
International Journal of Networking and Computing – www.ijnc.org
ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 2, Number 1, pages 18–40, January 2012

A Packet Aggregation Mechanism For Real Time Applications Over Wireless Networks

Paulo H. Azevêdo Filho
Department of Computer Science

University of Brasilia (UnB), 70910–900, Brasilia, Brazil
Email: paulo@cic.unb.br

Marcos F. Caetano
Department of Electrical Engineering

University of Brasilia (UnB), 70910–900, Brasilia, Brazil
Email: caetano@cic.unb.br

and

Jacir L. Bordim
Department of Computer Science

University of Brasilia (UnB), 70910–900, Brasilia, Brazil
Email: bordim@cic.unb.br

Received: July 30, 2011
Revised: October 31, 2011

Accepted: December 15, 2011
Communicated by Akihiro Fujiwara

Abstract

This work presents a packet aggregation technique, named Holding Time Aggregation - HTA.
HTA is tailored for real time applications whose data is carried over wireless network environ-
ments. At the center of HTA lies an elaborated packet holding time estimation, which makes
HTA to be highly adaptable to the diverse link conditions of a wireless setting. Contrary to
other proposals that consider fixed packet retention time, the proposed HTA uses an adaptable
packet retention time to allow relay nodes to explore aggregation opportunities on a multi-hop
path. The proposed mechanism was evaluated and compared to another prominent packet ag-
gregation scheme. Simulation results have shown that the proposed mechanism is capable to
keep jitter and total delay within application limits. Furthermore, HTA has shown to allow for
substantial reduction on the number of packet transmissions as well as on the overall packet
overhead. Savings in terms of packet transmissions reached nearly 80% in the evaluated scenar-
ios. These results have shown that the proposed scheme is able to cope with varying network
link capacity and strict application timing requirements. The empirical results have shown to
be consistent with the analytical results.

1 Introduction

The broad usage of the Internet has boosted the race for new technologies and fostered the conver-
gence of many different services in the use of Internet Protocol (IP). This movement has allowed

18

International Journal of Networking and Computing

Figure 1: Graphical representation of an aggregation packet comprised of a number of data packets.

the birth of new trends and services, such as Voice over IP (VoIP) [22]. The private and public
sector have been looking for alternative solutions to reduce their telephone costs and in this context,
VoIP has gained considerable attention and is now commonplace [20]. At the same time in a differ-
ent context, the adoption of wireless communications has increased with the advent of IEEE802.11
based networks (a.k.a WiFi) [4]. The IEEE802.11 standard became a natural alternative to bring
mobility to VoIP applications, owing to its low cost and broad usage, particularly in the last mile
[19]. However, wireless networks do not offer the same performance as wired networks do, as they are
prone to interference, contention and packet collision [1], [6]. Also, the QoS constraints are severe
when it comes to voice traffic demands as these packets are sent in a continuous flow requiring little
end-to-end delay and packets arrival variation (jitter) [25].

When considering an IEEE802.11b network [4], its theoretical throughput would allow for nearly
341 VoIP streams, which corresponds to about 170 simultaneous dialogs. However, it turns out that
such networks are capable of carrying only a few VoIP dialogs [23]. This poor performance is mainly
due to the following problems: (i) the large packet headers added; (ii) the amount of fixed timers
between frames; and (iii) the numerous control frames used by the IEEE802.11 standard. All these
facts impose a significant overhead on the system, which leads to bandwidth wastage. In fact, when
VoIP packets are considered, the overhead introduced can amount to more than 3 times the size
of the voice packet [2]. The overhead introduced at the physical and data link layer of the WiFi
standard poses a challenge for supporting real time applications. To reduce these problems, the
scientific community has been seeking for alternatives in order to minimize the overhead and enable
VoIP applications to be used over wireless networks [5]. As voice packets are only a few bytes long, it
is possible to merge a number of voice packets into a single, larger packet as shown in Figure 1. The
figure shows a number of nodes in a multihop setting. As the voice packets traverse the network,
they are combined in order to reduce the overhead. This technique is called packet aggregation and
has been shown to be a prominent approach, presenting reasonable results.

Packet aggregation has been shown as a feasible alternative to carry voice calls over wireless net-
work. For these reasons, packet aggregation has been a popular subject and a number of aggregation
protocols and techniques have been proposed in the literature. These proposals can be grouped ac-
cording to the TCP/IP layer they are applied. The proposals in [3], [5], [9], [10], [11], [16], [18], [23]
work at the network layer. Proposals in [13], [17], [24], [26], on the other hand, work at the data link
layer. The network layer aggregation proposals can be also classified as multi-hop ([3], [5], [9], [10],
[11], [16], [18]) or single-hop ([23]). When considering multi-hop aggregation algorithms, they can
be further divided according to the point of aggregation in the network, which can be end-to-end
([5], [10], [11], [18]) or hop-by-hop ([3], [5], [9], [11], [16]). In what follows, we review some of the
works which are closely related to the aggregation algorithm proposed in this work.

1.1 Related works

In [16], an algorithm tailored for sensor networks, which includes packet routing, compression and
aggregation was proposed. Although packet aggregation is used in this work, the focus is on sensed
data in which timing constraints are not as severe as in real time application such as VoIP. In [9]
the authors offer an approach using linear combinations of the packets being transmitted, using the

19

A Packet Aggregation Mechanism For Real Time Applications Over Wireless Networks

fact that network devices may store many different packets. This method requires deep changes
in the TCP/IP stack, which makes implemention for broad usage difficult. In the IPAC [18], the
authors define mechanisms to hold the data packets at the source node in order to aggregate as
many packets as possible before transmitting them. As IPAC aggregates packets only at the source
node, it fails to aggregate packet along the path, as in the scenario shown in Figure 1. A multihop
aggregation scheme demands for a mechanism to estimate the amount of time during which a packet
can be held at each relay node along the path towards the destination. This idea has been explored
in [3], where the relay nodes may aggregate packets coming from difference sources and bound to
other destinations. The main drawback of this proposal is that the holding time at each relay node is
fixed, making it unsuitable for environments where the links have different characteristics, a common
situation in wireless environments. In such scenarios, the proposed scheme may generate excessive
delays. The protocol proposed by Kim et al. [11] also uses fixed timer, which is computed based on
the topological information. Clearly, this protocol inherits the same problems found in [3]. In [5],
the authors assessed the protocol proposed in [11] in a testbed.

Kekre et al. [10] focused on reviewing VoIP operations over IEEE802.11 WLANs. The authors
focused on multi-hop scenarios. The aggregation algorithm uses the same approach presented by
Kim [11]. However, a flow admission control is used before allowing a new flow, so as to ensure that
QoS requirements are respected. Wang et al. [23] proposed an aggregation algorithm applied to a set
of wireless infra-structured network topology, interconnected by a wired infra-structured network.
The VoIP packets are aggregated by a Voice Gateway located at the edge of the wired network. The
wireless nodes implement a demultiplexing algorithm, allowing them to extract the correct portion
of the aggregated packets received via the wireless gateway node. Again, the aggregation time is
static, and associated with the maximum number of nodes served by the gateway node.

A frame aggregation method was proposed by Zhang et al. [26]. The aggregated frame can be
constructed in two different ways: either by packing the voice frames from the same call or from
different calls. As in other approaches, the aggregation time is fixed for a given network topology. In
the same context, Yun et al. [24] propose a zero-delay frame aggregation scheme for up stream/down
stream asymmetric links. However, the frame aggregation operations are too complex and the
adaptation method increases the load operations in the access point manager. Pentikousis et al. [13]
present a frame aggregation method for a fixed WiMAX testbed, where single hop communications
are considered. Pinola et al. [17] investigated the impact of the OFDMA and OFDM modulation
techniques when frame aggregation is used over a WiMAX environment.

This work presents a packet aggregation protocol to support VoIP applications running on top
of an ad hoc wireless networks. The proposed mechanism, termed Holding Time Aggregation (HTA)
was designed to reduce the number of transmissions and overall transmission overhead. Unlike
other works in this area, this proposal evaluates the network condition, regarding the behavior
of the data flow, so that it is applicable to environments in which the network links have different
capabilities. The time requirements of the application are respected and the aggregation is performed
in an adaptive way. The results obtained through simulations show that the proposed mechanism,
compared to other similar techniques, reduces the number of transmissions and overall network
overhead. Savings in terms of packet transmissions reached nearly 80% in the evaluated scenarios.
These results have shown that the proposed scheme is able to cope with varying network link capacity
and strict application timing requirements.

The rest of this paper is organized as follows: Section 2 introduces concepts related to the packet
aggregation process. Section 3 presents a mechanism to compute holding time of packets, so that
aggregation decisions can be made in an adaptive way. These results are later used in designing a
holding time aggregation protocol, which is presented in Section 4. The analytical model used to
evaluate the proposed protocol is presented in Section 5 while the empirical and analytical results are
presented in Section 6. Section 7 concludes this work and presents directions for further investigation.

20

International Journal of Networking and Computing

!"#$%&'('%

!"#$%&'('%

)**+,-'./0%&'('%

)**+,-'./0%&'('%

)**+,-'./0%&'('%

)**+,-'./0%&'('%

)**+,-'./0%&'('%

)**+,-'./0%1#'2#$%

345%6%!&5%1#'2#$"%

75%1#'2#$%

8996:;)5%1#'2#$%

<)9%7===%>?@ABB%1#'2#$%

5895%1#'2#$%

5895%5$#'CD+#% :EF%7===%>?@ABB%

)55%

!&5%

75%

=0+'-#%

Figure 2: Data encapsulation process.

2 Packet Aggregation

The focus of packet aggregation in wireless networks is to reduce the overhead introduced by headers,
fixed timers, and control packets which are used by the wireless protocols. As the user’s data traverses
the TCP/IP stack, from the application layer to the physical layer, a number of headers are added, as
seen in Figure 2. Let us consider a voice packet received from the user application. At the transport
layer, the Real Time Protocol (RTP) headers and the UDP headers are added to the VoIP packet.
The RTP header comprises 12 bytes and the UDP header adds another 8 bytes. The segment is then
passed to the network layer, where an additional 20 bytes are added. The packet is then passed to
the data link layer, which is sub-divided into LLC (Logical Link Control) and MAC (medium access
control) sub-layers. According to the IEEE802.11 standard [4], the LLC adds 8 bytes (3 for the LLC
and 5 for SNAP). At the MAC sub-layer, an additional 34 bytes are added, and then the frame is
passed to the physical layer, at which, another 24 bytes are appended, which comprises the PLPC
preamble and PLPC header. Thus, altogether, the amount the headers added is 96 bytes. When
considering the iLBC codec [12], the user application voice packet is about 38 bytes. Thus, the size
of the headers added to the VoIP packets is over 2.5 times the size of the actual message.

IEEE802.11 defines a number of control packets which are used to reserve the medium and
minimize collisions. These control packets include RTS (20 bytes), CTS (14 bytes) and ACK (14
bytes), which adds another 48 bytes. That is, to send 38 bytes from the application, 144 additional
bytes are necessary. Also, as seen in Figure 3, the IEEE802.11 includes a number of fixed timers,
such as Short Interframe Space (SIFS), DCF Interframe Space (DIFS) and the preamble, which
are independent of the data size being sent. On top of that, the contention time before accessing
the channel depends on various factors, including the number of transmitting nodes and channel
conditions, which also have an impact on the application (further details about the timers, as well
as the correlation between overhead and payload in wireless networks can be seen in [2]). Clearly, to
allow voice data to be carried over an IEEE802.11 based network, one has to find means to overcome
such problems.

In this context, packet aggregation unites the payload from many packets to send them as an
aggregated packet. In this way, the impact of the aforementioned timers and the overall number of
control packets can be greatly reduced. The related works presented in the previous section consider

!"#$%&'('

!"#$%&')'

!"#$%&'*'

!"#$% &'!(% $"#$%)*+% !"#$% ,-
./*+01%

&'!(%

Figure 3: Transmission sequence for IEEE802.11 networks.

21

A Packet Aggregation Mechanism For Real Time Applications Over Wireless Networks

an environment in which the connections always have similar bandwidth and timing issues. However,
due to the dynamic nature of mobile networks and the peculiarities of the medium, the conditions
of the channel for a node ni can be very different from that in node nj , even when ni and nj are
adjacent (i.e. i 6= j, and 0 < i, j ≤ N , where N is the number of nodes in the network). In other
words, the conditions for a link between close nodes, ni and nj in a wireless network can vary with
time and are subject to interference, collisions and contention. The latter, for instance, is directly
related to the number of neighbors and their behavior, such as the number of packets sent, received
or even routed. Therefore, in our packet aggregation mechanism we have to consider those issues to
provide an acceptable QoS level. It is worth mentioning that timing is a critical factor to the quality
of the service perceived by the user.

To better illustrate how to apply packet aggregation in an ad hoc network, let us consider the
topology in Figure 4. The figure shows four nodes and three links connecting them. Note that the
link between nodes n3 and n4 has a lower link capacity comparing to the other links. Now, suppose
that nodes n1 and n2 have a number of constant bit rate (CBR) packets to transmit to node n4.
Considering the iLBC codec, 38 bytes would be generated at every 20ms in the application layer of
each source node [12]. Those packets will be sent to node n3 and then forwarded to the destination
node n4. It is noticeable that n3 can combine the packets received from n1 and n2 before sending
them to n4. Packet aggregation allows n3 to reduce the number of transmissions to n4. Nevertheless,
to make the aggregation viable, the time spent in this process has to be acceptable to the application.
That is, node n3 has to be able to estimate the time spent in receiving the packet from the source
node as well as the time it will take to send it to the final destination node n4. As link n3 → n4 has
a lower capacity than the link n1 → n2, a packet may take longer to traverse the last link. Hence, a
fixed holding time at each node may not be appropriate in this case. It is noteworthy that in a VoIP
communication, the total time to transmit a packet from its source to its final destination cannot
be above 150ms, so as to meet the VoIP QoS constraints [7].

Until now, packet aggregation techniques define the time to transpose a link as constant, which
simplifies the task of estimation. However, this assumption is not realistic as the links among nodes
may have different characteristics, including channel capacity, as illustrated in Figure 4. Thus, using
a single estimate for every link can lead to both waste of aggregation opportunities and packet
discharge. In the next section the details of the proposed technique are presented. The proposed
scheme aims to fulfill the aforementioned requirements, so that aggregation can be done even in
scenarios where the links have different characteristics.

3 Holding Time Packet Aggregation

This section presents the key elements which will be later used in our packet aggregation scheme,
termed Holding Time Aggregation (HTA). As discussed in the previous sections, other works suggest
aggregation of packets by retaining them for a fixed amount of time at each hop. In HTA, in contrast,
each packet is held for the maximum allowed time with respect to the application requirements.
A packet aggregation protocol works by exploring aggregation opportunities. Clearly, the main
difference among the existing aggregation protocols is the reliance on the techniques employed to
identify and explore such opportunities. Suppose that node nr is a node on the path P (ns, nd), that

3n

1n

2n

4n

Figure 4: Network with links that have different capacities.

22

International Journal of Networking and Computing

Table 1: Route-time traversal estimation.

Time n1 n3 n4

t0 → RQ1,4

Start R1,4

t1 → RQ1,4

Start R3,4

t2 → RQ1,4

t3 ← RP4,1

t4 ← RP4,1

Stop R3,4

t5 ← RP4,1

Stop R1,4

is, the path between the source and destination nodes, ns and nd, respectively. We call any node on
this path, except the destination node, a relay node, denoted by nr. Upon receiving a packet p(s, d),
node nr needs to decide whether packet p(s, d) can wait for aggregation opportunities or not. To
answer this question, the relay node nr needs to know:

1. The amount of time the packet p(s, d) took to reach the relay node; and

2. The amount of time the packet p(s, d) will take complete its journey.

In other words, node nr needs to know the amount of time packet p(s, d) took to traverse the
path P (s, r) and the amount of time it will take to reach node nd (i.e., traverse the path P (r, d)).
When such information is available, node nr can take proper action. Such action includes sending
the packet immediately or holding the packet for an appropriate aggregation opportunity to arise.
In what follows we will show how the above information can be obtained, first by showing how the
path traversal time can be estimated.

3.1 Path Traversal Time Estimation

In order to estimate the maximum holding time for a given packet, each node needs to estimate the
amount of time needed for this packet to travel from the source to the destination. The main goal of
this subsection is to provide means to compute an estimated route traversal time between source and
destination nodes. It is well known that many mobile routing protocols usually require the nodes
to keep the necessary information about the path to the desired destination. This information can
be the next hop through which the packet must be forwarded, as with the DSDV (Highly Dynamic
Destination-Sequenced Distance-Vector Routing) [14] and AODV (Ad hoc On Demand Distance
Vector) [15] protocols. Other protocols maintain the whole route, as with the DSR (Destination
Source Routing) protocol, that can even record multiple routes for a given destination [8].

Let us consider the route discovery with the aid of the topology shown in Figure 4. Suppose that
node n1 needs to establish a route to node n4. The first step taken by the source node is to find a
valid route to the desired destination. Thus, node n1 sends out a route request, (RQ1,4), to verify
whether a route to node n4 exists or not, following the routing protocol rules. When the RQ1,4 is
issued, node n1, at time t0, starts the timer R1,4 as shown in Table 1. At time t1, the RQ1,4 is
received by node n3, which starts the timer R3,4 and forwards the received packet to node n4. When
node n4 receives the RQ1,4, it sends back to the source node a route reply, RP4,1, informing that
a valid route has been found. Upon receiving the RP4,1 packet, node n3 stops the timer R3,4 and
forwards the received route reply to node n1. Note that node n3 has been able to get an estimate
round trip time to node n4. When the RP4,1 packet reaches source node n1, node n1 will learn that
a route towards destination node n4 exists and its estimated round trip time is R1,4. Clearly the
time to traverse the path P (ns, nd) can be expressed as

23

A Packet Aggregation Mechanism For Real Time Applications Over Wireless Networks

Ts,d =
Rs,d

2
. (1)

It should be noted that the estimated round trip can be updated constantly by using keep-alive
messages to collect link variations and route changes. This practice is usually employed by many ad
hoc routing protocols [8].

3.2 Elapsed Time

We now turn our attention to the time spent by a packet p(s, d) to reach the relay node nr ∈ P (s, d).
In order to estimate the elapsed time, each packet p(s, d) is associated with the timer Es,r. On
receiving the packet p(s, d), node nr receives, along with the packet, the elapsed time up to its
predecessor nq on the path P (s, d). The timer Es,q is updated with the amount of time the packet
p(s, d) spent at or before the node nq, by nq itself or one of its predecessors. For this purpose, after
receiving the packet p(s, d), node nr starts a timer Tr. On sending packet p(s, d) to the next node
on the path P (s, d), the timer Es,r is updated such that Es,r = Es,q + Tr. It is easy to see that,
when the packet p(s, d) is sent by node nj to the next hop node on the path P (s, d), the Es,j is
equivalent to

Es,j =
∑

i∈P (s,j)

Ti. (2)

3.3 Holding Time Estimation

Since the path traversal time and the elapsed time estimation are available, we can now show that
it is possible to compute the amount of time a packet can spend at a relay node. For that purpose,
let Amax be the maximum allowed time for a packet p(s, d) to traverse the path P (s, d). Recall that
nr is a relay node on the path P (s, d). Thus, from Equation 1, nr is able to compute Tr,d, that is,
the amount of time to reach the destination. Then, from Equation 2 and Equation 1, nr is able to
compute the maximum holding time H(p) as follows:

H(p) =
Amax − (Es,r + Tr,d)

|P (r, d)|
, (3)

where |P (r, d)| is the number of hops in the P (r, d) path, that is, the path from the relay node nr

to the destination node. Note that the larger H(p) is, the greater the aggregation opportunities will
be, as a packet p(s, d) can spend more time at node nr. In this case, larger aggregated packets are
likely to be produced. On the other hand, when the network conditions worsen, the path traversal
time is likely to increase. This will have the effect of reducing aggregation opportunities, resulting in
shorter aggregated packets. In this work we assume that Amax is an application parameter, which
is associated with the application requirements for a given class of packets.

4 A Packet Aggregation Protocol

This section presents the Holding Time Aggregation (HTA) protocol. The HTA protocol is a dis-
tributed protocol that uses, as a key ingredient, the holding time information, which was discussed
previously. This information is used to decide whether, and for how long, a given packet can be
retained to explore future aggregation opportunities. The HTA protocol uses a number of basic
operations, described below.

24

International Journal of Networking and Computing

Table 2: Priority queue entries example.

q4

p(n1, n4) t0
p(n2, n5) t1

...
...

4.1 Basic Operations

The HTA protocol uses four basic operations regarding packet aggregation and queueing operation.
We begin with some definitions. For this purpose, consider a network topology represented by the
graph G = (V, E), where V is the set of nodes and E is the set of edges. Let N = |V | be the
number of nodes and p(i, j), 0 ≤ i, j < N where i 6= j, denote a packet originated from source node
ni bound for the destination node nj . Also, let Ap = {p(i, j) | i, j ∈ |V |} denote an aggregation
packet. Furthermore, let p(i, ∗) denote the packets whose source node is node ni. Likewise, p(∗, j)
denotes the set of packets whose destination node is nj . Each node ni has ∆(ni) priority queues,
where ∆(ni) represents the degree of node ni. Then, a neighboring node of ni, say nk, is denoted as
ni(k). Thus, at node ni, the priority queue qk holds the packets whose next hop is node ni(k). The
items in each priority queue are sorted in ascending order of H(p), so that the head of the queue
holds the packet with the least holding time. Four basic operations are used in the HTA protocol.
These operations are defined below:

(i) : The unpacking operation U(Ap, nk) allows retrieval of all the packets within Ap whose next
hop node is node nk;

(ii) : The packing operation P (Ap, nk) allows aggregation into Ap of all packets whose next hop
node is nk;

(iii) : The enqueue operation E(U(Ap, nk), qk) retrieves all packets from the aggregation packet Ap

and place them into queue qk;

(iv) : The dequeue operation D(qk, t) retrieves all packets from queue qk whose holding time is at
most t;

To better understand the above operations, let us consider the following example. Consider a
string network topology consisting of five nodes n1, n2, n3, n4, n5, as presented by the Figure 6. Note
that node n2 has two neighboring nodes, n1 and n3. Let Ap = {p(n1, n3), p(n1, n4), p(n2, n5)} be
an aggregation packet at node n3. When node n3 executes the unpacking operation U(Ap, n4),
it retrieves the packets within Ap, in this case {p(n1, n4), p(n2, n5)}, whose next hop towards
the destination nodes is n4. Similarly, when node n3 executes the packing operation P (Ap, n4),
it would set Ap = {p(n1, n4), p(n2, n5)}. The enqueue operation E(Ap, q4) places the packets
{p(n1, n4), p(n2, n5)} into q4. When a packet is inserted into the queue, its estimated holding time
is computed and placed in the queue as well. In other words, each entry in a queue qk of node ni,
where ni(k), is a tuple <p(s, d), t>, where t is computed using Equation 3 and p(s, d) is a packet
bound to the next hop node nk. Table 2 shows the contents of queue q4 at node n3 after the enqueue
operation. In this example, the dequeue operation D(q4, t0) would retrieve the packet p(n1, n4) from
q4. From the above, it should be clear that the unpacking operation is executed whenever a node
receives an aggregated packet. The packing operation, on the other hand, is used to aggregate
packets which are directed to the same next hop. The maximum size of an aggregated packet size
is bounded by the network’s maximum allowed transmission unit.

The packing operation allows a number of packets p(s, d) going to the same next hop node to
share the same structure of a larger packet Ap. Figure 5 shows the structure of an aggregation
packet Ap. Note that the packet Ap is just a common IP packet, where the payload part is used

25

A Packet Aggregation Mechanism For Real Time Applications Over Wireless Networks

IP PayloadHeaders

P1

Payload

IP
Sender

IP
Destination

1E Size

Header

IP
Header

PHY
Header

MAC
AGG

Header

P1

UDP
Header

P1

RTP
Header

P1 Pn

PayloadAGG
Header

Pn

UDP
Header

Pn

RTP
Header

Pn

Figure 5: An IP packet comprising of a number of voice packets aggregated into the payload part.

to multiplex several voice packets. Each packet p(s, d) ∈ Ap is inserted into the payload part with
some information allowing relay nodes to correctly retrieve them. Thus, when a node nj receives a
packet, it needs to know whether this is an aggregation packet or not. Here, the protocol field, in the
IP header, is used to indicate whether a packet contains aggregated packets or not (similarly to the
scheme proposed in [3]). When this is the case, the Ei,j field of the aggregation header indicates the
elapsed time since the aggregated packet was generated. As discussed in the previous section, every
node is responsible for updating this value before forwarding the packet to the next hop on the path.
The size field indicates the size of this aggregated packet. After size bytes there may be another
aggregation header, up to the limit represented in the total length field in the IP header is reached.
As can be seen, the aggregation header is used to multiplex several packets into an aggregation
packet. Similarly, the aggregation header is used to demultiplex packets using the original IP header
information. The structure of the Ap packet can be created with few modifications to the IP packet.
Indeed, only an 11 bytes header would be necessary for each packet p(s, d) to be aggregated into a
larger packet Ap. These 11 bytes correspond to the source and destination IP address, the elapsed
time E(s, r) and the packet size, as depicted in Figure 5.

4.2 HTA Protocol

In the HTA protocol, every packet is treated as an aggregation packet Ap, even when Ap contains a
single packet p(s, d) within it. The HTA protocol is based on two main triggered events, the receive
event and timeout event. We begin with the receive event. Upon receiving an aggregation packet Ap,
node ni performs two main tasks as shown in Table 3. The first task of node ni is to retrieve all the
packets p(∗, j) ∈ Ap, where i 6= j, and place them into the corresponding next hop queue qj . That
is, those packets whose destination is the same next hop node are placed in the same priority queue.
For this purpose, the unpacking operation is used. For each packet retrieved from the aggregation
packet Ap, the maximum holding time H(p) is computed using Equation 3. Then, the retrieved
packets are inserted into the appropriate queue along with its holding time H(p). These tasks are
performed in Step 1. The packets whose destination is node ni are then retrieved and sent to the
corresponding upper layers. Thus, after a receive event, the following conditions should hold for
node ni:

CND1 : All packets being routed through ni are placed into the appropriated next hop queue; and

CND2 : All packets bound to node ni are delivered to the upper layers of node ni.

1n 2n 3n 4n 5n

Figure 6: A linear network topology.

26

International Journal of Networking and Computing

Table 4 describes the actions taken on a timeout event. Note that a timeout event occurs when
the holding time H(p) of a packet p is below a given threshold t. Suppose that a node ni retrieves
packets from a given timeout priority queue, say qj . For this purpose, node ni uses the dequeue
operation. The dequeued packets are placed into an aggregation packet Ap, as described in Step 1.
Once the aggregation packet Ap is built, node ni sends it to the appropriated next hop node ni(j).
Thus, after a timeout event, the following condition is met:

CND3 : All packets whose holding time is below threshold t have been placed into an aggregation
packet Ap and sent to the corresponding next hop node.

Although our discussion here is focused on aggregation packets, it should be clear from the
previous section that a node is able to determine whether a received packet is an aggregation packet
or not. This information is inserted into the protocol field of the IP header. For each packet
p(s, d) ∈ Ap, the time elapsed since the packet was created is associated with each packet, allowing
intermediate nodes to take proper action based on the amount of time elapsed since its creation
and the time necessary to reach its final destination. Once the inner workings of the HTA protocol
have now been explained, our next task is to present an analytical model which will be later used
in evaluating and comparing the proposed protocol with other related works.

5 Analytical Model

In what follows we will define an analytical model that will be later used to evaluate the HTA
protocol, which has been presented in the previous section. The first task is obtaining the amount of
packets that can be aggregated per transmission. For that purpose, we will consider the underlying
network topology represented as a graph, according to the graph definition of Section 4.1. Let
AP = {

∪
P (s, d)|s, d ∈ V } be the set of all active paths used by the existing flows on the network.

Also, let e be a link in AP . Clearly, the link e may be shared by a number of active paths P (s, d).
Let R(e) denote the set of paths P (s, d) that share the link e. Then, the aggregation time A

R(e)
T for

all the flows that go through link e is bound by the average aggregation time among all those flows.
Then, a relay node can use the Equation 3 to compute the A

R(e)
T , as in

A
R(e)
T = Avg(H(p)). (4)

To compute the amount of packets that can be aggregated per transmission, it is necessary to
consider the average incoming packet frequency. Remember that |R(e)| is the amount of active flows
in the network that share the link e, between nodes ni and nj , and let I(i, j) be the average interval
between packet arrivals incident to node ni heading towards nj . Then, the number of aggregated
packets from node ni towards node nj can be computed as in

N(i, j) = |R(e)|+
A

R(e)
T

I(i, j)
. (5)

Table 3: Actions taken when an aggregated packet Ap is received by ni.

Trigger: Node ni receives Ap

Step 1:
Unpack all items in Ap, compute their holding time and enqueue
them into their corresponding next hop queues. That is, ∀j | j ∈
ni(j), E(U(Ap, nj), qj), where the relay node for p(s, d) is ni(j).

Step 2: All packets in Ap whose destination node is ni are sent to the upper
layers LA of node ni. That is LA ← U(Ap, ni);

27

A Packet Aggregation Mechanism For Real Time Applications Over Wireless Networks

Table 4: Actions taken when a queue qj on node ni has items whose holding time is about to expire.

Trigger: Timeout on queue qj.

Step 1:
Node ni builds a packet Ap such that Ap ← D(qj , t) by using the
dequeue operation. Each packet has its holding time updated before
the packing operation takes place;

Step 2: Node ni sends aggregate packet Ap to next hop node nj ;

Once the aggregation time limits have been defined, the next task is to calculate how this
translates into reducing the total amount of bytes transmitted. To do so, we start by calculating the
size of each packet. For that purpose, some definitions are necessary, which are shown in Table 5.

Table 5: Headers added at different 802.11 layers with the iLBC Payload on top.

Description Symbol Value
Physical layer headers Hp 24 bytes (PLPC header and preamble)

MAC headers Hm 42 bytes (LLC & SNAP)
IP headers Hi 20 bytes

UDP headers Hu 8 bytes
RTP headers Hr 12 bytes

Aggregation headers Hg 11 bytes
Packet payload Pl 38 bytes (iLBC)

The headers of a layer three packet L3 are defined in Equation 6, whereas a layer four packet
L4, including the payload, is defined in Equation 7.

L3 = Hp + Hm + Hi (6)

L4 =

{
Hu + Hr + Pl If no aggregation is used
Hu + Hr + Hg + Pl If aggregation is used

(7)

Then, the size of a packet Sp can be computed by combining Equation 6 and Equation 7. Let Ng

denote the number of packets that are included in an aggregation packet Ap. When no aggregation
is used, Ng = 1 and Ng > 1 otherwise. Then, the size of a packet Sp can be defined as

Sp = L3 + Ng × L4. (8)

With that information at hand, we then go on to obtain the packet transmission amount issued
per node, and then on the whole network. For a given node ni, the total volume of data transferred
Vd(i, j) to a neighboring node nj , over an interval of o time It, is given by Equation 9:

Vd(i, j) =
It

I(i, j)
×

(
L3

N(i, j)
+ L4

)
. (9)

Let Adj(ni) be the set of neighbors of node ni. So, the total amount of data transmitted by node
ni, named Vd(i, ∗), is given by the sum of the transmissions it made to all of its neighbors ni(∗),
and can be represented by Equation 10:

Vd(i, ∗) =
∑

nj∈Adj(ni)

Vd(i, j). (10)

28

International Journal of Networking and Computing

Thus, the amount of data transmitted in the whole network, Vd(∗, ∗), is the sum of the amounts
transmitted by each node in the network, as defined below:

Vd(∗, ∗) =
N∑

i=1

Vd(i, ∗). (11)

Using Equation 9, it is easy to obtain the total amount of payload Vl transmitted from a node
ni to its neighboring node nj . This is done by Equation 12. Then, the total payload transmitted by
a given node ni and the total amount of payload transmitted in the whole network can be obtained,
as defined in Equation 13 and Equation 14 shown below:

Vl(i, j) =
It

I(i, j)
× Pl, (12)

Vl(i, ∗) =
∑

nj∈Adj(ni)

Vl(i, j), (13)

Vl(∗, ∗) =
N∑

i=1

Vl(i, ∗). (14)

The above equations allow us to compute both the total amount of data transmitted in the
network and the total amount of payload transmitted. By using Equation 11 and Equation 14, it is
possible to calculate the total amount of headers Vh used to carry the network traffic over a period
of time, which is defined in Equation 15:

Vh = Vd(∗, ∗)− Vl(∗, ∗). (15)

The next section presents the empirical and analytical results for a number of different scenarios.

6 Empirical and Analytical Results

This section presents empirical and analytical results as well as those from a simulated environment.
In order to evaluate the proposed method, a simulator was developed in C++. The simulator incor-
porates the MAC layer characteristics of the IEEE802.11b/g standard protocol in mixed mode [4].
A shortest path routing is assumed in this work while the route request message (RQ) and route
reply message (RP) are used to estimate the holding time. The protocol proposed in [3], hereafter
denoted as HBH, has shown to attain reasonably good results while respecting the QoS require-
ments of the application. Thus, HBH is used as a benchmark in comparing the empirical results.
Also, and the IEEE802.11 standard, which does not use packet aggregation, hereafter referred to
as STD, has also been used for comparison. Altogether, three protocols have been implemented in
the simulator: the proposed HTA, the HBH protocol proposed in [3], and the IEEE802.11 standard.
The analytical results are shown along with the empirical results. The empirical results consider
different topologies with a varying number of source/destination pairs. In the simulations, the Amax

value was set to 150ms, corresponding to the maximum allowed time for a VoIP application with
the iLBC codec. The iLBC codec generates VoIP packets (voice packets) of 38 bytes packets each,
at regular intervals of 20ms. The details of the simulations and their parameters will be discussed
along with each scenario in the following subsections.

6.1 First Scenario: Single Constrained Link

The aim of this first scenario is to evaluate the effectiveness of the HTA timing mechanism in a
network topology in which the links do not share the same characteristics. The topology considered
here is the same as that shown in Figure 4. In the simulation, the nodes n1 and n2 are connected
to n3 via a 100kBps links. The communication link bandwidth connecting nodes n3 and n4 ranges
from 10 to 100kBps. Nodes n1 and n2 generate ten thousand VoIP packets each. The generated

29

A Packet Aggregation Mechanism For Real Time Applications Over Wireless Networks

packets are bound to node n4 and are forwarded through node n3 before reaching their destination.
The numerical results are also presented, following the approach used in the previous section, for
the case in which the bandwidth between n3 and n4 equals 100kBps, although the results for all
bandwidth values are plotted on graphics.

Figure 7 shows the average number of transmissions. The x axis shows the link capacity of the
constrained link n3 → n4. The figure shows that, when no aggregation is considered, node n3 would
receive 20000 packets (10000 for each source node), which are then forwarded to node n4. Thus,
altogether, 40000 packets are transmitted, as seen for the STD protocol. When packet aggregation is
used, the volume of data transmitted is reduced, as seen in the case of the HBH and HTA protocols.
The proposed method is able to aggregate nearly three times more packets than the HBH method,
transmitting roughly one fourth of the amount of packets used by the STD method. The reason
behind this difference is that the HBH approach uses a fixed time to hold packets at each node,
losing aggregation opportunities. The value used for HBH is 5ms, as suggested in [3]. Clearly,
the reduction on the amount of transmissions generates significant economy in the total volume of
headers transmitted, as seen in Figure 8. It is also notable that even with the usage of aggregation
headers and timing information, the proposed approach still reduces significantly the total amount
of control data (headers) transmitted. This efficiency means a reduction of more than 50% when
compared to the mechanism in [3].

 0

 10000

 20000

 30000

 40000

 50000

 20 40 60 80 100

N
u

m
b

e
r

o
f

tr
a

n
s
m

is
s
io

n
s

Constrained Link bandwidth (kBps)

Numerical Results
HTA
HPH
STD

Figure 7: Overall number of packet transmissions.

From the simulation results, the estimated path traversal time T1,4 was ≈ 16ms (see Equation 1).
With Amax = 150, the holding time estimation at node n1 can be computed with Equation 3, which
is about 67ms per hop. As mentioned before, each node generates 10000 packets at a rate of 20ms,
then node n1 and n2 will be sending packets during ≈ 200000ms. Recall that the iLBC codec
generates 38 bytes VoIP packets every 20ms. Thus, according to Equation 5, from both nodes n1

and n2 there will be an average of 4.36 packets aggregated per transmission, towards node n3. Thus,
n3 will be able to aggregate, on average, 8.71 packets per transmission towards n4. According to
Equation 6 and the information on Table 5, the L3 headers account for 86 bytes. Recall that an
aggregation packet Ap uses an additional 11 bytes for packing and unpacking operations. Considering
the payload and additional layer four headers, a single aggregation packet, according to Equation 7
accounts for the 69 bytes. By replacing the values in Equation 9, it is possible to compute the total

30

International Journal of Networking and Computing

amount of data transmitted by nodes n1 and n2 without aggregation as shown below:

Vd(1, 3) = Vd(2, 3) =
200000

20
× (

86
1

+ 58) = 1, 440, 000 bytes without aggregation,

Vd(1, 3) = Vd(2, 3) =
200000

20
× (

86
4, 36

+ 69) = 887, 384 bytes with aggregation.

Thus, the amount of data sent to node n4 equals to the amount of data issued by nodes n1 and
n2, that is Vd(1, 3)+Vd(2, 3). Using the aforementioned results and Equation 11, the total amount of
bytes transmitted without aggregation accounts for 5, 760, 000 bytes. With an average aggregation
of 8.71 packet at n3, the total volume of bytes transmitted is 3, 352, 151 bytes. In other words, the
throughput obtained is ≈ 28.8 and 16.76kBps, respectively, as can be seen in Figure 9 at 100kBps.
In the simulations, the values obtained for STD and HTA were, respectively, 5, 760, 000 bytes and
3, 405, 000 bytes. These results represent a throughput of 28.8 and 17.02kBps as shown in Figure 9.
Note that, in an ideal scenario, the simulation would last for 200 seconds. Figure 9 shows how
the throughput behaves with the constrained link bandwidth variation. It is clear that the HTA
approach considerably reduces the amount of strain put on the network, effectively freeing resources
that can then be used by other traffic sharing the same links. It should be noted, however, that due
to network traffic conditions, the transmissions may need to be scheduled at some points in order
to wait for their turn. In such cases, the simulation may last longer than the expected, impacting
the throughput. In this scenario, the HTA protocol was able to deliver packets in an efficient way,
reducing the amount of resources used while carrying the same amount of traffic. Note that the
higher throughput of STD and HBH, as compared to HTA, corresponds to the amount of headers
used to carry the voice packets.

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 20 40 60 80 100

O
v
e

ra
ll

T
ra

n
s
m

it
te

d
 H

e
a

d
e

rs
 (

b
y
te

s
)

Constrained Link bandwidth

Numerical Results
HTA
HBH
STD

Figure 8: Total amount transmitted headers.

We will now focus on computing the amount of payload and headers that were transmitted
during the simulation. Assuming VoIP packets of 38 bytes each and using Equation 13, then nodes

31

A Packet Aggregation Mechanism For Real Time Applications Over Wireless Networks

 16

 18

 20

 22

 24

 26

 28

 30

 32

 20 40 60 80 100

T
ra

n
s
m

is
s
io

n
 t

h
ro

u
g

h
p

u
t

(k
B

p
s
)

Constrained Link bandwidth (kBps)

Throughput

Numerical Results
HTA
HBH
STD

Figure 9: Overall throughput.

n1 and n2 would transmit 380, 000 bytes of payload each, and node n3 transmitted 760, 000 bytes
of payload, as computed by equations 16 and 17:

Vl(1, 3) = Vl(2, 3) =
200000

20
× 38 = 380000 bytes, (16)

Vl(3, 4) =
200000

10
× 38 = 760000 bytes. (17)

Thus, according to Equation 14, the total payload transmitted in the network equals Vl(∗, ∗) =
Vl(1, 3) + Vl(2, 3) + Vl(3, 4) = 1, 520, 000 bytes. Note that this holds true for both aggregating
and non-aggregating environments, and also in simulated results, since the payload size and the
number of hops is constant. Thus, by applying Equation 15, the total amount of headers without
aggregation is 4, 240, 000 bytes, and 1, 832, 151 bytes with aggregation, as can be seen in Figure 8.
The simulations were consistent with predictions when no aggregation was considered. On the other
hand, when aggregation was used, the amount of headers weighted 1, 885, 000 bytes, which is slightly
above the analytical model (see Figure 8).

In this work we say that a packet is dropped when it fails to meet the QoS constraints. Figure 11
shows the number of dropped packets. When the link between nodes n3 and n4 has the capacity of
10kBps, the proposed HTA protocol is still able to deliver all the packets. Note that both STD and
HBH have similar performance in this case, dropping over 40% of the generated packets. Clearly,
the lack of a holding time estimation makes the packet aggregation unfeasible for the HBH approach
causing significant packet dropping due to excessive delays, especially when the link capacity fluc-
tuates significantly. As for STD, the lack of an aggregation mechanism creates a larger volume of
packet transmissions, which in turn, causes excessive packet delay and incurs packet discharge.

As packet aggregation mechanisms usually work by retaining packets at relay nodes, it is impor-
tant to evaluate the amount of memory being used. Figure 12 shows the maximum memory size (in

32

International Journal of Networking and Computing

 0

 50

 100

 150

 20 40 60 80 100

M
a

x
im

u
m

 d
e

la
y
 (

m
s
)

Constrained Link bandwidth (kBps)

HTA
HPH
STD

Figure 10: Overall packet delay.

 0

 10

 20

 30

 40

 50

 60

 20 40 60 80 100

D
ro

p
p

e
d

 p
a

c
k
e

ts
 (

%
)

Constrained Link bandwidth (kBps)

HTA
HPH
STD

Figure 11: Overall packet drops.

33

A Packet Aggregation Mechanism For Real Time Applications Over Wireless Networks

 0

 100

 200

 300

 400

 500

 600

 700

 800

 20 40 60 80 100

P
e

a
k
 b

u
ff

e
r

s
iz

e
 (

b
y
te

s
)

Constrained Link bandwidth (kBps)

HTA
HBH
STD

Figure 12: Buffer peak size.

bytes) demanded during the simulation for packet queues. As HTA has a better estimate, it is able
to hold more packets, and hence demands more memory. Nevertheless, the memory requirement
by HTA is below 650 bytes for this scenario. Note that a device is expected to be able to hold
an IP layer maximum packet size, which can be as large as 65535 bytes [21]. Clearly, the memory
requirements by HTA and HBH are acceptable for current technologies.

The retention time estimation mechanism in HTA allows for better management of the packet
holding time, making it possible to transport the packets to their destinations within the constraints
established by the application needs. It is important to note that the maximum delay experienced
by the application meets its requirements. Figure 10 shows that all packets are below the maximum
delay allowed for the application, which was set to be up to Amax = 150ms. As STD and HBH have
a lower retention time, they experience a lower end-to-end delay. The reason for this is that HTA
is adaptable. This can be seen in the figure when the bandwidth is set to 20kBps. In this case the
HBH and STD end-to-end delays are above that experienced by HTA. Thus, when there is enough
time for aggregation opportunities, while meeting the QoS constraints, HTA holds packets a little
longer to better explore aggregation opportunities. When that is not the case, HTA forwards the
packets as fast as it can to meet the QoS requirements.

6.2 Second Scenario: Multiplexed Network

This scenario consists of a network with a set of nodes having a single gateway node (node 9 in
Figure 13). This figure reassembles a hot spot scenario in which a number of nodes are sending
VoIP packets to an access point. The purpose of this test is to determine to what extent HTA can
meet the application requirements when the underlining network presents a link shared by many
nodes that need to route their data through the same relay node. In this scenario, each of the eight
nodes is connected to the gateway with 100kBps links. Each of them will send ten thousand packets
to node 10 at every 20ms interval, totalizing 80 thousand packets sent. Table 6 shows the empirical

34

International Journal of Networking and Computing

1n 2n 3n 4n 5n 6n 7n 8n

9n

10n

Figure 13: Network topology containing a single gateway for a set of nodes.

results for the case in which link capacity between nodes 9 and 10 is fixed at 51kBps, which was the
minimum value of bandwidth that allowed at least one of the methods to deliver all the packets.

Table 6: Results for second scenario.
Evaluation Parameters Empirical Results Analytical Results

STD HBH HTA
Transmissions 160,000 110,000 31,672 24,439
Headers (bytes) 16,960,000 14,256,880 7,683,704 7,061,755
Throughput (kBps) 63.16 65.87 68.79 65.71
Overhead (%) 73.61 70.10 55.83 53.74
Header economy (%) 0 15.94 54.70 58.40
Packet loss (%) 41.12 40.88 0 N/A
Max. delay (ms) 150 150 146 N/A
Jitter (ms) 61 52 20 N/A
Max. aggr. packets 1 3 20 N/A
Avg. aggr. packets 1 1.19 4.44 6.55
Max. buffer (bytes) 58 234 1.656 N/A

As shown in Table 6, the results are similar to that in the first scenario. In this case HTA was
also able to deliver the packets within the application limits, while not generating excessive delays
and avoiding packet drop. The aggregation mechanism in HTA allows it to reduce the number of
packets sent, and consequently, the volume of headers and control data. The average amount of
packets within an aggregated packet in this scenario is about 4.44 packets. In contrast, HBH was
slightly better than the STD mechanism. HTA aggregated nearly 4 times more packets than the
HBH mechanism. It may come as a surprise that HTA attained a higher throughput in this scenario,
as it carries less information. However, this is exactly the reason for the higher throughput. Because
STD and HBH miss aggregation opportunities, they incurred a larger number of packet transmission.
Clearly, such packets need to be scheduled at some point. This situation makes the simulation to
last longer to carry the same amount of generated traffic. For this reason, the throughput obtained
by HTA is higher than that experienced in the HBH and STD approaches in this scenario.

The economy obtained by HTA in terms of headers transmitted corresponds to approximately
55% when compared to the STD mechanism. The maximum delay created by HTA is less than
that of other proposals and is within the application limits. Memory usage is this scenario reached
1.656 bytes with HTA. Furthermore, HTA suffered the smallest delay variation, or jitter, among the
compared protocols. Indeed, the jitter is less than half of that experienced by the HBH approach.
As in the first scenario, the empirical results for HTA are close to the analytical results.

6.3 Third Scenario: Hierarchical Network

The network topology used in this scenario is presented in Figure 14, which is analogous to a binary
tree. In this network, every link has the same capacity (57kBps), that being the minimum capacity
needed to transmit all the data without dropping packets for at least one of the methods tested. The
purpose is to examine the performance of the protocols in which a number of potential aggregation

35

A Packet Aggregation Mechanism For Real Time Applications Over Wireless Networks

1n

2n 3n

4n 5n 6n n7

8n 14n9n 11n 12n10n 13n 15n

Figure 14: Hierarchical topology with 15 nodes.

points exists. In this scenario there are 15 nodes connected in a hierarchical way with each node at
the base (leaf nodes) sending ten thousand packets each to the top node (root). Again, each packet
is generated at a 20ms interval with a total of 80 thousand generated packets.

Table 7: Results for third scenario.
Evaluation Parameters Empirical Results Analytical Results

STD HBH HTA
Transmissions 240,000 145,106 107,693 62,637
Headers (bytes) 25,440,000 20,479,116 15,821,598 12,826,813
Header economy (%) 0 19.5 37.8 49.6
Throughput (kBps) 113.64 147.92 124.66 109.70
Overhead (%) 73.61 69.19 63.43 58.44
Packet loss (%) 20.44 17.27 0 N/A
Max. delay (ms) 150 150 142 N/A
Jitter (ms) 38 24 19 N/A
Max. aggr. packets 1 4 16 N/A
Avg. aggr. packets 1 1.60 3.49 3.83
Max. buffer (bytes) 58 312 1.104 N/A

In a scenario in which all nodes have the same link capacity, the proposed aggregation scheme
still attained a better performance in terms of number of average aggregated packets and header
transmissions, as verified in Table 7. HTA was able to reduce the overall number of transmissions by
approximately 55%, and achieved an average of 3.49 data packets per aggregation packet, more than
twice the HBH protocol, and very close to the prediction of the analytical model, that is 3.83 packets
per transmission. As the proposed scheme incorporates a more sophisticated mechanism for packet
retention, it creates better aggregation opportunities, giving HTA better packet transport efficiency
than HBH’s. HTA suffered lower jitter than its counterparts. In this scenario the throughput
obtained by HTA was a little lower than that obtained by HBH. The reason for this behavior is that
HTA transported significantly less headers. Even though HBH was not efficient in terms of packet
aggregation in this scenario, it was able to carry the traffic without increasing the simulation time.
Also, the memory usage in this scenario was below 1.200 bytes.

6.4 Fourth Scenario: Linear Network

In this scenario the nodes were arranged in a string topology, as depicted in Figure 6. Four network
flows were set up, from node n1 → n4, n1 → n5, and two flows from n2 → n5. This scenario not
only considers nodes originating more than one flow but also having different destinations as well.
The bandwidth was set to be 45kBps on every link. The results obtained are shown in Table 8.

Due to the high aggregation rates achieved by HTA, it was the only technique to withstand the
traffic while delivering all the packets. HTA was able to transmit 80% less times than needed by the
STD protocol. The reason for such an enormous difference is that HTA was able to aggregate, on
average 6 packets per aggregation packet, whereas HBH was able to aggregate 4 packets on average.
In this scenario, STD experienced a 20.5% packet loss and HBH 15%, while HTA managed to deliver

36

International Journal of Networking and Computing

Table 8: Results for fourth scenario.
Evaluation Parameters Empirical Results Analytical Results

STD HBH HTA
Transmissions 130,000 42,808 25,002 16,823
Headers (bytes) 13,780,000 8,862,768 6,180,161 5,476,779
Header economy (%) 0 35.7 55.1 60.3
Throughput (kBps) 50.14 49.20 55.57 52.08
Overhead (%) 73.61 64.21 55.58 52.58
Packet loss (%) 20.50 14.96 0 N/A
Max. delay (ms) 150 150 147 N/A
Jitter (ms) 37 26 16 N/A
Max. aggr. packets 1 4 11 N/A
Avg. aggr. packets 1 4 6 7.8
Max. buffer (bytes) 116 312 759 N/A

all generated packets. Also, HTA was able to reduce by more than 55% the volume of headers
transmitted. This can be attributed to the fact that HTA aggregated on average 50% more packets
per transmission, when compared to HBH, and the savings provided by this feat made the difference
by making the network resources available to transmit the packets that came afterwards. Memory
usage by HTA was nearly twofold larger compared to HBH, which was expected. Nevertheless,
memory requirement remained below 800 bytes. HTA achieved results which are quite close to the
prediction of the analytical model in all the comparable parameters. As in the second scenario,
here HTA attained higher throughput. That is, HTA was able to complete the task of moving the
generated traffic from the source to the destination node in a more efficient way, completing its task
in less time and with lower overhead.

6.5 Fifth scenario: Random networks

The fifth scenario has a different approach. Here, the underlying network topology was randomly
generated. For each simulation run, 10 nodes were randomly placed in a 1000× 1000 network area
and connected in a way that the underlying graph was planar and connected. The link capacity for
each edge was selected randomly, ranging from 30kBps to 110kBps. For each simulation run, six
source/destination pairs were randomly selected for communication. Each source node generates
ten thousand packets per dialog during a simulation run. Altogether, 25 random topologies were
considered. The averaged simulation results are presented in Table 9. Note that in this scenario there
was no guarantee that the bandwidth on the links would be sufficient to transmit all the generated
conversations. The analytical results are not shown for this scenario as it would be necessary to
compute them for each particular generated topology and simulation run.

Table 9: Results for fifth scenario.
STD HBH HTA

Transmissions 106,808 89,809 25,889
Headers (bytes) 11,321,711 10,503,233 5,537,519
Header economy (%) 0 7.1 51.2
Throughput (kBps) 66.7 66.2 48.0
Overhead (%) 73.61 72.13 57.71
Packet loss (%) 26.23 21.40 5.65
Max. delay (ms) 113.2 96.8 149.1
Jitter (ms) 32.2 29.1 25.9
Max. aggr. packets 1 1.8 7.3
Avg. aggr. packets 1 1.2 4.6
Max. buffer (bytes) 125.3 268.3 1258.6

37

A Packet Aggregation Mechanism For Real Time Applications Over Wireless Networks

The results show that HTA was by far superior to the other approaches when it came to sparing
network resources. HTA was able to transmit generated traffic in less than a quarter of the trans-
missions needed by the STD protocol and less than a third of what was needed by HBH. In this
scenario, however, all the approaches failed to deliver all the packets to their destinations. This was
expected as some of the links could have bandwidth lower than the minimum required to carry the
generated traffic. Nevertheless, HTA was able to reduce the transmitted headers by nearly 48.8% as
compared to the STD protocol. This was possible while still dropping approximately one fifth of the
packets dropped by STD and one quarter of the packets dropped by HBH. Due to the high aggre-
gation rates achieved by HTA, it sent almost four times as many packets as HBH per transmission.
Also, although HTA had larger delays, it still respected the 150ms limit tolerated by iLBC, and the
packets flowed more steadily, as jitter was lower than the one seen in other approaches. As in the
second scenario, HTA achieved a higher throughput than the HBH and STD approaches, showing
that HTA was able to deliver the packets in less time and more efficiently than the HBH approach,
while the memory demand remained below 1.300 bytes.

7 Conclusions and Future Work

This work presents a packet aggregation mechanism tailored for real time applications over wireless
networking environments. Although a number of protocols have been devised, they lack a more elab-
orate mechanism to estimate the packet holding time at which aggregation can take place. Indeed,
most of the works presented in the literature only consider packet aggregation at the source nodes.
On the other hand, those approaches that consider packet aggregation in multi-hop environments
assume that the relay node knows the amount of time a given packet can be retained at its position.
However, in a dynamic environment, assuming a fixed holding time may not be feasible nor desir-
able. Indeed, if the fixed holding time is too large, QoS constraints would not be met. On the other
hand, if the fixed time is to short, aggregation opportunities would be missed. Thus, the core idea
of this work is to present a new packet aggregation mechanism which incorporates an elaborate and
adaptable packet holding time estimation. This estimation is used to allow for packet aggregation
along the path a packet is traversing without degrading the quality of the service being provided.

The proposed mechanism was evaluated and compared with other schemes, one of which uses
packet aggregation and another which does not use packet aggregation. Since HTA achieved better
results consistently in all the scenarios, it is plausible to state that the technique is very efficient
in using existing infrastructure and achieving better results than other current approaches. The
results show that HTA is able to reduce the amount of resources needed to carry the generated
traffic, both in terms of packet transmissions and the volume of bytes carried over the network. The
proposed scheme uses a novel packet holding time estimation, which is adaptable to the network
conditions and traffic fluctuations. Furthermore, the HTA results shown in all considered scenarios
are consistent with the analytical results.

The empirical results have shown that the proposed mechanism is capable of keeping jitter and
total delay under acceptable limits for the application. Furthermore, the proposed scheme allows
substantial reduction of the number of packet transmissions as well as the overall packet overhead.
The savings in terms of packet transmissions can be as high as 80% in the evaluated scenarios. These
results have shown that the proposed scheme is able to cope with varying network link capacities
and strict application timing requirements. As a future work we plan to evaluate the energy savings
that the proposed HTA scheme is able to provide.

Acknowledgements

This work was partially supported by FAP-DF and CNPq.

38

International Journal of Networking and Computing

References

[1] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level measurements from an
802.11b mesh network. SIGCOMM ’04 Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer communications, 34(4):121–132, October
2004.

[2] A. V. Barbosa, M. F. Caetano, J. L. Bordim, and P. S. Barreto. IEEE802.11b/g standard: The-
oretical maximum throughput. In ICNC’10: The First International Conference on Networking
and Computing, pages 197 – 201, November 2010.

[3] M. C. Castro, P. Dely, J. Karlsson, and A. Kassler. Capacity increase for voice over IP traffic
through packet aggregation in wireless multihop mesh networks. Future Generation Communi-
cation and Networking (FGCN 2007), 2(6):350 – 355, December, 2007.

[4] IEEE Standard for Information technology. Ieee standard for information technology-
telecommunications and information exchange between systems-local and metropolitan area
networks-specific requirements - part 11: Wireless lan medium access control (MAC) and phys-
ical layer (phy) specifications. IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999),
pages C1–1184, December 1999.

[5] S. Ganguly, V. Navda, K. Kim, A. Kashyap, D. Niculescu, R. Izmailov, S. Hong, and S. R.
Das. Performance optimizations for deploying voip services in mesh networks. IEEE Journal
on Selected Areas in Communications, 24(11):2147 – 2158, October 2006.

[6] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions on Infor-
mation Theory, 46(2):388–404, August 2000.

[7] ITU-T. General characteristics of international telephone connections and international tele-
phone circuits one-way transmission time (G.114), February, 1996.

[8] D. Johnson et al. The Dynamic Source Routing Protocol (DSR) for Mobile Ad Hoc Networks
for IPv4. RFC 4728, February, 2007.

[9] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft. XORs in the air: Practical
wireless network coding. IEEE/ACM Transactions on Networking, 16(3):497–510, June 2008.

[10] H. B. Kekre, V. A. Bharadi, R. S. Bansode, and Vikas Kaul. Performance problems of voip in
802.11 wireless mesh networks & their solutions. In icwet ’11 Proceedings of the International
Conference & Workshop on Emerging Trends in Technology, ICWET ’11, pages 891–898, New
York, NY, USA, 2011. ACM.

[11] K. Kim, S. Ganguly, R. Izmailov, and S. Hong. On packet aggregation mechanisms for improving
voip quality in mesh networks. In IEEE, editor, IEEE 63rd Vehicular Technology Conference,
pages 891 – 895, May 2006.

[12] W.B. Kleijn. Enhancement of coded speech by constrained optimization. In IEEE Workshop
Proceedings Speech Coding., pages 163–165, October 2002.

[13] K. Pentikousis, E. Piri, J. Pinola, F. Fitzek, T. Nissilä, and I. Harjula. Empirical evaluation of
voip aggregation over a fixed wimax testbed. In Proceedings of the 4th International Confer-
ence on Testbeds and research infrastructures for the development of networks & communities,
TridentCom ’08, pages 19:1–19:10, ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering).

[14] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector routing
(dsdv) for mobile computers. In Proceedings of the conference on Communications architectures,
protocols and applications, volume 24 of SIGCOMM ’94, pages 234–244, New York, NY, USA,
October 1994. ACM.

39

A Packet Aggregation Mechanism For Real Time Applications Over Wireless Networks

[15] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector routing. In Second IEEE
Workshop on Mobile Computing Systems and Applications., pages 90–100, February 1999.

[16] D. Petrović, R. C. Shah, K. Ramchandran, and J. Rabaey. Data funneling: Routing with aggre-
gation and compression for wireless sensor networks. In Proceedings of the IEEE International
Workshop on Sensor Network Protocols and Applications, pages 156–162, May 2003.

[17] J. Pinola, E. Piri, and K. Pentikousis. On the performance gains of voip aggregation and
rohc over a wirelessman-ofdma air interface. In IEEE, editor, IEEE Global Telecommunications
Conference, pages 1–6, December 2009.

[18] R. Raghavendra, A. P. Jardosh, E. M. Belding-Royer, and H. Zheng. IPAC: IP-based adaptive
packet concatenation for multihop wireless networks. In 40th Asilomar conference on signals,
systems and computers, pages 2147–2153, October 2006.

[19] K. P. Scheibe, L. W. Carstensen Jr., T. R. Rakes, and L. P. Rees. Going the last mile: a spatial
decision support system for wireless broadband communications. Decision Support Systems,
42(2):557–570, November 2006.

[20] P. Sherburne and C. Fitzgerald. You don’t know jack about voip. Queue - VoIP, 2(6):30–38,
September 2004.

[21] W. R. Stevens. TCP/IP Illustrated, volume 1. Addison-Wesley Professional, January 1994.

[22] R. P. Swale. Voip – panacea or pig’s ear? BT Technology Journal, 19(2):9–22, April 2001.

[23] W. Wang, S. C. Liew, and V. O. K. Li. Solutions to performance problems in voip over a 802.11
wireless lan. IEEE Transactions on Vehicular Technology, 54(1):366 – 384, January 2005.

[24] S. Yun, H. Kim, and I. Kang. 100+ voip calls on 802.11b: The power of combining voice frame
aggregation and uplink-downlink bandwidth control in wireless lans. IEEE Journal on Selected
Areas in Communications, 25(4):689–698, May 2007.

[25] H. Zhai, J. Wang, and Y. Fang. Providing statistical qos guarantee for voice over ip in the ieee
802.11 wireless lans. IEEE Wireless Communications, 13(1):36–43, February 2006.

[26] L. Zhang, K. Yu, Y. Du, and X. Wen. Improving capacity and qos of voip in ieee 802.11e wireless
lans. In Proceedings of the International Conference on Mobile Technology, Applications, and
Systems, Mobility ’08, pages 12:1–12:8, New York, NY, USA, 2008. ACM.

40

