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Abstract

In the cloud computing environment, it is not easy to prove that an adversary with ad-
ministrator privileges does not attack database systems. To address this issue, EnclaveDB is
proposed, which applies an enclave to the database. Its logging mechanism runs sequentially
and does not introduce a parallel scheme to exploit modern storage devices with parallel I/O.
In this paper, we propose eSilo, which is the Silo transaction processing system with an enclave.
The eSilo ensures the confidentiality of sensitive records and procedures by storing, process-
ing, encrypting, and exporting logs inside the enclave provided by Intel SGX. Since standard
C/C++ libraries are not supported by SGX, we implemented the eSilo system by replacing the
alternative library included in the SGX SDK provided by Intel. We implemented the core of
eSilo, extending the CCBench Silo system by adding a logging module. In the experiment with
YCSB-A workload, eSilo peaked at 2.30 M tps throughput with sixty worker threads and four
logger threads. Our eSilo demonstrated 9.35% performance improvement over the vanilla Silo,
thanks to the superior performance of the SGX dedicated library.
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1 Introduction

1.1 Motivation

Database management systems (DBMS) in the cloud have been popular these days for their elasticity
and ease of management. When confidential data is managed on a cloud DBMS, two problems should
always be considered. The first problem is the existence of malicious attackers who steal important
data from the database. The second problem is the administrators of the cloud providers where
DBMS are hosted.

When data are stored and encrypted in the storage device, an adversary cannot read the contents
of the data without obtaining a decryption key. Thus, data is secure then. However, to process such
data for analysis (e.g., executing relational operators) using a conventional CPU, they need to be
decrypted in the main memory. Therefore, during data processing, adversaries can steal data from
the memory, which violates system security.

A promising way to cope with this situation is to use the trusted execution environment (TEE).
TEE divides computer resources into a trusted and an untrusted area. Sensitive data should be
located in a trusted area, and they should be processed there to avoid inappropriate situations. One
of the TEEs, Intel Software Guard Extensions or SGX [8] provides the trusted area, or an
isolated execution environment called enclave. A DBMS with SGX can fully protect databases from
adversaries, in theory. This is the motivation of this work.

1.2 Problem

There is a seminal work called EnclaveDB [30], which is the extension of the SQL Server that
processes and manages sensitive data stored in the relational database exploiting the enclave. En-
claveDB prevents unauthorized access and tampering from the OS administrator or hypervisor by
holding and processing sensitive data, query engine, etc. Additionally, introducing a log tampering
detection protocol makes it possible to detect if the output logs have been tampered with.

The design of EnclaveDB is based on Hekaton [9], which is a full-fledged database management
system. Hekaton adopts the multi-version optimistic concurrency control protocol that exploits
many-core architecture, and this concept has shown excellent performance in modern protocols of
in-memory database systems [32,34].

Modern protocols further exploit I/O parallelism and use parallel logging [26, 35, 39] while En-
claveDB adopts single logging. Parallelism can exhibit better performance in theory. However,
the design and implementation details of parallel logging using SGX have not been studied in the
literature.

1.3 Proposal: eSilo

We believe that designing a secure transaction processing system with an enclave using parallel
logging methods is worthwhile since high performance is vital for transaction processing systems.
Besides, the code should be open source for academic contribution.

To this end, we propose an extension of the Silo [34] that is the basis of modern high-performance
transaction processing systems [21, 36–38] to provide confidentiality using SGX. We refer to our
proposed system as eSilo in the rest of this paper. To design and implement eSilo, we extended the
code of Silo in CCBench [32] which is a set of open-source concurrency control protocols, and the
SampleEnclave code provided in Intel’s SGX software development kit (SDK) [17].

Silo is an in-memory database system, and it stores all the records in memory. Thus, it cannot
protect against attacks from adversaries who snoop on memory. To address the issue, our eSilo
places all records, including sensitive data, inside an enclave. Thus, eSilo performs all the transaction
processing inside the enclave and provides confidentiality for database users. Since thread creation
is not allowed inside the enclave, eSilo creates worker threads outside the enclave, and each thread
enters the enclave to execute transactions, accesses data based on optimistic concurrency control
protocols, and performs logging for recovery in parallel, exploiting SSD or NVRAM. In the logging
process, a log record is encrypted with a key provided by the database owner before it is moved to
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Figure 1: Overview of Silo

a storage device. Then, the encrypted log record is sent outside the enclave and transferred to a
storage device to make the log record persistent. Finally, the progress of the durable epoch invokes
the notification of commits to users. Our eSilo adopts Masstree [23] for indexing inside SGX to
support range queries.

We implemented the eSilo system and evaluated its performance using a many-core machine with
64 cores. The results of experiments showed that eSilo demonstrated 2.30 M transactions per second
(tps) throughput with sixty worker threads and four logger threads. The performance was 9.35%
higher than that of the vanilla Silo.

This journal paper is the extended version of our previous conference paper [13]. The differences
between this paper and the previous one are as follows: (1) The experiments with the Masstree
index to accelerate data access. The results are shown in Figure 3-5, 9. (2) The evaluation with
varying the number of operations in a transaction, which is shown in Figure 11-16. (3) The integrity
checking protocol for parallel logging with SGX, which is shown in Section 3.3. (4) The analysis of
performance for g++, tlibcxx, libc++, which is shown in Appendix.

1.4 Organization

The rest of this paper is structured as follows. Section 2 describes preliminaries: Silo, TEE, and
the threat model in this study. Section 3 presents the design and implementation of our proposed
system, eSilo. Section 4 describes the evaluation of eSilo. Section 5 articulates related work. Section
6 finally concludes this paper.
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Algorithm 1 Worker thread

Input: queue is the logger’s queue
1: Receive a transaction
2: Do read phase
3: Locking records in the write-set {lockPhase}
4: Read the global epoch
5: Validating records in the read-set {validationPhase}
6: Compute Transaction ID
7: if logBuffer has a space then
8: logBuffer.push(log)
9: else

10: queue.push(logBuffer)
11: Switch logBuffer
12: Raise Logger
13: end if
14: Writing records in write-set to database{writePhase}
15: Unlocking records in write-set

Algorithm 2 Logger thread

1: while true do
2: if Wake up call has come then
3: queue.pop()
4: Write log to storage
5: Initialize logBuffer
6: end if
7: end while

2 Preliminaries

2.1 Transaction Processing System: Silo

Silo [34] is a transaction processing system designed for exploiting many-core architectures and large-
scale memories. For its novel design and excellent performance, it has attracted attention [7,21,36–
38].

The concurrency control protocol of Silo is optimistic and has read and commit phases. It does
not acquire read locks in the read phase for invisible read [32]. It adopts a decentralized locking
mechanism in which each record maintains its locking status without using an expensive centralized
locking manager. Silo also uses an epoch system to provide persistence for log records and garbage
collection. By default, it is updated every 40ms. Classical transaction processing mechanisms used
transaction start timestamps to assign log sequence numbers to determine transaction ordering, but
these numbers were generated sequentially, creating a bottleneck [26]. Silo eliminates the bottleneck
by having each worker thread issue a transaction ID using epoch.

Fig. 1 shows an overview of Silo. The worker thread that executes transactions is shown in
Algorithm 1, and the logger thread that performs logging is shown in Algorithm 2. Silo consists of
several worker threads and corresponding logger threads. Each worker thread executes transactions
provided by users. The worker thread first completes the read phase and then enters the commit
phase (Algorithm 1 - line 5). If the worker thread successfully passes the validation phase, it
constructs a log record by using the write set of the transaction and pushes it into the log buffer
so that a corresponding logger thread pulls it for logging (Algorithm 1 - line 8). When the log
buffer is full, or a new epoch begins, the worker thread enqueues the log buffer to a log queue of
the corresponding logger thread (Algorithm 1 - line 10) and wakes up the waiting logger thread
(Algorithm 1 - line 12).

A worker thread uses a log buffer at a time and can use multiple log buffers to avoid its blocking.
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After enqueueing a log buffer to the logger thread’s log queue, the worker thread switches the target
log buffer to another one and continues processing the transaction. The logger thread that wakes
up writes the log buffer at the head of the log queue to the storage device to persist (Algorithm 2 -
line 4). After persistence is complete, the log buffer is returned to the worker thread for recycling
and waits for the next wake-up statement (Algorithm 2 - line 5).

2.2 Trusted Execution Environment and SGX

The Trusted Execution Environment (TEE) is a technology that provides a secure execution envi-
ronment, often referred to as an enclave, that is isolated from the operating system or hypervisor
through hardware support.

TEE partitions computer resources into trusted and untrusted areas. Sensitive data is then
protected and securely processed within the trusted area.

Within the enclave, data is encrypted as it is stored in DRAM and then transferred to the CPU
cache, where it is decrypted for processing. This encryption and decryption process is typically
handled by a dedicated component, such as a Memory Encryption Engine (MEE) or Total Memory
Encryption (TME), which provides confidentiality to prevent unauthorized reads by the operating
system or hypervisor.

TEE has been implemented on several platforms. These include technologies available in com-
mercial CPUs, like Intel TDX [15] and AMD-SEV [18], which encrypts the entire VM, and Intel
SGX [8,16], which encrypts part of the application.

In Intel SGX, the conventional version referred to as SGX1 has a memory limitation, allowing
the enclave to use only 128MB of memory space to ensure EPC integrity using dedicated components
such as the Memory Encryption Engine (MEE) [8, 14]. However, the latest version, referred to as
SGX2 or Scalable SGX, implemented in the 3rd Gen Intel Xeon Processor (code-named Ice Lake)
and later versions, employs Total Memory Encryption (TME) to expand the enclave memory space
up to 512GB per socket. Yet, this expansion results in a loss of memory integrity protection [2,16].

2.3 Threat Model

The goal of this study is to improve database performance by leveraging parallel logging while main-
taining data confidentiality. We primarily consider the strong adversary defined by Cipherbase [1]
as our threat model. A strong adversary has the ability to observe the contents of the disk, mem-
ory, CPU bus, communications, operating system, and hypervisor on the server at any given time.
However, they cannot observe the state and computation within the enclave.

Confidentiality is also ensured for logs that are output to untrusted storage to ensure database
persistence because they are encrypted. The adversary can only view the cipher text.

Cipherbase also defines the weak adversary that can only access disk or memory once to take
a snapshot (e.g., through a cold boot attack). Since the memory is encrypted within the enclave,
confidentiality is maintained in this case as well.

Both strong and weak adversaries are considered passive adversaries, which can only be observed.
In contrast, an active adversary can observe and manipulate the computational logic and data. The
enclave is not resistant to tampering due to its vulnerability to SGX side-channel attacks [6,24] and
the lack of integrity-checking methods. Therefore, our scope is limited to strong adversaries, and
consideration of active adversaries is left for future work.

3 Proposal: eSilo

3.1 Research problem

In vanilla Silo, sensitive data and the transaction processing engine are located in the main memory.
Therefore, an attacker with administrator privileges can steal sensitive data and programs. Thus,
confidentiality and integrity are not guaranteed. Readers may think that just porting Silo for the
enclave clearly diminishes this problem. However, it is difficult for the two reasons described below.
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Figure 2: Overview of eSilo. It has potential performance bottlenecks compared with vanilla Silo.
Due to the SGX specification, eSilo creates worker threads outside the enclave, and each thread
enters the enclave to run both the worker threads and the logger threads. Besides, file access is not
allowed inside the enclave, and thus, eSilo first generates log records inside the enclave and encrypts
them, passes them to the outside of the enclave, and stores them on the device.

� Due to the inherent property of SGX, it requires a clear specification of the program and data
to be protected or not.

� Since SGX is designed to be isolated from the operating system, it prevents the use of system
calls or any functions that depend on them. This requires an architectural redesign to de-
termine the level of dependency on OS functionality and re-implementation of functions that
become unusable by the SGX specifications.

3.2 Architecture Design

Fig. 2 illustrates an overview of the eSilo design. The key components of eSilo are similar to that of
Silo. However, it contains potential performance bottlenecks because of the SGX specification that
threads cannot be created inside the enclave. For this reason, eSilo creates worker threads outside
the enclave. Using ECALL, each thread enters the enclave to process both the worker threads and
the logger threads.

Besides thread creation, file access is not allowed inside the enclave. Thus, in our design, eSilo
first generates log records inside the enclave and encrypts them. Then it passes them to the outside
of the enclave using OCALL. Finally, eSilo transfers the encrypted log records from memory to a
storage device in parallel to make the logs persistent. This parallel logging protocol is based on the
SiloR protocol [39], which is the logging system of the Silo.

To implement the design of eSilo described above, we separated a Silo system into two modules.
The first module requires protection with an enclave, and the second does not. We also changed the
logger threads that transfer log records into storage devices. We show the behavior of the logger
threads inside an enclave in Algorithm 3, and that outside an enclave in Algorithm 4.

A logger thread first encrypts log buffers pushed with a key provided by the database owner after
database initialization (Algorithm 3 - line 4). This key is encrypted and stored using a hardware
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Algorithm 3 Logging algorithm (inside enclave)

Input: key is the encryption/decryption key specified by the database owner after database initial-
ization.

1: encData = EncryptData(logData, key)
2: OcallStore(threadID, encData, size(encData))
3: Free(encData)

Algorithm 4 Logging algorithm (outside enclave)

Input: threadID, encData, encSize
Function: OcallStore

1: f ← getF ileDescriptor(threadID)
2: s = 0
3: while s < encSize do
4: write(f, pointer(encData) + s, encSize− s)
5: s+ = r
6: end while

key (e.g., a sealing key derived from the root sealing key). Then, it passes the encrypted log buffers
outside the enclave (Algorithm 3 - line 5). Finally, it transfers them to the storage device (Algorithm
4 - line 4), and the log records in the log buffers are persisted [8]. Please note that a record encrypted
by sealing in an enclave E can only be decrypted in E.

3.3 Log Integrity and Recovery Protocol

To enhance fault tolerance in databases, it is essential to ensure log persistence by writing to storage
devices. Since logs contain sensitive data such as keys and values, they must be encrypted to
ensure confidentiality. Additionally, since administrators can potentially tamper with storage data,
verifying the integrity of logs is crucial. While EnclaveDB proposes an efficient protocol to ensure
log integrity, it is designed for sequential logging and thus cannot be applied to systems that utilize
parallel logging.

In this paper, we propose a log integrity verification protocol designed for parallel logging. Our
recovery protocol employs a three-tiered hash chain to ensure the integrity of log data. The three-
tiered hash chain is composed of the following elements:

Log-Level Hash Chain Each log within the same epoch carries the hash of the previous log,
forming a circular hash chain with the head of the chain holding the hash of the last log.

Epoch-Level Hash Chain Logs generated by the same logger thread contain the hash of the
previous epoch’s log set, creating a unidirectional hash chain.

Thread-Level Hash Chain Each logger thread links a unidirectional hash chain to both credential
information and the epoch file, thereby constructing a circular hash chain.

The recovery system operates using epoch files and log files created by each Silo logger thread.
The epoch file contains the durable epoch indicating the most recent and safe state of the system
and the hash values corresponding to the last logs of each log file. Each log record within the log
files includes the operation type, keys, values, and the hash of the previous record and is encrypted
by leveraging Intel SGX’s sealing capabilities.

Initially, the durable epoch is read from the epoch file. This epoch, periodically calculated and
updated by Silo, indicates the most recent state of the system recoverable through logs. Then the
hash values of the last logs generated by each logger thread are read.

Each log file contains encrypted log entries. The recovery system retrieves logs corresponding to
the current epoch from these files, using epochs incremented up to the durable epoch.
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Once the logs for the current epoch have been loaded from each log file, the integrity of each
log set is checked. A log set consists of one or more log records, and each record contains a hash
calculated from the information in the previous log record (the first log record in the set contains
the hash of the last log record). Recalculating these hashes confirms the overall integrity of the log
set.

After the log-level integrity check, the system performs epoch-level checks to ensure that each
log set is part of the continuous unidirectional hash chain created by the same logger thread.

To integrate the epoch-level hash chain, each logger thread ties the beginning of its logs to
credential information and the end to the epoch file. By verifying this structure, it is possible to
ensure the overall integrity of the log data, which can be recovered back to the durable epoch.

3.4 Implementation

Our eSilo implementation is based on the CCBench Silo system [32]. Since it has only a concurrency
control module, we additionally implemented the logging module, including logger threads and log
buffers based on the SiloR protocol [39]. Our code is divided into two modules. The first one includes
enclave-based codes, and it includes concurrency control protocol, Masstree index, optimistic cuckoo
hashing, log record generation, and notifier. The second one includes initialization, thread activation,
and log record synchronization.

Masstree is a concurrent index tree and is mandatory for range search queries with O(log N).
The typical database requires range search, and Silo itself uses Masstree. So we adopted Masstree.
It combines the self-balancing and high-efficiency order maintenance of B+ trees with the quick
search capabilities of the trie tree through prefix matching. Masstree consists of one or more layers
of B+ trees, where each layer indexes keys segmented every 8 bytes. Optimistic cuckoo hashing
(OCH) is a hash table that is only beneficial for point search queries with O(1). Hash can not be
used for range search but is faster than tree. So we adopted a popular hash (OCH) for our work. It
utilizes optimistic concurrency control to enable concurrent operations. It uses two hash functions
and a two-dimensional table, ensuring that any stored data is located at one of two predetermined
positions determined by the results of hashing the key.

The LoC for eSilo and Masstree are around 2800 and 2200 in C++, respectively. Each log record
contains TID, key, and data.

Transaction ID (TID) is a 64-bit integer used to identify transactions and maintain the state of
records. The TID is structured as follows [34]: The upper 32 bits represent the epoch. The middle
29 bits identify transactions that were committed within the same epoch. The lower 3 bits indicate
the record’s status, showing whether it is locked, in its latest version, or has been deleted. Each
record holds a TID, which is updated by the most recent transaction that modified the record. After
the validation phase, a worker calculates the smallest TID that (a) is greater than the TID of any
record read or written by the transaction, (b) exceeds the worker’s most recently selected TID, and
(c) falls within the current global epoch. This calculation is decentralized, allowing each worker
thread to independently calculate its own TID.

Entering or leaving an enclave, we need to cross the boundary of an enclave. To describe codes
for this purpose, we used the Edger8r tool, which generates interfaces between inside and outside of
an enclave provided by SGX SDK [17].

We also implemented a vanilla Silo system that does not use enclaves. It is referred to as vanilla
Silo in this paper. These implementations are publicly available [11,12].

4 Evaluation

4.1 Environment

The machine used to evaluate the performance and the SGX SDK are shown in Table 1. The CPUs
are two Intel Xeon Gold 6326 2.90 GHz with 32 physical cores, and the machine has 64 logical cores
in total. DRAM size is 256 GB, and all the databases are placed on DRAM. Thus, undesirable I/O
by swapping does not occur.
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Table 1: Evaluation Environment

Device Description

CPU

Intel Xeon Gold 6326 2.90 GHz
Physical cores in a socket: 16
Total physical/logical cores: 32/64
L1d/L1i/L2/L3 cache: 1.5MiB/1MiB/40MiB/48MiB

DRAM 256GB (DDR4 3200 REG ECC 16GB × 16)

OS Ubuntu 20.04.6 LTS

SGX SDK sgx linux x64 sdk 2.23.100.2 for ubuntu20.04-server

SSD Samsung SSD 980 PRO 1TB

The number of data access operations (i.e., read or write) in a transaction is 10. The workloads
are YCSB-A (read/write: 50%/50%), YCSB-B (read/write: 95%/5%), and YCSB-C (read/write:
100%/0%). The number of records in the database is one million. The data access skew is set to 0,
which is under a uniform distribution and provides low contentions. The measurement time is 10 s.

4.2 Basic Performance

4.2.1 Non-Skewed Case

The results of experiments with Masstree are shown in Fig. 3, 4, 5 respectively. In all the ex-
periments, eSilo exhibits better performance than the vanilla Silo. The difference in performance
increases as concurrency increases. The performance of YCSB-A is relatively low compared with
other two workloads because it includes more write operations that require the generation of log
records and storage access.

It should be noted that both eSilo and vanilla Silo do not encounter aborts because the skew of
these experiments is zero. In this case, a transaction accesses only ten records among one million
records, and the concurrency is at most 60. Thus, the access space of transactions is sparse, and
transactions rarely conflict there.
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Figure 3: YCSB-A (read/write:50%/50%)
with Masstree
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Figure 4: YCSB-B (read/write:95%/5%)
with Masstree

The results with optimistic cuckoo hash [20] are shown in 6, 7, 8 respectively. Similar to the
results with Masstree, eSilo outperforms vanilla Silo. The performance of these results is higher than
that of Masstree. This is because the structure of the hash is more simple than that of the tree.
The complexity for the hash is O(1) while that of the tree is O(log N).
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Figure 5: YCSB-C (read/write:100%/0%)
with Masstree
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Figure 6: YCSB-A (read/write:50%/50%)
with optimistic cuckoo hash
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Figure 7: YCSB-B (read/write:95%/5%)
with optimistic cuckoo hash
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Figure 8: YCSB-C (read/write:100%/0%)
with optimistic cuckoo hash
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Table 2: The performance of each vector library. Measured 100 times using index and iterator to
search in ascending order on a vector array with 10 million elements.

tlibcxx (SGX) STL

Index loop 20ms 20ms
Iterator loop 38ms 96ms

4.2.2 Varying Skew

When the skew parameter is zero, transactions rarely encounter conflicts. With a higher skew,
transactions are inclining to conflict, in theory. The results of experiments with varied skews are
shown in Fig. 9 and 10. As can be seen there, as skew increases, throughput deteriorates while the
abort ratio increases. Still, eSilo exhibits higher throughput than that of vanilla Silo.
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Figure 9: YCSB-A (skew:0.00∼0.99)
with Masstree
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Figure 10: YCSB-A (skew:0.00∼0.99)
with optimistic cuckoo hash

4.2.3 Varying Operation Size

A transaction can issue multiple operations. With more operations, a transaction requires more
time to finish, which increases the possibility of conflicts with other transactions, in theory. We
varied the number of operations in a transaction and measured the throughput for both Masstree
and OCH, as shown in Figures 11, 12, 13, 14, 15, 16 respectively.

Due to encryption overhead, eSilo exhibits slower performance than vanilla Silo when transac-
tions involve a small number of operations. However, as the number of operations per transaction
increases, eSilo becomes faster, thanks to the library performance.

4.3 Discussion

4.3.1 Why eSilo is Faster?

All the experiments above showed that eSilo is more efficient than vanilla Silo. This reason is not
trivial because eSilo requires additional functions to provide security based on SGX. To clarify it,
we measured the performance of basic libraries in implementing the systems. We chose the vector
library and measured search performance using an index or an iterator over ten million elements.
We show the result in Table 2.

Surprisingly, tlibcxx (SGX) exhibits a comparable performance with STL in the index and more
than twice the performance of STL in the iterator. We think this is caused by the excellent imple-
mentation of the tlibcxx.
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Figure 11: YCSB-A (operations per tx:1)
with Masstree
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Figure 12: YCSB-A (operations per tx:10)
with Masstree
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Figure 13: YCSB-A (operations per tx:100)
with Masstree
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Figure 14: YCSB-A (operations per tx:1)
with optimistic cuckoo hash
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Figure 15: YCSB-A (operations per tx:10)
with optimistic cuckoo hash
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Figure 16: YCSB-A (operations per tx:100)
with optimistic cuckoo hash
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4.3.2 Memory Allocation and Release

Table 3: Dynamic memory allocation latency based on the number of parallel threads. Time to
allocate and release memory for a record object (48 bytes).

#Thread
Normal Enclave

new (ns) delete (ns) new (ns) delete (ns)

1 47 19 79 22
2 47 19 402 381
4 48 19 697 1560
8 54 19 1512 4871
16 154 19 3373 12128
32 295 20 11693 29335
64 413 25 34140 38688
128 486 28 87312 75668

Since there are no insert or delete operations for YCSB-A, B, and C, memory allocation-related
performance at SGX cannot be evaluated using them. For this purpose, we evaluate the performance
of memory allocation. We measured the new and the delete operations for the normal case and the
enclave case varying concurrency. The results of experiments are shown in Table 3. The performance
of the enclave case is much worse compared with the normal case. This means that SGX does not
exhibit novel performance for workloads with frequent inserts or deletes,

Therefore, even in YCSB-A, protocols based on multi-version concurrency control protocols like
SSN [19], Cicada [21], and snapshot isolation [5] would not perform appropriately with this version of
SGX. This is because multi-version protocols need to create a new version for each update and delete
stale and obsolete versions with garbage collection. Thus, using SGX is preferred for single-versioned
concurrency control protocols [7, 22,36–38].

5 Related Work

5.1 Confidential Databases

Several techniques have been proposed to ensure the confidentiality and integrity of databases. There
are two main approaches for this purpose. The first approach uses homomorphic cryptography to
encrypt data before processing [29,33]. It does not decrypt data for analysis, and thus, it prevents
adversaries from stealing data. Still, it is far from being practical due to query restrictions caused by
severe performance degradation provided by extremely expensive costs for homomorphic encryption
computation.

The second approach is based on TEE [1, 3, 4, 30]. The use of TEE protects data in memories
and ensures the confidentiality and integrity of data. None of them exploits parallel logging, and
thus, the problem with the log buffer is not addressed.

A seminal work, EnclaveDB [30], guarantees the integrity of log records in storage besides tuples
in the buffer pool. It is based on Hekaton [9], which does not adopt a parallel logging scheme,
and it is based on a sequential logging protocol. Our work is based on Silo, which is designed
to exploit parallel I/O devices such as SSD. Besides, the code is not publicly available, and thus,
implementation details with SGX are not provided.

5.2 Fast Transaction Processing Systems

The acceleration of transaction processing has been addressed recently. They can be divided into
deterministic protocols and non-deterministic protocols.

Aria [22] is a novel deterministic protocol that executes a transaction against a database snap-
shot and deterministically chooses whether to commit or not at transaction commit time. This
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flexibility provides novel performance. Piece-wise visibility (PWV) [10] allows partitioned execution
by constructing a dependency graph. By analyzing the dependency, it can execute non-conflicting
transactions in parallel. Caracal [31] exploits the epoch concept to increase concurrency in its design.
Its scheduling space is conflict serializable, but it exploits multi-version storage. It first creates a
version array for each data item in the initialization phase and executes them in the subsequent
phase.

Various non-deterministic serializable concurrency control protocols have been proposed. These
protocols especially work efficiently for short transaction-oriented workloads like YCSB or TPC-C.
Some protocols exploit a wide scheduling space [19, 27, 28] based on multi-version based-scheduling
space. In contrast, conflict serializability-based protocols use a bunch of optimization methods
exploiting hardware specifications (i.e., NUMA), the decentralization of timestamp generation [34]
or speculative execution [7, 25,37]. The purpose of exploitation is for performance improvement.

To our knowledge, none of the above is securely extended with SGX, except for our eSilo.

6 Conclusions and Future Work

In this study, we designed and implemented a secure transaction processing system based on the
enclave and Silo.

We observed eSilo with a maximum of 2.30 million tps on sixty worker threads and four logger
threads in YCSB-A workloads. Vanilla Silo, which does not use enclaves, observed a maximum of
2.10 million tps on sixty worker threads and four logger threads. The improvement, driven by the
SGX dedicated library, shows eSilo boosts performance by 9.35% over vanilla Silo, proving enhanced
confidentiality doesn’t compromise speed, contrary to our initial concerns about a performance
trade-off. Additional experiments show that parallel dynamic memory allocation within enclaves
dramatically reduces performance.

The following future work should be addressed. The first work is the detection of log tampering.
EnclaveDB provides this function, while it is not supported in eSilo. It is because this function
can be naturally implemented with sequential logging, but it is not trivial for parallel logging that
needs to use multiple separated log files. The second work is coping with the crack of the timestamp
counter inside the CPU (TSC). SGX currently does not support any time systems, such as TSC,
that depend on the CPU clock. Thus, if an adversary controls the CPU clock, serious problems can
occur. If the clock is accelerated, the epoch will be frequently updated. Then it would exhaust log
buffers in a very short period. If it is slowed down, then the epoch will not be updated, and it makes
the latency of the system very long.
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Appendix

Since SGX is designed to be isolated from the operating system, it restricts the use of system calls
and any functions that depend on them. This limitation requires the use of specialized libraries for
enclave operations, which are designed to function independently of the OS-specific features. For
this reason, SGXSDK provides alternative libraries, such as tlibc and tlibcxx, which are customized
for enclave use. Our analysis indicated that tlibcxx is based on LLVM 12’s libc++, customized to
disable functions and libraries dependent on system calls. The similarity between the tlibcxx library
and various versions of libc++ is shown in Figure 17.

The SGXSDK v2.23.100.2 used in the performance evaluation of eSilo explicitly disabled certain
libraries such as cfenv, chrono, clocale, csignal, fstream, future, iostream, regex, and thread, along
with some functions.

By excluding the standard library from g++ and linking LLVM’s libc++ and libc++abi instead,
the number of call instructions in the assembly was reduced, leading to enhanced performance. The
tlibcxx library used within the enclave, being based on LLVM 12’s libc++, benefits from these
performance improvements.

To illustrate this, consider Algorithm 5, which demonstrates the use of a loop with an iterator.
The code iterates through the test vector using an iterator (itr) and compares each element with a
position counter (pos) to ensure they match.

Table 4: Function Calls and Assembly Instructions Comparison

Operation g++ with libstdc++ g++ with libc++ (tlibcxx)

test.begin() call std::vector<int, std::allocator
<int>>::begin()

leaq test(%rip), %rdx

test.end() call std::vector<int, std::allocator
<int>>::end()

movq 8+test(%rip), %rax

itr++ leaq -104(%rbp), %rax
movq %rax, %rdi
call gnu cxx:: normal iterator
<int*, std::vector<int,
std::allocator<int>>>::operator
++(int)

leaq -1008(%rbp), %rax
movq %rax, -488(%rbp)
movq -488(%rbp), %rax
movq (%rax), %rax
leaq 4(%rax), %rdx

assert((*itr) == pos) leaq -104(%rbp), %rax
movq %rax, %rdi
call gnu cxx:: normal iterator
<int*, std::vector<int, std::
allocator<int>>>::operator*()
const
movl (%rax), %eax
cmpl %eax, -124(%rbp)

movq -1008(%rbp), %rax
movl (%rax), %eax
cmpl %eax, -1024(%rbp)

The assembly generated for invoking member functions and operator overloads of vector and
iterator libraries in cases using g++ with the standard library (libstdc++) versus g++ with libc++
(tlibcxx) is shown in Table 4.

This analysis presents the assembly generation without specific optimizations. It demonstrates
that when g++ is combined with libc++, the call instructions are eliminated from the assembly.
Call instructions expand into multiple opcodes when compiled into an executable. Their frequent
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Figure 17: Library similarity between SGXSDK tlibcxx and LLVM libc++
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Algorithm 5 Vector iteration code written in C++

1: for (auto itr = test.begin(); itr != test.end(); itr++) {
2: assert((*itr) == pos);
3: pos = pos + 1;
4: }

use in each iteration introduces significant overhead. However, eliminating these call instructions by
acquiring the iterator’s pointer before the loop starts and directly incrementing the address during
iterations can greatly reduce this overhead. It was confirmed that this adjustment effectively removes
the performance differential.

Therefore, by removing the standard library from g++ and using LLVM’s libc++ and libc++abi
instead, the number of call instructions decreases, which improves performance. The tlibcxx library,
a customized version of LLVM’s libc++, benefits greatly from this improvement, resulting in specific
processes running faster inside the enclave.
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