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Abstract

Transaction processing is common in our daily lives, and various protocols have been studied
to manage concurrency control. One such protocol is the deterministic concurrency control
protocol, which is highly efficient in handling workloads with high contention because of its
deterministic transaction scheduling nature. This paper introduces a new lock manager, the
concurrent lock manager for determinism or CLMD. CLMD allows non-conflicting transactions
to be executed concurrently on deterministic concurrency control protocols. The concept is
to check for conflicts between the current and all future transactions while the conventional
scheme checks only the current and the following ones. The CLMD eliminates the bottleneck
present in the conventional locking scheme used in the original Calvin paper. We evaluated
CLMD with Calvin in experiments. The results showed that the proposed method outperformed
SS2PL under high-contention workloads and performed better than Calvin under low and high-
contention workloads. The maximum performance improvement observed was approximately
44.4 times using 64 logical cores.
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1 Introduction

1.1 Motivation

Transaction processing is widely used today. Its application includes payments [23], distributed file
systems [9], and robotics [22] today. To deal with huge amounts of transactions, various studies have
been conducted in these years [4, 12,14,16–18,24,25,28,31].

When multiple transactions access the same records simultaneously, only one transaction sur-
vives, and all the others must wait or abort. When the degree of concurrently accessing transactions
is high, the situation is highly contended. Some workloads, such as YCSB [3] or TPC-C [26], use rel-
atively short transactions. YCSB has only 16 operations and the majority of TPC-C transactions;

0The conference version of this paper is published in the proceedings of 25th Workshop on Advances in Parallel
and Distributed Computational Models (APDCM 2023).
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Figure 1: Three transactions run concurrently and the serialization order is t1 → t2 → t3. An
unnecessary block of t3 occurs when using the Calvin protocol as shown in the right figure. Though
t3 does not conflict with either t1 or t2, it should not be blocked in theory. Since t3 is scheduled
after t2 and t2 is blocked by t1, t3 is blocked.

the new order and payment do not require range queries. However, some real workloads require
long transactions. The bill of materials workload requires long transactions [19], and transactional
analytics for social data requires range queries of over 50,000 records [1].

1.2 Problem

To deal with highly contended situations in concurrency control, various protocols have been stud-
ied [12,14,17,19,29,30]. 2 phase locking (2PL) based protocols [2,17,20,21,27] pessimistically access
records to reduce aborts. Multi-version concurrency control (MVCC) based protocols [11,12,14,19]
exploit the theoretically larger scheduling space than 2PL.

One of the promising approaches is determinism [29], which determines the execution order of a
set of transactions before they are executed, and its novelty for highly contended workloads than 2PL
and MVCC is already investigated in a literature [8]. The theory of determinism is that conflicting
transactions are executed sequentially one by one, and independent ones are executed in parallel.
The transaction executions are controlled by a lock manager (e.g. pthread mutex lock, a function
that waits until the lock is released and can be acquired when it is already locked).

1.3 Contribution

The reason for the problem illustrated in Figure 1 is that t3 waits unnecessarily. Since t3 is scheduled
after t2 and t2 is blocked by a lock manager due to a conflict with t1, t3 is not invoked. We can
improve the throughput if we can execute t1 and t3 simultaneously.

To solve this problem, we propose a novel lock manager architecture that checks the conflicts
between the waiting transactions and running but blocked transactions. We refer to our proposed
system as the concurrent lock manager for determinism or CLMD. The behavior of CLMD differs from
that of the conventional lock manager. When a transaction requests a lock from CLMD, the request is
registered with CLMD and the transaction starts waiting instead of blocking. When the lock request
is ready, the transaction is notified and acquires the lock. Therefore, all lock requests from all
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transactions are registered with CLMD in the first phase. Then theoretically, concurrent executable
transactions are executed in parallel in the second phase. We designed and implemented CLMD and
evaluated its performance. The results showed that Calvin with CLMD performed approximately 44.4
times higher throughput than that of Calvin with pthread mutex lock.

1.4 Organization

The rest of this paper is organized as follows: Section 2 describes Calvin, a representative de-
terministic concurrency control protocol; Section 3 proposes a novel concurrent lock manager for
deterministic databases; Section 4 evaluates the proposed method; Section 5 describes related work;
finally, Section 6 concludes this paper.

2 Preliminaries

2.1 Concurrency Control

Transaction processing is necessary for the correct concurrent execution of processes. The transaction
processing guarantees the ACID properties [33], and it has two modules. They are the concurrency
control module and the logging and recovery module. This paper focuses only on the concurrency
control module like some other studies [12, 14, 16, 17, 27, 28, 34]. The concurrency control is for
providing isolation property, and the strongest level is called serializable. This paper focuses only
on the serializable isolation level.

A variety of concurrency control protocols have been studied to provide serializability and high
performance over concurrent execution transactions. The protocols can be divided into two cate-
gories: deterministic [5–7,15,25,30] or non-deterministic [28]. The former assumes all operations in
all transactions are known before their executions, while the latter does not have such an assump-
tion. It should be noted that the former situation is not universal but is possible in real use cases
such as payments or bank transfers at ATMs [23].

2.2 Database Operations and Architecture

The database system provides operations for users to interact with the database. In this paper,
we focus on read and write as these operations. The read operation reads a record, and the write
operation updates a record in the database, respectively.

An operation can access records in the database via a variety of protocols. A single transaction
has multiple operations (i.e., read or write), and a worker thread executes transactions one by one.
A worker thread is assigned to a CPU core in this paper. Thus, for N logical CPU cores, N worker
threads run. The database architecture is illustrated in Figure 2.

2.3 Calvin: A Deterministic Protocol

Calvin [30] is a representative of the deterministic protocols. A worker thread under Calvin has
two phases to operate the set of transactions. In the first phase, the sequencing layer determines a
serialization order of the transactions.

Then, in the second phase, the scheduling layer controls a transaction ti to perform as summarized
in Table 1. It has four steps. It first acquires the giant lock and then tries to acquire record locks
for ti. If ti does not encounter any conflicts in this step, another transaction tj will perform the
first step. Otherwise, ti stops its execution, and subsequent transactions are blocked by it. If the
conventional lock manager is used for Calvin, an inappropriate block occurs in the second step,
which is illustrated in Figure 1. Such blocks should be avoided for providing high concurrency. The
details of Calvin’s protocol are illustrated in Alg. 1.
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Figure 2: Database Architecture. A worker thread executes transactions one by one. A transaction
includes multiple operations (read or write). An operation accesses a record which consists of a key
and a value.

Table 1: Overview of Calvin Locking Protocol (extracted from Alg. 1.)

1. Acquire the giant lock (L7)
2. Acquire locks for ti, it may be blocked (L8)
3. Unlock the giant lock (L16)
4. Do operations and release locks (L19)

3 Proposal: Concurrent Lock Manager for Determinism

To solve the blocking problem that occurs in the conventional lock manager, we propose a novel
concurrent lock manager for determinism (CLMD). The proposed CLMD delays the lock acquisition
timing at the scheduling layer for providing high concurrency. After a lock acquisition request is
registered with CLMD, the requested transaction waits until the lock is ready. This scheme allows
multiple non-conflicting transactions to acquire locks concurrently.

A running example of CLMD is illustrated in Figure 3. Four transactions are already ordered as
t1, t2, t3, and t4 in the sequencing layer. The transactions are operated by workers A, B, C, and
D, respectively. Since t3 does not conflict with either t1 or t2, CLMD provides locks for t1 and t3
simultaneously. However, t3 is blocked if the conventional lock manager is used.

The behavior of CLMD is summarized in Table 2. It first acquires the giant lock as the con-
ventional lock manager, as in Table 1. Then it just registers lock requests for the desired records
and immediately unlocks the giant lock. Thus, it does not incur unnecessary blocks of subsequent
transactions. When the transaction is ready to use the registered lock requests, then it is notified
by CLMD.

Using CLMD, a transaction ti in the scheduling layer works as above, and the details are illustrated
in Alg. 2. All records to be accessed are stored in the operation set O. At the beginning of a
transaction, tx id is added to the queue of all records to be accessed. Since this process is exclusive,
the order in which tx id is stored in the queue follows the serialization order. The transaction needs
to know which records are not yet locked, so information on the records to which tx id is added is

Table 2: Modified Calvin with CLMD (from Alg. 2.)

1. Acquire the giant lock (L8)
2. Register lock requests for ti without blocking (L11)
3. Unlock the giant lock (L14)
4. Acquire locks for ti (L21)
5. Do operations and release locks (L3)
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Algorithm 1 Worker behavior in Calvin

Require: A set of operations O for a transaction. An operation is either to read a record or write a record.
1: function Worker Calvin(O)
2: Calvin Locking(O);
3: Exec Operation(O);
4: end function
5:

6: function Calvin Locking(O)
7: Acquire the giant lock;
8: for opr ∈ O do
9: if target record rec for opr is unlocked then

10: Acquire lock of rec;
11: else
12: Blocked until lock of rec is released;
13: Acquire lock of rec;
14: end if
15: end for
16: Release the giant lock;
17: end function
18:

19: function Exec Operations(O)
20: for opr ∈ O do
21: Execute opr to its target record;
22: end for
23: for opr ∈ O do
24: Release the lock of rec for opr;
25: end for
26: end function

recorded on the future lock set F . When tx id is added to the queue of all records to be accessed,
the giant lock is released, and exclusive control is terminated. CLMD does not block transactions even
if they are conflicted with previous ones since the actual lock acquisitions occur later.

The future lock set F contains information on the records that need to be locked. A transaction
checks the queue of records in F . If tx id, which was exclusively added at the beginning of the
transaction, is at the head of the queue, the transaction can try to acquire the lock on the record
because no other transaction has already requested lock acquisition before it. If the lock acquisition
succeeds, it deletes its own tx id from the queue of the record and removes the record from F for
which the lock was acquired. If the first tx id in the queue is not its own tx id or it fails to acquire
the lock, it tries to acquire a lock on another record in F . When all requested locks are acquired
and F is empty, it starts to execute read or write operations.

4 Evaluation

4.1 Implementation and Environment

We developed CLMD and Calvin to evaluate our proposed method. The system was developed using
C++ on CCBench [28]. We compare the proposed system with strong strict 2-phase locking (SS2PL)
and Calvin with pthread mutex lock. After all threads were launched, time measurements were
started, and throughput was calculated as a 3-second average. In all methods, the type of operations
and the records to be accessed, which are the contents of the transaction, are prepared in advance.
Threads retrieve the transactions one by one from the previously prepared transaction set and
execute them one by one. Our code is over 600 lines long and available online for reproduction [32].

We used a server with two sockets equipped with Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz
for the experiments. Each socket had 16 physical and 32 logical cores. The total size of memory was
1.5 TB. The number of operations performed by each transaction was 10 read or write operations
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Figure 3: CLMD Architecture. Worker threads A, B, C, and D perform t1, t2, t3, and t4, respectively.
t1, t2, and t4 access record X while t3 accesses only Y. Access is via a hash. t1, t2, and t4 are queued
for X. The conventional lock manager requires t3 to stop by the end of t2 locking, while CLMD does
not.

with a probability of 50% each and one sleep operation of 100 µs which was the ninth operation
of the total. For the first two transactions, we always access the conflicting record and perform a
sleep of 2.9 seconds. The database has 1,000,000 records. In the workload shown in Figure 7 and 8,
no specific transaction accesses a specific record, and all transactions consist of 100 read operations
or write operations with a probability of 50% each, and one sleep of 1000 µs, which is the 90-th
operation of the entire transaction.

4.2 Result with Long Transactions

4.2.1 Varying Skew

The throughput under the relatively low contention workload with long transactions is illustrated
in Figure 4. In this experiment, we varied the skew from 0.0 to 0.9. It should be noted that when
the skew is 0.0, a transaction can access all the database records. With a higher skew value, the
accessible records decrease and conflicts tend to occur. The maximum skew is 1.0.

The result shows that the proposed method always outperforms the conventional method re-
gardless of the frequency of contention. Both the proposed and conventional methods perform best
when the skew is 0.0, and the performance degrades as the frequency of contention increases. Even
when the performance difference between the two methods is the smallest, the difference is 2.2 times
larger, and when the performance difference is the largest, the difference is 44.4 times larger.

In the proposed method, non-conflicting transactions can acquire locks in parallel, but the con-
ventional method acquires locks sequentially. In this environment, the conventional method sleeps
for 2.9s while the first transaction holds the lock on record X. The second transaction also accesses X,
thus, it makes a lock request on X. The second transaction’s lock request on X can be obtained, and
the third and subsequent transactions can request locks on all records only after the first transaction
sleeps for 2.9s and releases its lock on X.

The conflict between the first and second transactions causes serious performance degradation
because the third and subsequent transactions cannot start processing even though they are not in
conflict.

4.2.2 Scalability

Figure 5 shows the result of the experiment with thread scalability. It is observed that throughput
increases as the number of threads increases for both the conventional and proposed methods.
The proposed method always performs better than the conventional method, and the difference in
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Algorithm 2 Worker behavior in proposal method

Require: A set of operations O for a transaction. An operation is either to read a record or write a record.
Future lock set F . Transaction ID tx id

1: function Worker Proposed(O,F, tx id)
2: Proposed Locking(O,F, tx id);
3: Exec Operation(O); ▷ Described in Alg. 1
4: end function
5:

6: function Proposed Locking(O,F, tx id)
7: // Lock Request Registration
8: Acquire the giant lock;
9: for opr ∈ O do

10: rec := target of opr;
11: Enqueue tx id into queue of rec;
12: Add rec to F ;
13: end for
14: Release the giant lock;
15:

16: // Lock Acquisition
17: while F is not ∅ do
18: for rec ∈ F do
19: if rec.queue.head is tx id then
20: if rec is unlocked then
21: Acquire lock of rec;
22: Dequeue tx id from rec.queue;
23: Delete rec from F ;
24: end if
25: end if
26: end for
27: end while
28: end function

throughput increases as the number of threads increases. The reason for the low scalability of the
conventional method is the blocking by the first transaction. Since most of the threads are blocked
by a single thread that executes the first transaction, which sleeps for 2.9 seconds, the many-core
architecture is not exploited.

4.2.3 Varying Execution Time of Blocking Transaction

To investigate the behavior of the proposed method, we varied the execution time of the first trans-
action. The first transaction always blocks the second transaction, and thus using the conventional
lock manager, subsequent transactions are blocked until the first transaction terminates.

The result of the experiment is illustrated in Figure 6. In the conventional method, the conflict
between the first two transactions causes the first transaction to terminate without allowing the
third and subsequent transactions to start executing, thus only one transaction succeeds during
the experiment time, regardless of the execution time of the first transaction. In the proposed
method, the longer the execution time of the first transaction is extended, the more non-conflicting
transactions that can be executed in the meantime are executed. Therefore, the number of successful
transactions increases linearly with the execution time of the first transaction.

This setting has only a single blocking transaction, and the performance difference could be
greater if we have more blocking transactions in the workload.

4.3 Result without Long Transactions

The proposed method should work efficiently with long transactions that block other transactions.
Then, does it work for workloads without such long transactions? To answer the question, we
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Figure 5: Scalability in low-contention work-
load with long transactions.
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Figure 7: Low-contention workload without
long transactions.

conducted experiments.

4.3.1 Low Contention Case

Figure 7 shows the result when all transactions are executed without long transactions, which means
no special sleep exists. Although the difference in performance between the proposed method and
the conventional method is not as large as in the other experiments, the proposed method still shows
higher performance because there are cases where a transaction with no conflict is forced to wait
due to a conflict between transactions ahead of it in the conventional method.

In this experiment, the difference in performance between the conventional and proposed methods
shrinks as the skew increases. One possible reason for this is that transactions are executed like
sequential execution; in the high-contention workload, almost all transactions conflict with each
other. In such cases, Calvin executes transactions sequentially. Then, the proposed method is more
likely to cause performance degradation since it is more complex than the conventional method.

4.3.2 High Contention Case

We also evaluated the proposed method in a highly contended case with SS2PL. The result comparing
the proposed method and SS2PL on high-contention workload is shown in Figure 8. Our SS2PL
uses the 2PL-NoWait [28] method, which aborts and restarts the transaction if it fails to acquire a
lock for deadlock avoidance. Therefore, when conflicts occur frequently, lock acquisition fails, and
the transactions repeatedly abort. Therefore, the performance of SS2PL is lower than that of the
conventional and proposed methods that are abort-free and ensure sequential execution.
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5 Related Work

Piece-wise-visibility (PWV) [6] is a deterministic protocol that improves processing performance by
accelerating the timing at which a transaction write can be observed by other transactions, taking
advantage of the characteristics of deterministic methods such as deadlock handling and the absence
of system-induced aborts such as failures and optimistic concurrency control validation failures. In
PWV, a transaction is decomposed into multiple pieces to deal with aborts caused by logic (e.g.,
trying to reduce inventory by purchasing an item that was initially zero). Records in the database are
divided into multiple exclusive partitions, and each piece writes only to records in one partition. The
serializability is guaranteed by executing different transaction pieces within a partition according to
the transaction serialization order. Specifically, partitions understand the conflicts between pieces of
different transactions and construct a DAG that indicates the dependencies of the pieces according
to the determined serialization order. It executes the executable pieces according to the directed
acyclic graph (DAG). The construction of such a DAG not only occupies the resources of the CPU
cores, of which only one is allocated to each partition, and prevents the processing of the pieces
that are the actual contents of the transaction but also requires an enormous amount of memory to
maintain the DAG. Our proposed method does not require excessive CPU and memory resources
and can increase the parallelism of the execution of independent transactions.

Calvin [30] shows its true value in a distributed environment where data is partitioned across
multiple nodes and replicated to other machines on a partition-by-partition basis since it proposes
concurrency control and replication. Its concurrency control is a deterministic method that controls
the results of transactions executed in parallel to match those executed sequentially in a specific
order. By taking advantage of this property, the transaction inputs and locking orders are shared at
the start of batch processing via a consensus protocol such as Paxos [13] or Zookeeper [10], and the
different nodes are deterministically attributed to a certain outcome, thus eliminating the overhead
of performing mediation such as two-phase commit after the transaction starts, which is used in
general distributed systems. In Calvin, each node has a lock manager that manages only the locks
on the records in that node. It does not exchange locks with other nodes. Therefore, we have
implemented and evaluated our proposed concurrent lock manager on a single node, and we believe
that even if Calvin were implemented as a multi-node system and our concurrent lock manager were
evaluated, the lock manager would still work the same way and perform better than conventional
lock managers.

Aria [15] executes transactions against database snapshots and deterministically chooses whether
to commit at transaction commit time. This removes the constraints of determinism, where all
database operations must be known in advance, and allows the database system to adapt to a wide
range of workloads. Aria commits only those transactions that access records in a predetermined
order at commit time and aborts and re-executes those that do not until a deterministic result is
reached. In such a method, access to a particular record may be concentrated and the order in which
transactions access that record violates the deterministically determined order, and many transac-
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tions abort and retry at times of high contention. In such cases, the performance of deterministic
methods may be severely degraded without taking advantage of their high-competition performance
against non-deterministic methods such as 2PL and OCC under high-contention workloads. In the
case where the key of the record to be accessed is unknown at the start of the transaction, which is
the case where Aria is expected to show its true value, conventional deterministic methods such as
Calvin can be used by using a reconnaissance query method to find out the access key in advance.

6 Conclusions

Deterministic concurrency control protocols exhibit high performance at highly contended work-
loads. This paper proposes a novel lock manager that allows non-conflicting transactions to execute
concurrently on deterministic concurrency control protocols. The concept is to check conflicts be-
tween the current and the next transactions and between the current and all future transactions.
The proposed lock manager eliminates the bottleneck of the conventional locking schema used in
Calvin [30]. We conducted experiments to compare it with the widely used SS2PL and Calvin with
the conventional lock manager. The results showed that the proposed method outperformed SS2PL
under high-contention workload and showed higher performance than conventional Calvin under
both low and high-contended workloads. The maximum performance improvement is approximately
44.4 times using 64 logical cores.
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