators, unbounded loops, and
pointers. The cost of using the DSL measures the code changes required to create instances and
embed junctions. The benefit measures the LoC saved when extending an application by using the
DSL compared to using C directly.

Lines Of Code (LoC) of C syntax
Feature DSL in C Redis(DSL) Suricata(DSL) Redis(C)

Checkpointing 79 7 44 332
Sharding 105 1 49 314
Caching 106 6 N/A 306

Table 2: Effort (LoC) needed to support software extensions.

Table 2 shows the LoC needed to support different types of architecture-level features. DSL in
C refers to the code generated by the DSL-to-C mapping that produces C code that is decoupled
from the application-specific logic. Once it is mapped in this way, the code can be used in a junction.
Redis(DSL) and Suricata(DSL) refer to the number of lines edited in the source code to define
the junction to host a DSL expression in Redis and Suricata for the different feature types. Defining
a junction consists of packaging parameters and calling the “DSL in C” code. For Suricata most of
the effort involved creating a new node in Suricata’s pipeline that serves as a junction. Redis(C)
is the LoC needed to rearchitecture directly in C. Redis(C) was developed without knowledge of the
DSL, as a control experiment. It includes its own internal management system for communication
and synchronization between different instances of Redis, which adds 195 lines to each feature.

Costs The costs of using C-Saw involve typifying software and inserting junctions (§3). In Table 2
this cost is captured by Redis(DSL) and Suricata(DSL). In addition to the per-architecture costs
shown in Table 2, there is a one-time cost for creating a junction that can be reused for different
rearchitectures. For both Redis and Suricata we added a single junction consisting of 98 LoC for
Redis and 182 LoC for Suricata. The main function for Redis and Suricata received an additional
5 LoC and 4 LoC respectively to accommodate the junctions.

Benefits The benefits of using C-Saw is three-fold: i) DSL expressions can be used across ap-
plications, which amortizes the effort of crafting a DSL expression. ii) Fewer code changes are
needed—we can see this when comparing Redis(C) to the sum of “DSL in C” and Redis(DSL).
iii) Support for serializing data that is exchanged between instances. The automatically-generated
serialization code for the key and value structure used in Redis consists of 182 LoC. The generated
serialization code for the packet structure used by Suricata consists of 2380 LoC.
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10.3 Performance overhead

Suricata overhead Fig. 24c shows the overhead of the checkpointing reconfiguration of Suricata
normalized against the unmodified version. We see that overhead is usually less than 10% and
spikes to around 19× during checkpoint-restart-and-resume phases. The performance overhead of
the sharding feature is around 60%.

cURL Overhead We changed the architecture of cURL for remote auditing as described in §5.
We generated two binaries: for the local and remote instances, respectively. The second binary is
intended to receive progress updates from the first in order to audit it. We measured the overhead
of executing this system when downloading differently-sized files from a dedicated machine, over
1GbE links on a research testbed. We ran two forms of this experiment: (i) placing both binaries
in the same VM, and (ii) placing them in separate VMs to emulate separation between action and
audit. Fig. 25b shows the overhead of cURL modified for remote auditing. Fig. 25a is based on the
same numbers but presents them in absolute time, and shows standard deviation for more detail.
The performance overhead for large files is less intelligible.

Fig. 26a shows the performance of modified cURL when executed over large files, and com-
plements Fig. 25a which focused on small files. The performance difference for large files is less
intelligible.

Redis Overhead Fig. 25c shows the response latencies when running GET operations on the
original Redis and the three derivatives we developed. The graph shows that the overhead from
our modifications are noticeable but low, except for “replication” which involves checkpointing and
restarting Redis. While in many cases the average overhead is low, this experiment also features the
longest tail latency albeit for a very small percentile. The results for SET are similar.

Fig. 26b shows the performance overhead of various reconfigurations of Redis under a SET
workload. It is the complement of the paper’s Fig. 25c.

Fig. 26c shows the behavior of Redis reconfigured for object-size sharding when subjected to a
workload featuring a corresponding distribution to that used for key-based sharding in Fig. 23b.

11 Related Work

Existing specification tools for software architecture, such as SysML [7] and arc42 [43], provide stand-
alone descriptions of software architecture. In comparison, C-Saw specifications are embedded inside
software. It will be interesting future research to look for a synthesis of C-Saw with SysML or arc42.

Split/Merge [40] involves classifying application state into two types depending on the state’s
scope: general state captures information across a whole application, while local state is scoped to
invidual sessions or other units. C-Saw does not impose structure on state, and instead imposes
structure on architecture patterns through a powerful DSL and primitives for state management.

C-Saw is inspired by research on process calculi [37] and on coordination languages [9]. Like
these frameworks, C-Saw provides primitives for communication and coordination; but in contrast
C-Saw provides a terser language that restricts flexibility at runtime. For example, C-Saw does not
allow channel creation or passing, or an implicit global tuple-space. Further, it restricts mobility
and interactions between processes. These restrictions simplify the runtime’s implementation and
the provisioning of resources, because they are not considered essential for the class of architectures
we surveyed.

12 Conclusion

C-Saw is designed to “separate concerns” [24] between software architecture and its application-
specific logic, and it provides a high-level DSL to declaratively compose this logic into an architecture.
An architecture can then be reconfigured by editing its DSL expression.
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Our main findings are: (i) When making them precise through C-Saw’s formally-specified DSL,
even simple behaviors such as those in Fig. 1 have subtlety and complexity. (ii) DSL expressions
are reusable, and our prototype reused reconfiguration logic between Redis and Suricata.
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