
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 14, Number 2, pages 248–261, July 2024

An asynchronous P system with branch and bound for the minimum Steiner tree

Reo Ueno Akihiro Fujiwara

Graduate School of Computer Science and Systems Engineering
Kyushu Institute of Technology
Iizuka, Fukuoka 820-8502, Japan

Received: February 15, 2024
Revised: May 2, 2024

Accepted: June 10, 2024
Communicated by Junya Nakamura

Abstract

Membrane computing, also known as a P system, is a computational model inspired by the
activity of living cells. P systems work in a polynomial number of steps, and several have been
proposed for solving computationally hard problems. However, most of the proposed algorithms
use an exponential number of membranes, and reduction in the number of membranes must be
considered in order to make a P system a more realistic model.

In the present paper, we propose an asynchronous P system using branch and bound to solve
the minimum Steiner tree problem. The proposed P system solves for the minimum Steiner tree
with n vertices and m edges in O(n2) parallel steps or O(2mn2) sequential steps.

We evaluate the number of membranes used in the proposed P system through experimental
simulations. Our experimental results show the validity and efficiency of the proposed P system.

Keywords: membrane computing, asynchronous P system, minimum Steiner tree

1 Introduction

Membrane computing, which was introduced in [10] as a P system, is a computational model inspired
by the activity of living cells. A P system consists of membranes and objects, which represent
computing cells and data storage, respectively. In a P system, each object evolves according to
certain evolution rules associated with the membrane.

Since an exponential number of membranes can be created in a polynomial number of steps using
a division rule, which is one of evolution rules in a P system, a computationally hard problem can
be solved in a polynomial number of steps. Using this feature, a number of P systems have been
proposed for solving computationally hard problems [4, 5, 9, 11, 12, 14, 16].

In addition, asynchronous parallelism, which assumes asynchronous application of evolution rules,
has been considered for P systems. Asynchronous parallelism means that different objects may re-
act to rules at different speeds on a P system. Asynchronous parallelism makes a P system a more
realistic computational model because living cells work independently according to the environ-
ment. Using asynchronous parallelism, a number of asynchronous P systems have been proposed for
computationally hard problems [1, 12, 13].

However, computationally hard problems have been solved in polynomial numbers of steps using
exponential numbers of membranes in all of the abovementioned P systems. The exponential number

248

International Journal of Networking and Computing

of membranes corresponds to the number of living cells, which must be reduced in the case of
implementing a P system using living cells because the living cells cannot be created exponentially.

Recently, a number of P systems [2, 6, 7, 8, 15] have been proposed for reducing the number of
membranes. For example, a P system for the satisfiability problem (SAT) with a DPLL algorithm,
which is a well-known search algorithm for SAT, was proposed in [7]. The proposed P system
preferentially assigns a variable in the partial assignment using three rules: a one-literal rule, a pure
literal rule, and a splitting rule. Using these three rules repeatedly and intensively, the number of
membranes that contain partial assignment can be decreased.

In the present paper, we propose an asynchronous P system for solving the minimum Steiner
tree problem. Since the minimum Steiner tree is a recently known computationally hard problem,
no optimization technique is known in the membrane computing. Our proposed P system is based
on the branch and bound, which is one of optimization techniques for eliminating invalid candidate
solutions. We show that the proposed P system works in O(2mn2) sequential steps or O(n2) parallel
steps using O(n4) kinds of objects.

We evaluate the number of membranes used in the proposed P system through experimental
simulations. The results show that the numbers of membranes used in the proposed P system are
57% less than the numbers of the membranes obtained by an exhaustive search on average.

The remainder of the paper is organized as follows. In Section 2, we describe the computational
model for the membrane computing and definition of the minimum Steiner tree. In Section 3, we
propose a P system with branch and bound for the minimum Steiner tree problem and consider the
complexity of the P system. In Section 4, we show experimental results for the proposed P system.
Finally, Section 5 concludes the paper.

2 Preliminaries

In the present paper, we propose an asynchronous P system for the minimum Steiner tree problem.
We briefly define a P system and a minimum Steiner tree.

2.1 Computational model for membrane computing

A P system consists mainly of membranes and objects. A membrane is a computing cell in the P
system and may contain objects and other membranes. Each membrane is initially labeled with a
distinct integer. An object represents a memory cell that stores data in the P system. According
to the evolution rules for the corresponding membrane, objects may evolve into other objects or
pass through membranes. Objects may also divide or dissolve membranes in which the objects are
stored. We assume that each object is a finite string over a given set of alphabetic characters.

As an example of membranes and objects, the following expression defines a membrane structure
comprising two membranes and three objects.

[[α]2 [β γ]3]1

In this example, the membrane labeled 1 contains two membranes, labeled 2 and 3, which in
turn contain sets of objects {α} and {β, γ}, respectively.

The computation of P systems is governed by a number of evolution rules. Each evolution rule
is a rule for updating membranes and objects. According to the applicable evolution rules, objects
and membranes are transformed in parallel in every step of the computation. The system stops the
computation if there are no applicable evolution rules for the objects.

Various types of evolution rules are assumed in membrane computing. In the present paper, we
assume the following five rules from [4]:

(1) Object evolution rule:

[α]h → [β]h

Object α is transformed into object β.

249

An asynchronous P system with branch and bound for the minimum Steiner tree

(2) Send-in communication rule:
α []h → [β]h

Object α is moved into inner membrane h and is transformed into object β.

(3) Send-out communication rule:
[α]h → []h β

Object α is sent out from membrane h and is transformed into object β.

(4) Dissolution rule:
[α]h → β

The membrane that contains object α is dissolved, and object α is transformed into object β.
(Note that the outermost membrane cannot be dissolved.)

(5) Division rule:
[α]h → [β]h[γ]h

The membrane that contains object α is divided into two membranes with the same label, and
object α is transformed into other objects, β and γ, each in one of the created membranes.

The P system consists of the following six components:

O: the set of objects used in the system,

µ: the structure of the membrane,

ωi: the set of objects initially contained in the membrane labeled i,

Ri: the set of evolution rules for the membrane labeled i,

iin: the label of the input membrane, and

iout: the label of the output membrane

Using the above components, a P system Π with m membranes is defined as follows:

Π = (O,µ, ω1, ω2, · · · , ωm, R1, R2, · · · , Rm, iin, iout)

Under the assumption that each of the evolution rules can be applied in a single step in the
computational model, the complexity of the P system is defined as the number of steps executed.

In the present paper, we consider asynchronous parallelism [12] in the P system. Under the
assumption of asynchronous parallelism, any number of applicable evolution rules are applied in
parallel. In other words, all objects, for which there are applicable evolution rules, can be transformed
in parallel, or only one of the applicable evolution rules is applied in each step of the computation.
We refer to the numbers of steps in the former and latter cases as the numbers of parallel and
sequential steps, respectively. The number of parallel steps is the complexity of the P system in the
best case, and the number of sequential steps is the complexity in the worst case.

2.2 Minimum Steiner tree

A Steiner tree for an undirected graph G = (V,E) is defined as a tree that involves a given subset T
of vertices, which is called a set of terminals. The minimum Steiner tree problem is that of computing
a minimum cost Steiner tree for nontrivial T , and this problem is known to be NP-complete[3]. In
the case that the number of vertices in T is 2, the minimum Steiner tree is equivalent to a shortest
path connecting the two vertices. On the other hand, in the case of T = V , the minimum Steiner
tree is equivalent to a spanning tree.

Figure 1 shows an example for a minimum Steiner tree. In the input graph, we assume that
T = {v0, v2} and ei,j denotes the edge between vi and vj . Then, eight trees, whose sets of edges
are {e0,1, e0,2, e2,3}, {e0,1, e1,2, e2,3}, {e0,2, e1,2, e2,3}, {e0,1, e0,2}, {e0,1, e1,2}, {e0,2, e1,2}, {e0,2, e2,3},
and {e0,2}, are Steiner trees for the input graph, and the tree with the set of edges {e0,2} is the
minimum Steiner tree for this case.

250

International Journal of Networking and Computing

Figure 1: Example of an input graph

3 Asynchronous P system with branch and bound for the
minimum Steiner tree

In this section, we present an asynchronous P system with branch and bound for solving the minimum
Steiner tree problem. We first show an encoding for the input and the output for the P system, and
then show an outline and details of the P system. Finally, we show an example of execution of the
proposed P system, and discuss complexity of the proposed P system.

3.1 Input and output for the minimum Steiner tree

We first show an encoding for the input and output for the P system. We assume that the input for
the minimum Steiner tree is an undirected graph G = (V,E) with n vertices and m edges.

The input is given by the following set of objects Oin in the P system:

Oin = {⟨ei,j , B⟩ | 0 ≤ i < j ≤ n− 1, B ∈ {T, F}}
∪{⟨vk, B⟩ | 0 ≤ k ≤ n− 1, B ∈ {T, F}}

In the above set of input objects, an edge (vi, vj) is represented by the object ⟨ei,j , B⟩. If edge
(vi, vj) is in the graph, then B in ⟨ei,j , B⟩ is set to T , otherwise, B is set to F . In addition, vertex
vk is represented by object ⟨vk, B⟩. If vertex vk is one of the terminals, then B in ⟨vk, B⟩ is set to
T , otherwise, B is set to F .

For example, the following set of objects is given as an input of the P system, Oin, for a graph
in Fig. 1.

Oin ={⟨e0,1, T ⟩, ⟨e0,2, T ⟩, ⟨e0,3, F ⟩, ⟨e1,2, T ⟩, ⟨e1,3, F ⟩, ⟨e2,3, T ⟩}
∪ {⟨v0, T ⟩, ⟨v1, F ⟩, ⟨v2, T ⟩, ⟨v3, F ⟩}

We assume that a computation on the P system starts if the above Oin is given as input from
the outside region into the outermost membrane.

An output of the problem is a set of edges, which represents the minimum tree including terminals.
The output of the P system is the following set of objects, which represents a subset of edges:

Oout = {⟨ei,j⟩ | 0 ≤ i < j ≤ n− 1}

Object ⟨ei,j⟩ means that the solution includes an edge ei,j .
For example, the following is an output of the P system, which represents the minimum Steiner

tree for the graph in Fig. 1.

Oout = {⟨e0,2⟩}

3.2 Branch and bound for the minimum Steiner tree

Branch and bound is a well-known computing paradigm for optimization problems. All candidate
solutions are enumerated for m edges to solve the minimum Steiner tree, and 2m solutions must be
created for an exhaustive enumeration. In other words, each edge is examined in a Steiner tree or

251

An asynchronous P system with branch and bound for the minimum Steiner tree

not in each partial assignment, which is a set of selected edges for the solution. However, a number
of partial assignments can be discarded if all adjacent edges of a terminal are assumed not to be in
the partial assignment.

We now give an overview of the asynchronous P system with branch and bound for solving the
minimum Steiner tree problem. The proposed P system consists of two membranes [[]2]1, i.e., an
inner membrane labeled 2 contained in an outer membrane labeled 1.

The P system consists of the following 4 steps.

Step 1: Move all input objects in the outer membrane into the inner membrane.

Step 2: In each inner membrane, repeat the following until all edges are examined.

� Divide each inner membrane into two membranes: one that includes an edge and the
other that does not.

� Check whether there exists a terminal such that all adjacent edges are assumed not to
be in the partial assignment. If such a terminal exists, stop the repetition for the inner
membrane.

Step 3: Confirm a tree condition of the graph in each inner membrane is a tree by executing the
following (3-1) and (3-2).

(3-1) Confirm whether the number of edges in the graph is equal to the number of vertices
minus one.

(3-2) Confirm whether the graph is acyclic and connected using a depth-first search (DFS)
technique.

Step 4: Select a membrane representing an optimal solution, and output edges of the solution.

3.3 Details of the P system

We now explain the details of each step of the computation.

Step 1: All input objects are moved into the inner membrane. This step is executed using the
sets of evolution rules R1,1 and R2,1 in Fig. 2.

The computation using the sets of evolution rules is executed as follows. The object ⟨Start⟩ is
given as ω1, which is the set of objects initially contained in the inner membrane, and generates
objects ⟨V0⟩. Input objects representing vertices ⟨vi, B⟩ in the outer membrane are moved into the
inner membrane using object ⟨Vi⟩. Then, objects representing degrees of each vertex ⟨Ki, 0⟩ are
generated. After that, input objects representing edges ⟨ei,j , B⟩ in the outer membrane are moved
into the inner membrane using object ⟨Ei,j⟩. Then, if B of an added edge is T , then the degree
of the edge ⟨Ki, ki⟩ is incremented in the inner membrane using object ⟨EIi,j⟩. After all objects
representing vertices and edges are moved, the objects ⟨DIV0,1⟩, ⟨NVn⟩, ⟨NEm⟩, and ⟨DC, 0⟩ are
generated for Step 2.

Step 2: First, each inner membrane is divided into two membranes: one that includes an edge and
the other that does not. Next, a check is executed whether there exists a terminal such that all
adjacent edges are assumed not to be in the partial assignment. If there is such a terminal, then
the division is stopped for the inner membrane, otherwise, the division is repeated for the divided
membrane. This step is executed using the set of evolution rules R2,2 in Fig. 3.

The computation using the set of evolution rules is executed as follows. First, the inner membrane
is divided into two membranes: one includes ⟨ei,j , B⟩ and the other does not. In the same way, the
membranes are divided repeatedly for each edge. An object ⟨DC, dc⟩ represents the number of
divisions of the membrane and is incremented every time the membrane is divided.

In the case of the division, objects ⟨Ki, ki⟩ and ⟨Kj , kj⟩, which represent the degrees of ⟨vi, B⟩
and ⟨vj , B⟩, are decremented in the membrane that does not involve ⟨ei,j , B⟩. Simultaneously, an
object ⟨dei,j⟩, which represents an excluded edge, is created.

252

International Journal of Networking and Computing

� �
(Evolution rules for outer membrane)

R1,1 = {⟨Start⟩ → ⟨V0⟩}
∪{⟨Vi⟩⟨vi, B⟩[]2 → [⟨Vi⟩⟨vi, B⟩⟨Ki, 0⟩]2 | 0 ≤ i ≤ n− 1, B ∈ {T, F}}
∪{⟨Vn⟩ → ⟨E0,1⟩}
∪{⟨Ei,j⟩⟨ei,j , T ⟩[]2 → [⟨EIi,j⟩⟨ei,j , T ⟩]2 | 0 ≤ i < j ≤ n− 1}
∪{⟨Ei,j⟩⟨ei,j , F ⟩[]2 → [⟨Ei,j⟩⟨ei,j , F ⟩]2 | 0 ≤ i < j ≤ n− 1}
∪{⟨Ei,n⟩ → ⟨Ei+1,i+2⟩ | 0 ≤ i ≤ n− 2}
∪{⟨En−1,n⟩[]2 → [⟨DIV0,1⟩⟨NVn⟩⟨NEm⟩⟨DC, 0⟩]2}

(Evolution rules for inner membranes)

R2,1 = {[⟨Vi⟩]2 → []2⟨Vi+1⟩ | 1 ≤ i ≤ n− 1}
∪{⟨EIi,j⟩⟨Ki, ki⟩⟨Kj , kj⟩ → ⟨Ei,j⟩⟨Ki, ki + 1⟩⟨Kj , kj + 1⟩

| 1 ≤ i < j ≤ n, 0 ≤ ki ≤ n− 2, 0 ≤ kj ≤ n− 2}
∪{[⟨Ei,j⟩]2 → []2⟨Ei,j+1⟩ | 1 ≤ i < j ≤ n− 1}� �

Figure 2: Evolution rules for Step 1

� �
(Evolution rules for inner membranes)

R2,2 = {[⟨DIVi,j⟩⟨NEne⟩⟨Ki, ki⟩⟨Kj , kj⟩⟨ei,j , T ⟩⟨DC, dc⟩]2
→ [⟨DIVi,j+1⟩⟨NEne⟩⟨Ki, ki⟩⟨Kj , kj⟩⟨ei,j , T ⟩⟨DC, dc+ 1⟩]2

[⟨DIVi,j , D⟩⟨NEne−1⟩⟨Ki, ki − 1⟩⟨Kj , kj − 1⟩⟨dei,j⟩⟨DC, dc+ 1⟩]2
| 0 ≤ i < j ≤ n− 1, 1 ≤ ne ≤ m, 1 ≤ ki ≤ n− 1, 1 ≤ kj ≤ n− 1, 0 ≤ dc ≤ m− 1}

∪{⟨DIVi,j⟩⟨ei,j , F ⟩ → ⟨DIVi,j+1⟩⟨dei,j⟩ | 0 ≤ i < j ≤ n− 1}
∪{⟨DIVi,j , D⟩⟨Ki, 0⟩⟨vi, T ⟩ → ⟨DIV, F ⟩ | 0 ≤ i < j ≤ n− 1}
∪{⟨DIVi,j , D⟩⟨Kj , 0⟩⟨vj , T ⟩ → ⟨DIV, F ⟩ | 0 ≤ i < j ≤ n− 1}
∪{⟨DIVi,j , D⟩⟨Ki, 0⟩⟨vi, F ⟩⟨Kj , 0⟩⟨vj , F ⟩⟨NVnv⟩ → ⟨DIVi,j+1⟩⟨NVnv−2⟩

| 0 ≤ i < j ≤ n− 1, 2 ≤ nv ≤ n}
∪{⟨DIVi,j , D⟩⟨Ki, 0⟩⟨vi, F ⟩⟨Kj , kj⟩⟨NVnv⟩ → ⟨DIVi,j+1⟩⟨Kj , kj⟩⟨NVnv−1⟩

| 0 ≤ i < j ≤ n− 1, 2 ≤ nv ≤ n, 1 ≤ kj ≤ n− 1, Bj ∈ {T, F}}
∪{⟨DIVi,j , D⟩⟨Ki, ki⟩⟨Kj , 0⟩⟨vj , F ⟩⟨NVnv⟩ → ⟨DIVi,j+1⟩⟨Ki, ki⟩⟨NVnv−1⟩

| 0 ≤ i < j ≤ n− 1, 2 ≤ nv ≤ n, 1 ≤ ki ≤ n− 1, Bi ∈ {T, F}}
∪{⟨DIVi,j , D⟩⟨Ki, ki⟩⟨Kj , kj⟩ → ⟨DIVi,j+1⟩⟨Ki, ki⟩⟨Kj , kj⟩

| 0 ≤ i < j ≤ n− 1, 1 ≤ ki ≤ n− 1, 1 ≤ kj ≤ n− 1}
∪{⟨DIV, F ⟩⟨DC, dc⟩ → ⟨OPNG, 2

m−dc⟩ | 0 ≤ i < j ≤ n− 1, 0 ≤ dc ≤ m}
∪{⟨DIVi,n⟩ → ⟨DIVi+1,i+2⟩ | 0 ≤ i ≤ n− 1}
∪{⟨DIVn,n+1⟩ → ⟨V R1⟩}� �

Figure 3: Evolution rules for Step 2

253

An asynchronous P system with branch and bound for the minimum Steiner tree

After each division, object ⟨DIVi,j , D⟩ confirms whether the graph represented by the membrane
involves terminals, and then objects representing the numbers of edges and vertices in the membrane,
⟨NEne⟩ and ⟨NVnv⟩, are decremented as necessary.

Object ⟨DIV, F ⟩ indicates the membrane is not appropriate as a Steiner tree, because a terminal
exists such that no adjacent edge is in the graph in the membrane. Division of the membrane
involving the object is stopped and the membrane is dissolved in Step 4. Once each membrane has
finished all its divisions, object ⟨V R1⟩ is generated for Step 3.

Step 3: A graph in each membrane is confirmed to be a tree by executing the following (3-1)
and (3-2) in Step 3. In (3-1), the condition that the number of edges is equal to the number of
vertices minus one is confirmed. In (3-2), the condition that a graph in the membrane is acyclic and
connected is checked using a DFS technique.

First, (3-1) is executed using the set of evolution rules in Fig. 4. The computation using the
evolution rules is executed as follows. The condition that the number of edges is equal to the
number of vertices minus one is confirmed using objects ⟨V R1⟩, ⟨NVnv⟩, and ⟨NEne⟩. Object
⟨OPNG⟩ indicates that the membrane does not satisfy the condition, and the membrane is dissolved
in Step 4. If the membrane satisfies the condition, then object ⟨V R2⟩ is generated for (3-2).

Next, (3-2) is executed using the set of evolution rules in Fig. 5. The computation using the
evolution rules in Fig. 5 is executed as follows. First, a start vertex is selected at random from a
set of vertices {v0, v1, · · · vn−1}. ⟨Starti⟩ indicates that vertex vi is a vertex for starting DFS, and
⟨Rm⟩ represents the number of unexplored edges. DFS takes place using objects ⟨DFSi,j⟩, where
object ⟨DFSi,j⟩ represents an exploration from vertex vi to vj . Objects ⟨svi⟩ and ⟨sei,j⟩ represent
explored vertices and edges, respectively. In case that the exploration is impossible from vi to vj ,
that is, there is no edge between vi and vj , the fourth or fifth rule in Fig. 5 is applied, and object
⟨DFSi,j+1⟩, which denote an exploration to vj+1, is generated. In another case, if a cycle is found in
the exploration, the sixth or seventh rule is applied. If all adjacent edges are checked for vi, object
⟨DFSi,n⟩ is generated, and the object triggers backtracking from vi.

Once the whole graph has been explored and confirmed to be a tree, object ⟨OP1⟩ is generated
for Step 4.

Step 4: A membrane representing an optimal solution is selected, and the edges of the solution
are outputted. This step is executed using sets of evolution rules, R1,4 and R2,4, in Fig. 6.

The computation using evolution rules in Fig. 6 is executed as follows. Objects representing each
weight of the membrane ⟨Wi⟩ are moved to an outer membrane and changed into ⟨Wi, 1⟩ using objects
⟨OP1⟩ and ⟨OP2⟩. The variable k in ⟨Wi, k⟩ represents the number of weights already compared.
The weights are compared to each other in the outer membrane, and all object representing weights
are dissolved except for an object representing the smallest weight. Once the comparison of weights
for all membranes are finished, that is, ⟨Wi, 2

m⟩ is generated, object ⟨Outputi⟩, where i represents
the weight of the membrane whose weight is the smallest, is generated. The object ⟨Outputi⟩ is
moved into an inner membrane randomly, and if the optimal weight is equal to the weight of the
membrane, then the edges in the membrane are outputted using objects ⟨OutEi⟩, otherwise, the
membrane is dissolved, and ⟨Outputi⟩ is moved into another inner membrane.

We summarize the asynchronous P system ΠMST as follows.

ΠMST = (O,µ, ω1, ω2, R1, R2, R3−1, R3−2, R4, iin, iout)

O = {⟨Start⟩}
∪{⟨ei,j , B⟩ | 0 ≤ i < j ≤ n− 1, B ∈ {T, F}} ∪ {⟨dei,j⟩ | 0 ≤ i < j ≤ n− 1}

254

International Journal of Networking and Computing

� �
(Evolution rules for inner membranes)

R2,3-1 = {⟨V R1⟩⟨NEi−1⟩⟨NVi⟩ → ⟨V R2⟩⟨NEi−1⟩⟨NVi⟩} | 2 ≤ i ≤ n}
∪{⟨V R1⟩⟨NVi⟩⟨NEj⟩ → ⟨OPNG⟩⟨NVi⟩⟨NEj⟩} | 0 ≤ i ≤ n, 0 ≤ j ≤ m, j ̸= i− 1}

� �
Figure 4: Evolution rules for (3-1)

� �
(Evolution rules for inner membranes)

R2,3-2 = {⟨V R2⟩⟨NEne⟩⟨vi, B⟩ → ⟨DFSi,0⟩⟨NEne⟩⟨Rne⟩⟨svi⟩⟨Starti⟩
| 0 ≤ i ≤ n− 1, 1 ≤ ne ≤ m,B ∈ {T, F}}

∪{⟨DFSi,j⟩⟨Rr⟩⟨ei,j , T ⟩⟨vj , Bj⟩ → ⟨DFSj,0⟩⟨Rr−1⟩⟨dei,j⟩⟨sei,j⟩⟨svj⟩
| 0 ≤ i < j ≤ n− 1, 1 ≤ r ≤ m,Bj ∈ {T, F}}

∪{⟨DFSj,i⟩⟨Rr⟩⟨ei,j , T ⟩⟨vi, Bi⟩ → ⟨DFSi,0⟩⟨Rr−1⟩⟨dei,j⟩⟨sei,j⟩⟨svi⟩
| 0 ≤ i < j ≤ n− 1, 1 ≤ r ≤ m,Bi ∈ {T, F}}

∪{⟨DFSi,j⟩⟨dei,j⟩ → ⟨DFSi,j+1⟩⟨dei,j⟩ | 0 ≤ i < j ≤ n− 1}
∪{⟨DFSj,i⟩⟨dei,j⟩ → ⟨DFSj,i+1⟩⟨dei,j⟩ | 0 ≤ i < j ≤ n− 1}
∪{⟨DFSi,j⟩⟨ei,j , T ⟩⟨svj⟩ → ⟨OPNG⟩ | 0 ≤ i < j ≤ n− 1}
∪{⟨DFSj,i⟩⟨ei,j , T ⟩⟨svi⟩ → ⟨OPNG⟩ | 0 ≤ i < j ≤ n− 1}
∪{⟨DFSi,i⟩ → ⟨DFSi,i+1⟩ | 0 ≤ i ≤ n− 1}
∪{⟨DFSj,n⟩⟨svi⟩⟨svj⟩⟨sei,j⟩ → ⟨DFSi,0⟩⟨svi⟩⟨svj⟩⟨tei,j⟩ | 0 ≤ i < j ≤ n− 1}
∪{⟨DFSi,n⟩⟨svi⟩⟨svj⟩⟨sei,j⟩ → ⟨DFSj,0⟩⟨svi⟩⟨svj⟩⟨tei,j⟩ | 0 ≤ i < j ≤ n− 1}
∪{⟨DFSi,n⟩⟨R0⟩⟨Starti⟩ → ⟨OP1⟩ | 0 ≤ i ≤ n− 1}
∪{⟨DFSi,n⟩⟨Rr⟩⟨Starti⟩ → ⟨OPNG⟩ | 0 ≤ i ≤ n− 1, 1 ≤ r ≤ m}� �

Figure 5: Evolution rules for (3-2)

∪{⟨sei,j⟩ | 0 ≤ i < j ≤ n− 1} ∪ {⟨ei,j⟩ | 0 ≤ i < j ≤ n− 1} ∪ {⟨tei,j⟩ | 0 ≤ i < j ≤ n− 1}
∪{⟨vi, B⟩ | 0 ≤ i ≤ n− 1, B ∈ {T, F}} ∪ {⟨svi⟩ | 0 ≤ i ≤ n− 1} ∪ {⟨Vi⟩ | 0 ≤ i ≤ n}
∪{⟨DCi⟩ | 0 ≤ i ≤ m} ∪ {⟨Ei,j⟩ | 0 ≤ i < j ≤ n+ 1} ∪ {⟨EIi,j⟩ | 0 ≤ i < j ≤ n}
∪{⟨Eouti,j⟩ | 0 ≤ i < j ≤ n} ∪ {⟨NVnv⟩ | 0 ≤ nv ≤ n} ∪ {⟨NEne⟩ | 0 ≤ ne ≤ m}
∪{⟨DIVi,j⟩ | 0 ≤ i < j ≤ n+ 1} ∪ {⟨DIVi,j , D⟩ | 0 ≤ i < j ≤ n− 1} ∪ {⟨DIV, F ⟩}
∪{⟨Ki, ki⟩ | 0 ≤ i ≤ n− 1, 0 ≤ ki ≤ n− 1} ∪ {⟨OPNG⟩} ∪ {⟨OPNG, 2

i⟩ | 0 ≤ i ≤ m}
∪{⟨V R1⟩} ∪ {⟨V R2⟩} ∪ {⟨Starti⟩ | 0 ≤ i ≤ n− 1} ∪ {⟨DFSi,j⟩ | 0 ≤ i ≤ n, 0 ≤ j ≤ n}
∪{⟨Rm⟩ | 0 ≤ m ≤ m} ∪ {⟨OP1⟩} ∪ {⟨OP2⟩} ∪ {⟨Wi, k⟩ | 1 ≤ i ≤ m, k = 2h, 0 ≤ h ≤ m}
∪{⟨WNG, k⟩ | k = 2h, 0 ≤ h ≤ m} ∪ {⟨Outputi⟩ | 1 ≤ i ≤ m} ∪ {⟨NoSolution⟩}
∪{⟨OPEi,j⟩ | 0 ≤ i < j ≤ n− 1} ∪ {⟨OPSol, i⟩ | 1 ≤ i ≤ m}
∪{⟨OPSi,j⟩ | 0 ≤ i < j ≤ n− 1} ∪ {⟨OutEi⟩ | 0 ≤ i ≤ m}

µ = [[]2]1

ω1 = {⟨Start⟩}
ω2 = ϕ

R1 = R1,1 ∪R1,4

R2 = R2,1 ∪R2,2 ∪R2,3−1 ∪R2,3−2 ∪R2,4

iin = 1

iout = 1
255

An asynchronous P system with branch and bound for the minimum Steiner tree

� �
(Evolution rules for outer membranes)

R1,4 = {⟨Wi, k⟩⟨Wj , k⟩ → ⟨Wi, 2k⟩ | 0 ≤ i ≤ j ≤ m, k = 2h, 0 ≤ h ≤ m− 1}
∪{⟨Wi, k⟩⟨WNG, k⟩ → ⟨Wi, 2k⟩ | 0 ≤ i ≤ m, k = 2h, 0 ≤ h ≤ m− 1}
∪{⟨WNG, k⟩2 → ⟨WNG, 2k⟩ | k = 2h, 0 ≤ h ≤ m− 1}
∪{⟨Wi, 2

m⟩ → ⟨Outputi⟩⟨OPSol, i⟩ | 0 ≤ i ≤ m}
∪{⟨Outputi⟩[]2 → [⟨Outputi⟩]2 | 0 ≤ i ≤ m}
∪{[⟨WNG, 2

m⟩]1 → []1⟨NoSolution⟩}
∪{⟨OPSol, k⟩⟨OPEi,j⟩ → ⟨OPSol, k − 1⟩⟨OPSi,j⟩ | 0 ≤ i < j ≤ n− 1, 0 ≤ k ≤ m}
∪{⟨OPSi,j⟩ → ⟨ei,j⟩ | 0 ≤ i < j ≤ n− 1}

(Evolution rules for inner membranes)

R2,4 = {⟨OP1⟩⟨NEne⟩ → ⟨OP2⟩⟨NEne⟩⟨Wne⟩ | 1 ≤ ne < m}
∪{[⟨OP2⟩⟨Wne⟩]2 → []2⟨Wne, 1⟩ | 1 ≤ ne < m}
∪{[⟨OPNG⟩⟨Wne⟩]2 → ⟨WNG, 1⟩ | 1 ≤ ne < m}
∪{[⟨OPNG, i⟩]2 → ⟨WNG, 1⟩i | i = 2h, 0 ≤ h ≤ m− 1}
∪{⟨Outputi⟩⟨NEi⟩ → ⟨OutEi⟩ | 0 ≤ i ≤ m}
∪{[⟨Outputi⟩⟨NEj⟩]2 → ⟨Outputi⟩ | 1 ≤ i < j ≤ m}
∪{⟨OutEk⟩⟨tei,j⟩ → ⟨OutEk−1⟩⟨OPEi,j⟩ | 0 ≤ i < j ≤ n− 1, 0 ≤ k ≤ m}
∪{[⟨OPEi,j⟩]2 → []2⟨OPEi,j⟩ | 0 ≤ i < j ≤ n− 1}� �

Figure 6: Evolution rules for Step 4

3.4 Example of executions of the proposed P system

We now show an example of executions of ΠMST. The behaviors for the input graph in Fig. 1 are
shown in Figs. 7 to 12.

Figure 7 shows an example of Step 1. First, a set of input objects Oin is given in membrane 1,
and then Oin is moved into membrane 2 and the objects representing the degrees of each vertex, the
number of edges, and the number of vertices are generated.

Figures 8 and 9 show an example of Step 2. In Fig. 8, the membrane is divided into two
membranes; one membrane includes the object ⟨e0,1, T ⟩ and the other membrane does not include
the object ⟨e0,1, T ⟩. Figure 9 shows a bounding operation in Step 2. In the membrane, the vertex
v0, which is a terminal, is isolated since the degree is 0. Therefore, the membrane does not contain
a Steiner tree, and the membrane is dissolved in Step 4.

Figures 10 and 11 show an example of Step 3. Figure 10 shows an example of (3-1). In the
membrane shown in the figure, the number of edges is equal to the number of vertices. Therefore,
the membrane proceeds to the next step. Figure 11 shows an example of (3-2). In this step, depth-
first search is performed. In this figure, all vertices are traversed, which means that the graph is
acyclic and connected. (Note that some detailed substeps are omitted in the figure.) Then, the
membrane proceeds to the next step.

Figure 12 shows an example of Step 4. Each membrane with the object ⟨OPi⟩ outputs the cost
of the membrane. All costs are compared and the minimum cost remains. After that, the membrane
with the minimum cost is selected and the edges of the membrane are outputted to membrane 1.
Some inner membranes are omitted due to space limitation.

3.5 Complexity of P system

We now consider the complexity of the proposed P system.

256

International Journal of Networking and Computing

Figure 7: Example of Step 1 Figure 8: Example of Step 2 (a)

Figure 9: Example of Step 2 (b)

Figure 10: Example of Step 3: (3-1)

In Step 1, O(m+n) objects are moved sequentially. Thus, Step 1 is executed in O(n2) sequential
or parallel steps. The size of evolution rules is O(n4), and O(n2) kinds of objects are used.

In Step 2, the membrane is divided for each edge in the worst case. Thus, Step 2 is executed
in O(m) parallel steps or O(2m) sequential steps. The size of the evolution rules is O(n4m2), and
O(n4) kinds of objects are used.

In Step 3, a is executed in each membrane. Thus, Step 3 is executed in O(n2) parallel steps or
O(2mn2) sequential steps. The size of the evolution rules is O(n2m), and O(n2) kinds of objects are
used.

In Step 4, weights of membranes are compared in the outer membrane. Thus, Step 4 is executed
in O(m) parallel steps or O(2m) sequential steps. The size of the evolution rules is O(m3), and
O(m2) kinds of objects are used.

From the above, we obtain the following theorem regarding the complexity of the proposed
asynchronous P system, ΠMST.

Theorem 1 The asynchronous P systems, ΠMST, solve for the minimum Steiner tree with n vertices
and m edges and operate in O(n2) parallel steps or O(2mn2) sequential steps using O(n4) kinds of
objects and evolution rules of O(n4m2). □

257

An asynchronous P system with branch and bound for the minimum Steiner tree

Figure 11: Example of Step 3: (3-2) Figure 12: Example of Step 4

4 Experimental simulations

Although the asymptotic complexity of the proposed P system is the same as that of an exhaustive
search, the number of membranes can be reduced by the branch and bound technique. We discuss
the concrete reduction rate for the number of membranes in this section through experimental
simulations.

For the simulations, we use our original simulator for the asynchronous P system. The simulator
is built using Python 3. The input graph is randomly created for given numbers of n vertices and
m edges.

We compare the number of membranes on the proposed P system and the number of membranes
with an exhaustive search. In the simulations, we simulate a P system for graphs with from 50% to
70% density and 3 terminals.

Figure 13 shows the average number of membranes in 10 trials on the proposed P system and the
number of membranes with an exhaustive search. As shown in the figure, the number of membranes
on the proposed P system is smaller than the number of membranes with an exhaustive search, and
the number of membranes used on the proposed P system is up to 57% less than the number of
membranes with an exhaustive search.

In addition, we evaluate the number of membranes on the proposed P system for varying number
of terminals or density of input graph. Figure 14 shows that the number of membranes on the
proposed P system in the case that n = 7 and m = 8. The number of membranes becomes smaller
according to the number of terminals. Figure 15 shows the number of membranes on the proposed
P system in the case that m = 8 and the number of terminals is 3. The number of membranes
becomes smaller with increasing density of input graph.

258

International Journal of Networking and Computing

Figure 13: Number of membranes on the proposed P system and possible candidate solutions

Figure 14: Number of membranes on the proposed P system with a varying number of terminals

Figure 15: Number of membranes on the proposed P system a varying density of input graph

259

An asynchronous P system with branch and bound for the minimum Steiner tree

5 Conclusion

In the present paper, we proposed an asynchronous P system for solving the minimum Steiner tree
problem using branch and bound. The results of simulations show that the proposed P system
reduces the number of candidate solutions by 57%.

In our future research, we intend to consider reducing the number of membranes for the minimum
Steiner tree problem using other optimization techniques.

Acknowledgment

This research was supported in part by JSPS KAKENHI through a Grant-in-Aid for Scientific
Research (C) (No. 20K11681).

References

[1] R. Freund. Asynchronous P systems and P systems working in the sequential mode. WMC’04
Proceedings of the 5th International Conference on Membrane Computing, 3365:36–62, 2005.

[2] Y. Jimen and A. Fujiwara. Asynchronous P systems for solving the satisfiability problem.
International Journal of Networking and Computing, 8(2):141–152, 2018.

[3] R. M. Karp. Reducibility among combinatorial problems. Plenum Press, New York, 1972.

[4] A. Leporati and C. Zandron. P systems with input in binary form. International Journal of
Foundations of Computer Science, 17:127–146, 2006.

[5] T. Murakawa and A. Fujiwara. Asynchronous P system for arithmetic operations and factor-
ization. Proceedings of 3rd International Workshop on Parallel and Distributed Algorithms and
Applications, 2011.

[6] Y. Nakano and A. Fujiwara. An asynchronous P system with branch and bound for solving
the knapsack problem. In Workshop on Parallel and Distributed Algorithms and Applications,
pages 242–248, 2020.

[7] T. Noguchi and A. Fujiwara. An asynchronous P system with a dpll algorithm for solving sat.
International Journal of Networking and Computing, 12(2):238–252, 2022.

[8] T. Noguchi and A. Fujiwara. An asynchronous P system with the Bron-Kerbosch algorithm for
solving the maximum clique. International Journal of Networking and Computing, 13(2):131–
148, 2023.

[9] L. Pan and A. Alhazov. Solving HPP and SAT by P systems with active membranes and
separationrules. Acta Informatica, 43(2):131–145, 2006.

[10] G. Păun. Computing with membranes. Journal of Computer and System Sciences, 61(1):108–
143, 2000.

[11] G. Păun. P system with active membranes: Attacking NP-complete problems. Journal of
Automata, Languages and Combinatorics, 6(1):75–95, 2001.

[12] H. Tagawa and A. Fujiwara. Solving SAT and Hamiltonian cycle problem using asynchronous
p systems. IEICE Transactions on Information and Systems (Special section on Foundations
of Computer Science), E95-D(3), 2012.

[13] K. Tanaka and A. Fujiwara. Asynchronous P systems for hard graph problems. International
Journal of Networking and Computing, 4(1):2–22, 2014.

260

International Journal of Networking and Computing

[14] T. Tateishi and A. Fujiwara. Logic and arithmetic operations with a constant number of steps in
membrane computing. International Journal of Foundations of Computer Science, 22(3):547–
564, 2011.

[15] K. Umetsu and A. Fujiwara. P systems with branch and bound for solving two hard graph
problems. International Journal of Networking and Computing, 10(2):159–173, 2020.

[16] C. Zandron, G. Rozenberg, and G. Mauri. Solving NP-complete problems using P systems
with active membranes. Proceedings of the Second International Conference on Uncoventional
Models of Computation, pages 289–301, 2000.

261

