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Abstract

In the rapidly evolving field of machine learning, the adoption of traditional approaches often
encounters limitations, such as increased computational costs and the challenge of catastrophic
forgetting, particularly when models undergo retraining with new datasets. This issue is espe-
cially pronounced in environments that require the ability to swiftly adapt to changing data
landscapes. Continual learning emerges as a pivotal solution to these challenges, empowering
models to assimilate new information while preserving the knowledge acquired from previous
learning phases. Despite its benefits, the continual learning process’s inherent need to retain
prior knowledge introduces a potential risk for information leakage.

Addressing these challenges, we propose a Federated Continual Learning (FCL) framework
with a multi-head neural network model. This approach blends the privacy-preserving capabili-
ties of Federated Learning (FL) with the adaptability of continual learning, ensuring both data
privacy and continuous learning in edge computing environments. Moreover, this framework
enhances our approach to adversarial training, as the constant influx of diverse and complex
training data allows the model to improve its understanding and adaptability, thereby strength-
ening its defenses against adversarial threats. Our system features a architecture with dedicated
fully-connected layers for each task, ensuring that unique features pertinent to each task are
accurately captured and preserved over the model’s lifetime. Data undergoes processing through
these task-specific layers before a final label is determined, based on the highest prediction value.
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This method exploits the model’s full range of knowledge, significantly boosting prediction ac-
curacy. We have conducted thorough evaluations of our FCL framework on two benchmark
datasets, MNIST and CIFAR-10, with the results clearly validating the effectiveness of our
approach.

Keywords: Federated Learning, Continual Learning, Adversarial Learning, Catastrophic Forget-
ting, Security Systems

1 Introduction

As Internet of Things (IoT) devices multiply and mobile computing power grows, edge computing
has become a crucial approach for addressing the data processing and analytical challenges at the
edge of network. It involves data processing near the source, either at the edge of network or directly
within the devices [1], offering a potential solution to the limitations of traditional cloud computing,
such as high latency and bandwidth constraints [2]. However, implementing edge computing carries
its own set of risks, especially concerning the security and privacy of data within edge devices [3].

The nature of edge computing means that training data is often dispersed and subject to change
over time, posing substantial obstacles to the training process [4]. For instance, autonomous vehicles
must continuously adjust to new road conditions, while the finance sector needs to constantly learn
from new patterns of fraudulent activities. Using conventional machine learning methods in these
scenarios requires frequent retraining of models with new data sets, leading to increased computa-
tional demands and reduced efficiency due to the need for data integration and model retraining [5].In
addition, a critical challenge in this process is catastrophic forgetting, where learning new informa-
tion causes the model to forget previously acquired knowledge, diminishing its performance on tasks
it had learned before [6, 7].

Continual learning, also known as lifelong learning, emerges as a robust countermeasure against
the issue of catastrophic forgetting, enabling machine learning models to dynamically integrate new
information and master new tasks while retaining insights from earlier tasks [8, 9]. This approach
is distinguished by its iterative learning process, where the model sequentially encounters different
tasks, each comprising distinct class sets that do not overlap with those of preceding or succeeding
tasks [10,11].

Implementing continual learning on edge devices enhances their ability to adapt to changing
conditions by allowing them to learn incrementally from data acquired in real time. This capability
is especially crucial for handling Non-Independent and Identically Distributed (Non-IID) data, which
often exhibits significant variability in edge computing scenarios due to the diverse origins of data
across devices [12]. Despite the advantages, security concerns remain, including issues related to
authentication, network security, and secure computation [13]. Edge computing environments may
expose vulnerabilities that could be exploited to degrade model performance or expose sensitive
data, while the preservation of knowledge in continual learning poses risks of data leakage. Moreover,
continual learning’s requirement for models to assimilate data from varying distributions can lead
to instability in the model’s decision-making boundaries. When models are updated to learn new
tasks, there’s a risk of forgetting previously acquired knowledge, potentially increasing the model’s
vulnerability to adversarial attacks targeting earlier tasks.

To tackle the challenges of data privacy and the phenomenon of catastrophic forgetting in edge
computing, we introduce a novel framework that combines the privacy-enhancing capabilities of Fed-
erated Learning (FL) with the adaptability of continual learning systems. This approach allows for
local training on devices, obviating the need for central data storage and processing, thus preserving
data privacy and security [14, 15]. By implementing continual learning within an FL framework,
devices can more effectively adjust to changes in their operating environments and reduce the risk
of catastrophic forgetting, enhancing model performance and data integrity [4, 16].

In our proposed framework, each device independently develops a local model using its data,
which are subsequently aggregated to form a comprehensive global model. This strategy helps pre-
vent the erasure of previously acquired knowledge, as the learning from individual devices enriches
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the global model without overriding each other’s contributions, thus addressing catastrophic forget-
ting [17, 18]. Moreover, we incorporate adversarial training to bolster the model’s defense against
cyber threats [19]. The decentralized architecture of FL provides a diversified dataset across devices,
facilitating the creation of adversarial examples that span a broad spectrum of potential security vul-
nerabilities. This diversity ensures that our model remains resilient against various types of attacks.
In a continual learning setting, the generation of adversarial examples is continually updated to
reflect the model’s evolving understanding and potential security gaps, ensuring ongoing protection
of the system [20]. By generating and utilizing adversarial examples locally, we further safeguard
sensitive data from exposure.

As an extended version of our previous work [21], in this work, we leverage diverse data sources
in the dynamic environment of continual learning to conduct adversarial training, extending the
dynamic multi-head federated continual learning (FCL) framework. This approach ensures that
our system can efficiently process and manage data in the challenging context of edge computing,
providing a secure, adaptable, and efficient data handling solution. The primary contributions of
our work include:

� Task-Designated Layers: We introduce an innovative design strategy that assigns an individ-
ual fully connected layer to each task. This approach facilitates task-specific optimization,
specifically catering to the unique characteristics inherent in each task.

� Adaptive Classification: In our model, given a new input sample, the prediction for the la-
bel of the sample is determined by propagating the sample through each task-specific layer
and selecting the label associated with the highest prediction value across all task-specific
models. This process is called adaptive classification because it takes into account all the
task-specific layers that have been learned, rather than just relying on a single model. As a
result, it enhances prediction accuracy, reduces catastrophic forgetting, and provides flexibility
for dynamic environments and tasks.

� Generalization Capability: The inherent flexibility of our model permits effective acclimation
to a broad spectrum of tasks, irrespective of potential discrepancies in their label ranges. In
our model, each input is processed by all task heads, with the highest prediction chosen as
the final classification. This suggests that the output space is collectively constructed by all
task heads, rather than independently determined by a single one. This integrated approach
seeks to fully harness the model’s cumulative knowledge base. As for the matter of catastrophic
forgetting, by engaging multiple task heads and their associated knowledge, there’s a continual
reinforcement of previously learned representations. Each task head, through its shared and
differential knowledge, provides a form of regularized learning environment, mitigating the
abrupt shifts in the weight space that lead to forgetting.

� Data Privacy Protection: By harnessing the privacy-preserving advantages of FL and inte-
grating them into a continual learning framework, we offer a solution to address the challenges
related to privacy in edge computing data processing and analysis. In addition, using the
diverse data samples obtained in continuous learning to generate adversarial samples and in-
corporating these samples into the training process can not only improve the generalization
performance of the model, but also help improve the overall system’s resistance to these po-
tential attacks.

2 Related Work

Continual Learning: is a subset of machine learning that concentrates on the adaptation of models
to evolving data and tasks post-deployment. This strategy promotes the continuous improvement
of model performance without the extensive need for retraining, thereby streamlining the process
of model refinement post-deployment [11, 22]. It is particularly adept at facilitating the transfer of
knowledge between diverse tasks, thereby significantly improving the versatility of models, especially
in the realm of reinforcement learning [23].
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The domain of continual learning is categorized into three distinct scenarios: Task Incremental
Learning (Task-IL), Domain Incremental Learning (Domain-IL), and Class Incremental Learning
(Class-IL), each defined by unique challenges, data distribution variations, and specific constraints
[24]. This research focuses primarily on Class-IL, which deals with the sequential integration of new
classes into an existing model framework within a consistent application environment.

Addressing the stability-plasticity challenge inherent in Class-IL, strategies are generally grouped
into three types: regularization techniques, replay mechanisms, and parameter isolation strate-
gies [11]. Among these, replay and regularization strategies are favored for their effective compro-
mise between retaining prior knowledge and accommodating new insights. Notable examples include
regularization techniques such as Learning without Forgetting (LwF) [25] and Elastic Weight Consol-
idation (EWC) [26], and replay-based learning exemplified by iCaRL [27]. Despite facing obstacles
such as increased computational demands, potential for overfitting, and confusion between tasks
during significant variations, these approaches are pivotal in advancing continual learning.

To overcome the hurdles associated with hyperparameter adjustments and the computational
intensity of learning across multiple tasks, recent advancements have introduced meta-learning
methodologies [28]. These aim to equip models with the capability to derive overarching learn-
ing principles through exposure to a variety of tasks, thereby enhancing their ability to generalize to
new challenges [29]. Continual learning and meta-learning, while differing in focus and technique,
both contribute significantly to improving model adaptability and generalization across multiple
tasks [30–32]. In addition, an asynchronous FCL approach [33] is introduced to address the chal-
lenge of asynchronous learning, where clients independently experience different tasks at varying
time frames.

Federated Learning: has emerged as a cutting-edge strategy to address the security and privacy
concerns associated with Distributed Machine Learning (DML) [34]. As a specialized iteration of
DML, FL enables the development of comprehensive models while bypassing the requirement for
direct data exchange among contributing entities. This approach allows for the sharing of model pa-
rameters or intermediary outcomes instead, thereby enhancing the protection against data breaches
during the transfer process [35] and reducing the challenges posed by data compartmentalization
within industries [36].

While traditional FL efforts have focused on creating an effective global model through decen-
tralized training, our research seeks to enhance both server and device performances by endowing
them with the ability to continuously learn and adjust to constantly changing environments. Pre-
vious research has explored the use of knowledge distillation to facilitate the transfer of insights
across tasks, thereby mitigating the risk of catastrophic forgetting [37]. This technique allows for
the device model to draw on the experiences of other devices through the server model, thereby
improving overall model versatility and preventing overfitting on new tasks [5, 37]. Knowledge dis-
tillation also promotes the exchange of insights between local models and their consolidation from a
local to a global scale [38]. Moreover, by differentiating between global federated weights and task-
specific sparse parameters, and enabling devices to selectively incorporate knowledge from their
counterparts through a calculated blend of their task-specific parameters, this approach effectively
minimizes conflicts between tasks and facilitates a dynamic exchange of knowledge among partici-
pating devices [39]. However, these methods require the transfer of information or insights between
devices for training purposes, which could potentially compromise data privacy. To address this
concern, Variational Autoencoder (VAE) based techniques have been suggested to safeguard the
privacy of data on devices [4]. In addition, Differential Privacy (DP) is often discussed in Continual
Learning (CL). An approach is proposed that preserves DP in CL, quantifying privacy risk and
ensuring privacy guarantees for data records across tasks [40].

Adversarial Training: Adversarial training is a pivotal technique to enhance the robustness of
models against potential adversarial attacks [19,41]. Given that continual learning models train on
constantly evolving datasets, they are particularly susceptible to adversarial manipulations, espe-
cially during transitions between tasks [42, 43]. Adversarial training addresses these vulnerabilities
by incorporating adversarial perturbation samples during the training process. These samples are
designed to mimic potential manipulations by adversaries, enabling the model to learn robust fea-
tures invariant to such manipulations. This process bolsters the model’s ability to recognize and
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Fig. 1. The training process of Continual Learning-based Federated Learning

withstand adversarial inputs, thus maintaining the integrity and reliability of cross-task predic-
tions [44, 45]. Additionally, the decentralized nature of FL allows for training models on multiple
devices without the need for centralized data aggregation. However, this distributed training envi-
ronment also means that models must be individually fortified against adversarial threats, as each
device may encounter unique adversarial patterns based on its local data. By incorporating adver-
sarial training, the robustness of models can be extended to ensure their security and effectiveness.
Generating adversarial examples locally on each device ensures the robustness of local models, and
by aggregating model updates from devices that have undergone adversarial training, the global
model can inherit the robustness features learned locally. CL further enables models to maintain
their ability to counter new and complex adversarial strategies over time.

Existing adversarial training methods can be categorized into several types. Fast Gradient Sign
Method (FGSM) [46] and Fast Gradient Method (FGM) [47] are simple yet effective methods for
generating adversarial examples. By leveraging the gradient information of input data, these meth-
ods introduce a small perturbation in the direction that increases model loss. The difference between
FGSM and FGM lies in their normalization techniques, and they are widely used due to their com-
putational efficiency. Projected Gradient Descent (PGD) [48] is considered an iterative version of
FGSM, applying multiple gradient updates to fine-tune perturbations and find more effective adver-
sarial examples. PGD projects the perturbation back to a predetermined range after each update,
ensuring the perturbation remains moderate, making PGD-generated adversarial examples more
precise and effective. To further optimize the computational process of PGD, methods like Free
Adversarial Training (FreeAT) [49] have been proposed. You Only Propagate Once (YOPO) [50]
reduces the computational burden of gradient calculation by leveraging the structure of neural net-
works. The Adversarial Logit Pairing (ALP) [51] method increases model robustness by encouraging
similar output distributions for both original and adversarial inputs. Ensemble adversarial train-
ing [19] enhances the robustness of a single model by mixing adversarial examples from multiple
models, based on the assumption that different models may be sensitive to different adversarial
examples, allowing for broader coverage of attack types.

3 Methodology

In this section, we elucidate the theoretical principles of Class-IL and FL, which lay the foundation
for our proposed methodology. The details of the algorithm are given in the next subsection. Our
approach is designed to overcome several challenges associated with class-incremental learning in a
FL setting.

Firstly, our approach targets the challenge of catastrophic forgetting, a pervasive issue in con-
tinual learning where learning new tasks causes a model to forget the previously learned tasks.
To address this, we designate independent fully connected layers to each task in the learning pro-
cess. This ensures that the knowledge gained from each task is captured and retained separately,
promoting stability and preventing interference from the learning of new tasks.

Secondly, our methodology improves prediction accuracy through the application of multi-head
predictions. By propagating a batch of data through each task-specific layer and taking the maximum
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prediction value across all tasks, we effectively maximize the utilization of all the knowledge contained
within the model. This ensures that each prediction leverages insights from all learned tasks, thereby
enhancing the prediction accuracy.

In terms of privacy preserving, we also integrate adversarial training techniques to fortify model
robustness against potential adversarial attacks, further ensuring the security of the FL system.
In the context of FL, adversarial training plays a crucial role not only in protecting models from
malicious inputs but also in maintaining data privacy.

3.1 Adversarial Sample Generation

Incorporating adversarial training into our framework, we adopt a strategy where generated ad-
versarial examples and local samples are mixed at a 50% ratio for training purposes, utilizing the
FGSM [46] as our method of choice, which is a widely recognized approach for generating adversarial
examples, involves applying a small, carefully calculated perturbation to the input data. This per-
turbation is designed to maximize the model’s prediction error, thus creating an adversarial example
that is visually similar to the original but is classified incorrectly by the model. By training the
model on a dataset composed of an equal mix of adversarial and original examples, we aim to equip
the model with the ability to accurately classify both types of inputs, thereby improving its general
resilience against attacks.

We consider the scenario of training on a single device, where device k has a local dataset
Dorik = {(xk,i, yk,i)}mk

i=1 with mk samples. To enhance the robustness of the model Mk against
potential adversarial attacks, we employ the FGSM to generate adversarial examples from Dorik .
These examples are visually similar to the original samples but are crafted to deceive the model.
The creation of adversarial examples is approached as an optimization problem where the goal is to
maximize the loss function Lk by adding a perturbation η to the original input xk,i. The perturbation
is calculated using the gradient of the loss function with respect to the input, ∇xk,i

Lk(θ,xk,i, yk,i),
ensuring that the magnitude of η is less than ϵ, thereby keeping the adversarial examples within the
vicinity of the original data distribution.

The perturbation δ is defined as:

δ = ϵ · sign(∇xk,i
Lk(θ,xk,i, yk,i)) (1)

Subsequently, the adversarial examples Dadvk
are created by adding this perturbation to the

original inputs Dorik :

Dadvk
= Dorik + δ (2)

By introducing FGSM into our Class-IL framework, we aim to continuously train a robust clas-
sifier that can defend against adversarial attacks, while each device k optimizes its local model Mk

using both original and adversarial examples.

3.2 Class-Incremental Learning

Given a data stream with emerging new classes, Class-IL aims to continually incorporate the knowl-
edge and build a unified classifier [52]. Refer to the definition of Class-IL [53], denote the se-
quence of b ∈ {1, 2, .., B} training sets without overlapping classes as

{
D1,D2, · · · ,DB

}
, where

Db = {(xi, yi)}n
b

i=1 is the b-th training set with nb samples. A training instance xi ∈ RD belongs to
class yi ∈ Yb. Yb is the label space of task b, and Yb∩Yb′ = ∅ for b ̸= b′. Following the typical Class-
IL setting [27, 54], during the b-th incremental stage, we can only access data from Db for model
training. The target is to build a unified classifier for all seen classes Yb = Y1 ∪ · · ·Yb continually.
In other words, we hope to find a model f(x) : X → Yb that minimizes the expected loss:

f∗ = argmin
f∈H

E(xj ,yj)∼D1
t∪···Db

t
[ℓ (f (xj) , yj)] , (3)
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where H denotes the hypothesis space and ℓ(·, ·) is the CrossEntropy loss function. Db
t denotes the

data distribution of task b. We assume the global model based on FL is used as the initialization
for f(x), which will be introduced in the next Section.

3.3 Multi-Head Federated Continual Learning

We consider a FL system composed of a central server and a set of edge devices indexed by k ∈
{1, 2, . . . ,K}. Each edge device, also referred to as a client, can access a sequence of tasks denoted
by B and is responsible for sequentially executing each task. For a given task b, device k uses its
local dataset Db

k to train the model. Additionally, each device generates adversarial samples Db
advk

based on its local dataset Db
k. The combined dataset Dk for device k is the union of its local datasets

for all tasks, expressed as Dk =
⋃

b∈B Db
k.

The local loss function for device k when training on task b, which now includes both original
and adversarial samples, is defined as:

Lb
k(w) =

1

2nb
k

 nb
k∑

i=1

ℓ
(
f
(
xb
k,i

)
, ybk,i

)
+

nb
k∑

i=1

ℓ
(
f
(
xb
advk,i

)
, ybk,i

) , (4)

where (xb
k,i, y

b
k,i) are the individual samples and labels from the original dataset Db

k, and (xb
advk,i

, ybk,i)

are the adversarial samples and their corresponding labels generated from Db
k. The term nb

k denotes
the number of samples for task b on device k, ℓ(·, ·) signifies the loss function, and f(·) represents
the model’s output.

Consequently, for each device k, the local loss function for task b can be expressed as Lb
k(w).

Our goal is to minimize the global loss function in the server-side as follows:

min
w

F (w), where F (w) ≜
1

N

K∑
k=1

B∑
b=1

nb
kLb

k(w), (5)

where N =
∑K

k=1

∑B
b=1 n

b
k represents the total number of samples across all devices and all tasks.

The global loss function, F (w), which represents the weighted average of the local loss functions,
Lb
k(w), computed on each edge device k for each task b.

3.4 Federated Continual Learning Architecture

As illustrated in Figure 1, we present the architecture of our system. In this section, we will detail
our framework from three aspects: data partitioning, model training, and prediction.

� Data Partitioning:

We divided the dataset into different tasks based on the classes for our experiment. Specifically,
we separated the data into five tasks, with each task containing two classes, as depicted in
Figure 2(a). Moreover, within each task, we simulated a real data scenario by employing a
Dirichlet distribution [55] for the division of the dataset across each device, as illustrated in
Figure 2(b). The choice of the Dirichlet distribution stems from its ability to model variations
in data distribution across devices, reflecting the inherent data heterogeneity often observed in
practical settings. This ensures a more realistic and robust evaluation of the proposed methods
in conditions akin to real-world deployments.

� Training:

We consider a FL system comprising a server and a set of edge devices k ∈ {1, 2, ..,K}, and
a sequential training task set b ∈ {1, 2, .., B}. We assume the server is considerably more
powerful than the devices. The data is distributed across multiple devices, which can be
locally exploited for the FL training process without being transferred. We assume that, in a
continuous time horizon requiring sequential training of multiple tasks, each device k can only
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Fig. 2. Task Division Based on Classes and Data Distribution.

access their private dataset for each task. For instance, in autonomous driving, a car typically
needs to learn about its surrounding environment after passing through a road section. At this
point, only current environmental data can be obtained, and a new environment needs to be
learned upon entering the next road section.

The training process is as follows:

– Generate Adversarial Samples: Each device generates adversarial samples Db
advk

using its

dataset Db
k. This is done by applying small perturbations to existing samples, designed

to mislead the model while remaining imperceptible.

– Local Model Training: Each edge device (client) k trains its local model on its respective
dataset Db

k for each task b. This involves computing the local loss Lb
k(w) and applying a

local update to the model parameters w to minimize this loss. The local loss is computed
as the average loss over all samples in the device’s local dataset for the given task.

– Model Parameter Uploading: Once local training is complete, each edge device uploads
its locally updated model parameters to the server.

– Global Model Aggregation: The server aggregates the uploaded model parameters from all
edge devices. This is typically done by taking a weighted average of the model parameters,
where the weights correspond to the number of samples on each device for each task, i.e.,
nb
k.

– Global Model Broadcasting: After aggregating the model parameters into a global model,
the server broadcasts the global model back to the edge devices. Each device then replaces
its local model with this updated global model, and the process repeats.

– Iterative Process: Repeat the above steps until the global loss F (w) converges.

This iterative process allows the system to learn a global model for task b that generalizes well
across all edge devices and all tasks, while preserving data privacy by avoiding the need to
share raw data.

� Prediction:

In the prediction phase, we acquire the model w trained for task b and we have a batch of
data for prediction, denoted as Dunknown = {x1, x2, ..., xi}. We propagate this batch of data
through each task-specific layer, for each sample xi obtaining a set of the prediction values
ybpred,i = {x1

i , x
2
i , ..., x

b
i} from each task-specific layer, where b represents the total number of
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tasks executed. We choose the highest prediction value as the label of the data. The detailed
definition is given as follows:

We have a function fb(x;wb) representing the model learned for task b with parameters wb.
Then, given a new input sample x ∈ Dunknown, the prediction of the label is obtained by

ypred = arg max
b∈B

fb (x;wb)

This function chooses the label associated with the highest prediction value across all the
task-specific models. The label ypred is the prediction of the model for the input sample x.

4 Experiments

In this work, we focus on continual learning scenarios involving sequential tasks. Our primary aim is
to assess the system’s performance and its capacity to generalize to new tasks, while also considering
the computational cost of our method. Performance is typically measured by the model’s accuracy
in predicting or classifying data. A model’s generalization capability is its ability to apply learned
knowledge to new tasks without forgetting information from previous tasks. These aspects are
critical in continual learning, where models need to learn from new data without forgetting prior
tasks.

In this section, we present our experimental setup, discuss the results, and consider the compu-
tational cost of our method compared to traditional approaches.

4.1 Evaluation Protocols

In a setting of continual learning, the network has a separate fully connected layer for each task to
differentiate the classes it learns in specific tasks. However, it relies on a so-called oracle that decides
the task at test time, which can lead to misleadingly high test accuracy [56]. In contrast, our model
adopts a more practical and challenging setting. In this setup, each input passes through all task
heads, and the highest predicted category is chosen as the final classification. This means that the
output space is jointly formed by all task heads, rather than being determined independently by a
single task head. This requires the model to learn how to resolve class confusion across different
tasks at test time, even in the absence of explicit task identity. Not only does this strategy maximize
the use of all the knowledge in the model, but it also effectively reduces the rate of forgetting, despite
its practical challenges.

4.2 Experimental Setup

Datasets: We conducted evaluations of our training framework on two image classification tasks:
MNIST [57] and CIFAR-10 [58]. Both are widely recognized as benchmark datasets for image classi-
fication tasks. They are extensively used within the computer vision community for the development
and evaluation of image classification algorithms and models. As such, they provide a standardized
platform for benchmarking the performance of various deep learning architectures and techniques.
We have divided the dataset into an 8:1:1 ratio, with 80% allocated for training, 10% for valida-
tion, and the remaining 10% for testing. This ratio ensures a robust training set while providing
enough data for validation and testing to gauge model performance during development and after
training. It also aligns with commonly used practices in deep learning to ensure generalization while
preventing overfitting [14,59].
FL setup: We have constructed a central server accompanied by 5 devices (clients), where the distri-
bution of data across these devices adheres to a Non-IID setting based on the Dirichlet distribution.
The assumption of 5 devices is based on common practices in federated learning experiments, which
aim to simulate a realistic environment where data is distributed across multiple clients [60, 61].
Additionally, this setup is aligned with our experimental environment to ensure efficiency. This
setup provides a balanced scenario for training while allowing for effective aggregation of model
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Table 1: Model Structure

Models Dataset Model Architecture Model Size (MB) Parameter Size (mill.) Training Time (h)

EWC
MNIST 1-10C5 2M 10-20C5 2M D 320D 50D 0.083 0.022 1.6

CIFAR-10 3-6C5 2M 6-16C5 2M 400D 120D 84D 0.24 0.062 1.6

LwF
MNIST 1-6C5 2M 6-16C5 2M 256D 120D 84D 0.169 0.044 1.95

CIFAR-10 3-6C5 2M 6-16C5 2M 400D 120D 84D 0.24 0.062 2

Our Method
MNIST

1-6C5 2M 6-16C5 2M 256D 120D 84D 2D
(multiplied by 5 for five tasks)

0.79 0.21 0.63

CIFAR-10
3-6C5 2M 6-16C5 2M 400D 120D 84D 2D

(multiplied by 5 for five tasks)
1.12 0.29 0.58

parameters at the central server. For each task, it is collectively trained and accomplished by these
5 devices.
Model: In light of existing research methodologies, we selected various models to evaluate the
MNIST and CIFAR-10 datasets. For the method based on EWC [26], which functions by imposing
penalties on crucial parameters to preserve knowledge from previously learned tasks during contin-
uous learning, we used a Convolutional Neural Networks (CNN) classification model. The LwF [25]
guides the training of new tasks using knowledge from previous tasks. This approach is also present
in current FCL studies [5, 37]. For this method, we employed a CNN model with an incremental
class capability, allowing for dynamic addition of output categories during training. In our proposal,
the model is divided into two parts: the common layers and the task-specific layers. The common
layers, based on CNN, serve as the backbone of the model and are shared across all tasks. The
task-specific layers consist of independent fully connected layers for each task.

Table 1 details the model architecture and its size after completing five sequential tasks. In our
method for CIFAR-10, the architecture begins with a 5x5 convolutional layer that transitions from
3 to 6 channels, followed by a 2x2 max pooling layer. It then has another 5x5 convolutional layer
transitioning from 6 to 16 channels, complemented by another 2x2 max pooling layer. Subsequently,
the model incorporates dense layers of 400, 120, and 84 units, and culminates with a final 2-unit
layer. This structure is replicated for each of the five tasks.
Implementation: The experiments are implemented in PyTorch. We simulate a set of devices and
a centralized server on one deep learning workstation (i.e., NVIDIA GeForce RTX 4090 GPU).
Hyperparameter: For different datasets, we have chosen varying numbers of communication
rounds. We run 10 communication rounds and undertake local training on the device side for
20 epochs. We assumed that we have 5 devices (clients). We used a learning rate η = 0.01, batch
size 128 and Stochastic Gradient Descent (SGD) optimizer.

4.3 Experimental Results and Discussions

To comprehensively evaluate model performance in a continual learning setting, we evaluate both
the accuracy and the forgetting of the global model on each task upon the completion of the training.
In our FCL setting, the data held by each device can vary significantly, and these data distributions
exhibit Non-IID characteristics. As a result, the accuracy of the models on different devices could be
quite disparate. In addition, after the completion of training for the current task, the global model
is broadcasted to all device for updating in preparation for the next task’s training. Consequently,
the testing results on the current task should be similar across all devices. Hence, in this paper, we
mainly analyze the performance of the global model.

The definition of accuracy is the model’s average performance across all tasks, evaluated on a
per-task basis [10, 11]. Specifically, it denotes the model’s average predictive accuracy across all
tasks undertaken up to the completion of the N-th task. This measurement helps us gauge how well
the model has retained knowledge from previously learned tasks and its capacity to generalize to
new tasks. In our experiments, we will assess both the accuracy after completing all tasks and the
average accuracy across tasks.

On the other hand, the degree of forgetting serves to gauge the potential loss of information the
model may experience as it learns new tasks [62]. It is defined as the difference between the expected
task knowledge (i.e., the initial accuracy of the task) and the accuracy after training additional tasks.
In simple terms, if a model’s accuracy on old tasks drops more profoundly during the process of
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(a) MNIST Dataset (b) CIFAR-10 Dataset

Fig. 3. The Accuracy Performance

learning new tasks, then its degree of forgetting is higher. This measurement standard aids us in
understanding and quantifying the model’s stability in retaining old knowledge while acquiring new
knowledge in a continual learning environment.

In addition, each edge device generating adversarial samples in FCL, leveraging the unique as-
pects of its local dataset for every task. This approach exploits the specific data characteristics
and inherent vulnerabilities of each device. These samples, highly pertinent to the model’s defensive
training, ensure the training process is both relevant and effective in bolstering the model’s resilience
against attacks, with minimal disruption to the training workflow. During local training, the gen-
erated adversarial samples are seamlessly integrated into the local dataset, thereby enriching the
original data. This augmented dataset include authentic samples and adversarial samples, becomes
the new training dataset for the local model. Engaging with this diverse set of data, the model
can enhance its ability to discern and withstand malevolent inputs. Subsequent to the adversarial
training at the local level, devices proceed to update their model parameters, which are then securely
relayed to the central server for aggregation. This ensures the collective benefits of adversarial train-
ing permeate the entire network. The global model, thus refined, inherits robustness traits from the
individual training episodes conducted locally on each device. To evaluate the model’s accuracy, we
introduce adversarial samples as a test mechanism. This not only challenges the model’s capacity
to make accurate predictions but also serves as a rigorous stress test, exposing potential weaknesses
that could be exploited by real-world attacks. By rigorously testing with adversarial examples, we
ensure that our global model is not only robust but also maintains high accuracy, thus providing a
reliable defense mechanism in the operational environment.

In our experiments, we selected the MNIST and CIFAR-10 datasets and tested the performance
in terms of accuracy and forgetting of three models—EWC, LwF, and our method. EWC mitigates
forgetting by applying regularization to the model weights, assisting the model in retaining memories
of old tasks while learning new ones. Although EWC avoids the need to store old data and is
compatible with other techniques, it is computationally intensive and tuning its hyperparameters to
achieve optimal performance is challenging. In contrast, the LwF method guides the model using the
knowledge from old tasks when learning new ones, minimizing catastrophic forgetting. This method
neither requires access to the original old task data nor has any compatibility issues with other deep
learning methods. Furthermore, to assess the robustness of our model, we conduct a comparative
analysis between scenarios where the model has undergone adversarial training and those where it
has not. This allows us to observe the enhancements in model resilience as a direct result of our
proposed method. The test results and discussion are as follows.
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(a) MNIST Dataset (b) CIFAR-10 Dataset

Fig. 4. Accuracy: Known vs. Unknown Task ID

4.3.1 Computational Cost

The computational cost of our method can be analyzed from various angles, including training
time, memory usage, and resource allocation. The proposed method, with its task-specific layers,
inherently requires additional storage and computational resources compared to conventional ap-
proaches. However, this cost is balanced by the flexibility and adaptability it offers in a continual
learning context.

� Training Time: Compared to EWC and LwF methods, our method exhibited shorter train-
ing times for both the MNIST and CIFAR-10 datasets, table 1 provides the details. This is
primarily due to the parallelization of tasks across multiple devices and the efficient aggrega-
tion of model parameters at the central server. The flexibility in training with our approach
allows for effective distribution across devices, reducing bottlenecks and accelerating the overall
training process.

� Memory Usage: Our method’s structure, with shared common layers and task-specific fully
connected layers, does require additional memory. However, the memory overhead is manage-
able due to the shared architecture, mitigating the need for significant duplication. Compared
to the EWC and LwF methods, which rely on regularization or guidance from prior tasks, our
method’s memory requirements are competitive while offering better accuracy and adaptabil-
ity.

� Resource Allocation: The centralized server model allows for efficient aggregation and
distribution of model parameters, ensuring that computational resources are utilized optimally.
This architecture, combined with the distribution of training tasks across multiple devices,
helps reduce the computational burden on individual devices.

4.3.2 Accuracy

In our evaluation, we focused on two specific accuracies: one is the model’s accuracy after the
completion of the current task, and the other is the average accuracy of the model for all tasks
completed so far. Our test set consists of the training categories of the current task and all the
categories of tasks trained before. Figure 3(a) reveals the accuracy of the three models on the
MNIST dataset, and Figure 3(b) showcases their performance on the CIFAR-10 dataset. Tables
2 and 3 provide more details on the accuracy of LwF, EWC, and our method on the MNIST and
CIFAR datasets.

For the EWC and LwF strategies, in the MNIST dataset test shown in Figure 3(a), we mainly
focus on the first type of accuracy; for our approach, we examine both accuracies. During the
training phase, we observed that EWC and LwF have challenges in maintaining performance on old
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Table 2: Accuracy of MNIST Dataset

Method Task1 Task2 Task3 Task4 Task5
LwF 99% 49% 31% 24% 19%
EWC 99% 49% 31% 25% 20%

Our Method (Avg-Acc) 100% 95% 87% 80% 78%
Our Method (Avg-Acc, Known-Task) 100% 99.7% 99.6% 99.3% 99%

Table 3: Accuracy of CIFAR Dataset

Method Task1 Task2 Task3 Task4 Task5
LwF 93% 39% 27% 23% 17.9%
EWC 93% 37% 26% 23.3% 17%

Our Method (Avg-Acc) 91.5% 70.3% 57% 50% 45%
Our Method (Avg-Acc, Known-Task) 89.5% 84% 79% 82% 83%

tasks—once a new task is completed, their performance on old tasks declines significantly. Surpris-
ingly, EWC seems to have entirely forgotten the knowledge of old tasks. In contrast, our method
outperforms these two strategies in terms of performance. After completing 5 tasks, the accuracy
of our model remains above 60%, with an average accuracy reaching 78%. This stands in stark
contrast to the performance of EWC and LwF, which have accuracies of around 20%. In the test
on the CIFAR-10 dataset (Figure 3(b)), although our model’s performance is not as good as on the
MNIST dataset, it still has a clear advantage compared to EWC and LwF, maintaining an average
accuracy of over 45%, while the latter two are only around 18%.

Furthermore, by utilizing the multi-head setup in our model architecture, if we know in advance
which task the test data belongs to, the accuracy can be further improved. As shown in Figure 4(a),
the average accuracy on the MNIST dataset can rise to over 99%, and as depicted in Figure 4(b),
the average accuracy on the CIFAR-10 dataset can increase to over 83%. When the task is known,
the accuracy improves significantly, especially in the later tasks, indicating that task recognition has
a positive impact on model performance. Overall, these data suggest that our method has higher
accuracy on both MNIST and CIFAR datasets, with a better ability to retain knowledge between
tasks, while also showing excellent performance when the task is known.

4.3.3 Forgetting

In our evaluations, both EWC and LwF strategies exhibited noticeable performance degradation on
old tasks when confronted with new ones, with the phenomenon of forgetting becoming increasingly
evident. Alarmingly, under certain circumstances, EWC almost entirely lost its memory of the old
tasks. LwF demonstrated a similar trend. Given these observations, we subjected our model to two
distinct evaluation methodologies: one where the task ID of the test data was known in advance, and
another where it remained unknown. In the latter scenario, the data sequentially passed through task
heads, ultimately selecting the category with the highest prediction value as the final classification.

Figure 5(a) illustrates the results derived from the MNIST dataset, while Figure 5(b) presents
the performance on the CIFAR-10 dataset. Comparatively, our approach demonstrated significantly
reduced forgetting relative to the EWC and LwF methods, signifying its superior efficacy. Table 4
shows the degree of forgetting in models on CIFAR and MNIST datasets after each task. For CIFAR
with an unknown task ID, the first two tasks have negative forgetting, indicating that the model’s
performance on old tasks improved after training new tasks. After that, the degree of forgetting
turns positive but remains relatively small. With a known task ID, CIFAR shows positive forgetting
across all tasks, particularly in Task 1 and Task 2, with a decrease in later tasks. The forgetting
rate on the MNIST dataset oscillated within a range of ±6%, and on the CIFAR-10 dataset, it was
around ±4.5%.

For MNIST with an unknown task ID, there’s almost no forgetting in the first task, with a slight
increase in later tasks, indicating good stability across tasks. With a known task ID, the degree of
forgetting in MNIST significantly drops across all tasks, with little to no forgetting in later tasks.
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(a) MNIST Dataset (b) CIFAR-10 Dataset

Fig. 5. Forgetting Evaluation

Table 4: Forgetting

Dataset Task2 Task3 Task4 Task5
CIFAR (Unknown Task ID) -4.5% 1.5% 4% 1%
CIFAR (Known Task ID) 5.5% 8.5% 2% 4%

MNIST (Unknown Task ID) -0.5% 5% 6% 5%
MNIST (Known Task ID) 0% 3% 0.5% 0%

This highlights the positive impact of task recognition on reducing the degree of forgetting. Overall,
these data suggest that knowing the task ID can effectively reduce the degree of forgetting, especially
in the MNIST dataset, where this effect is more pronounced.

In our study, we have elucidated various conjectures and assumptions informed by the data-
driven behaviors we observed. It’s important to highlight that these ideas, related to both accuracy
and forgetting, require a deeper look into how the model processes information, how its parameters
change, and how different tasks affect each other. Understanding these key aspects can help re-
searchers and engineers create better strategies for continual learning. This also will guide our next
steps and focus in the area of continual learning.

4.3.4 Adversarial Learning

We integrate adversarial learning into our framework. Adversarial learning is achieved by introducing
perturbations into inputs, which are designed to challenge the model’s predictive accuracy [63]. By
training the model to recognize and correctly classify these adversarial samples alongside regular
data, we enhance its robustness against potential attacks and unexpected variations in data. The
incorporation of adversarial learning not only bolsters the model’s defensive capabilities but also
contributes to its generalization performance across tasks. It prepares the model to handle ambiguous
or slightly altered data inputs that it might encounter in real-world scenarios, thus improving its
overall adaptability and reliability. We integrate this approach into our training regimen and evaluate
its impact on both the retention of previous knowledge and the acquisition of new information, as
discussed in the following experimental evaluations.

In order to verify the effectiveness of adversarial training, we compared it with a model without
adversarial training and observed its performance. We compared the model’s accuracy on a test set
with only normal data and a test set containing adversarial examples. We selected an equal number
of normal samples and adversarial samples during training, i.e., a ratio of 50%, to ensure that the
model pays equal attention to normal and adversarial samples throughout the training process.
Additionally, we employed the FGSM [46, 47], which generates adversarial samples by utilizing the
gradient of the input data plus a small perturbation. This perturbation is based on the gradient
multiplied by a coefficient (ϵ), and we set it to 0.1 and 0.3.
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Table 5: Average Accuracy of the Model Following Adversarial Training

Dataset With Normal Samples With Adversarial Samples Adversarial Training (epsilon=0.1) Adversarial Training (epsilon=0.3)
MNIST 78% 70% 66% 58%

CIFAR-10 45% 28% 36% 30%

The table 5 below displays the results of our experiments. The first column shows the average
accuracy when the model is not subjected to adversarial training and the test set consists of normal
samples only. The second column demonstrates the average accuracy when the model is not subjected
to adversarial training and the test set consists of adversarial samples. The third and fourth columns
display the average accuracy of the model when subjected to adversarial training and the test set
consists of adversarial samples. After completing 5 sequential tasks, the average accuracy of both
datasets decreased when faced with adversarial samples. Compared with the MNIST dataset, the
CIFAR-10 dataset performed better after adversarial training. The feature space of the MNIST
dataset is relatively simple, making it easier for the generated adversarial samples to deceive the
model, potentially leading to a loss of accuracy on normal data. The improved performance of
CIFAR-10 may be attributed to its more complex image features, making the model more susceptible
to adversarial attacks when processing this data. Therefore, adversarial training can help the model
better learn and adapt to these complex image features, improving the model’s generalization ability
and robustness. Additionally, the CIFAR-10 dataset is closer to real-world image data than the
MNIST dataset, allowing adversarial training to be more effective in realistic scenarios.

5 Challenges and Future Directions

In this section, we delve into the challenges faced by continual learning paradigms and outline
potential avenues for future research. As the digital landscape becomes increasingly dominated by
the IoT, continual learning emerges as an indispensable trend, finding applicability in diverse sectors.
These include image classification [64, 65], object detection [66], semantic segmentation [67, 68],
healthcare [69], natural language processing [70,71], robotics [72–75], Vision-Language Models [53],
and federated semi-supervised learning [76].

Despite its potential, the implementation of FCL is fraught with difficulties, primarily due to the
heterogeneity and Non-IID nature of data across devices. This diversity in data distribution poses
significant challenges in achieving consistent model performance, necessitating innovative approaches
to manage data imbalance, mitigate data drift effects, and ensure secure and private training on edge
devices. Future research could explore the development of sophisticated FL strategies, such as more
nuanced federated aggregation algorithms that account for data heterogeneity and adaptive learning
rate mechanisms that optimize training across varied data landscapes.

Moreover, the integration of adversarial learning within FCL frameworks introduces a criti-
cal dimension of robustness against adversarial threats, emphasizing the need for balance between
robustness and accuracy. To enhance security further, incorporating discussions on DP and encryp-
tion algorithm could be pivotal [77]. DP ensures data privacy by adding noise, making it difficult
for attackers to extract specific information, while encryption algorithm enables computations on
encrypted data, maintaining privacy in untrusted environments. Future research could explore in-
novative adversarial training techniques that incorporate these encryption algorithms to minimize
accuracy loss.

Furthermore, the quest for enhanced model accuracy and efficiency remains central to the con-
tinual learning paradigm. Current methods often grapple with constraints engendered by commu-
nication overhead, computational intricacy, and the increased complexities intrinsic to FL. Future
studies may want to focus on the deployment of efficient communication and computation strate-
gies, like model compression techniques and optimization algorithms, to amplify model accuracy and
efficiency while preserving data privacy.

In addition, our framework, which combines the advantages of FL and continual learning, has
several potential specific applications in the context of edge computing and data privacy preservation:

� Edge Computing in Healthcare: The integration of FL can be particularly beneficial in
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healthcare settings where patient data privacy is critical [78, 79]. In healthcare, our frame-
work enables medical devices and sensors at the edge to learn and adapt to changing patient
conditions while safeguarding data privacy.

� Financial Services: In the financial sector, characterized by the utmost importance of data
privacy and security [80], our framework can be applied to distributed financial transaction
data. This approach enhances fraud detection and financial analysis without compromising
customer privacy [81].

� Personalized Learning and Content Delivery: In education and content delivery plat-
forms, FCL can enable personalized learning experiences and content recommendations by
learning from user interactions in a privacy-preserving manner [82, 83]. This approach can
significantly enhance user engagement and satisfaction while safeguarding user data [84].

� Smart Cities: Beyond healthcare and financial services, FCL can revolutionize smart city ap-
plications, where privacy-sensitive data from numerous IoT devices can be utilized to optimize
traffic flow, energy consumption, and public safety measures without compromising individual
privacy [85,86].

� Autonomous Vehicles: Within the autonomous driving ecosystem, FCL empowers vehicles
to learn from vast arrays of sensor data, while ensuring that sensitive information remains
securely within the vehicle’s own computing system. This enables a fleet of autonomous ve-
hicles to share valuable insights and improvements in driving algorithms, traffic navigation,
and obstacle detection strategies without directly exchanging raw data [87,88]. Consequently,
each vehicle not only becomes better equipped to handle diverse driving conditions and envi-
ronments but also contributes to a collective intelligence that enhances the safety, efficiency,
and reliability of autonomous transportation systems [89].

In summary, the integration of FL and continual learning in edge computing scenarios has the
potential to benefit a wide range of applications, particularly in domains where data privacy is a
concern. As part of our future work, we will also explore the development of systems in related fields
to facilitate cross-domain integration.

6 Conclusion

FL introduces a paradigm that allows edge devices to train models locally, eliminating the need
to send sensitive data to central servers and thus enhancing user privacy. Furthermore, continual
learning supports the continuous update of models in reaction to changes in local data and immediate
needs, ensuring that models remain relevant and optimized in fluctuating conditions. In our study,
we introduce a FCL framework that not only champions the cause of ongoing learning but also
prioritizes the safeguarding of privacy. Our approach involves assigning a distinct, fully connected
layer to each specific task, guaranteeing that the data for each task is processed in a manner that is
optimally tailored to its unique features. During the prediction process, this data traverses through
every layer dedicated to the tasks, with the label of the highest prediction value identified as the final
label. This method leverages the model’s complete knowledge base to significantly improve prediction
accuracy. Moreover, we enhance the model’s robustness and security against potentially malicious
inputs by incorporating adversarial training techniques. This multifaceted approach highlights the
model’s versatility and its suitability for a wide array of applications.
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