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Abstract

Community detection is the problem of identifying natural divisions in networks. A relevant challenge
in this problem is to find communities on rapidly evolving graphs. In this paper, we design efficient com-
munity detection algorithms in the batch dynamic setting. First, we present our parallel Dynamic Frontier
approach. Given a batch update of edge deletions or insertions, this approach incrementally identifies an
approximate set of affected vertices in the graph with minimal overhead. We apply this approach to both
Louvain, a high quality, and Label Propagation Algorithm (LPA), a fast static community detection al-
gorithm. Our approach achieves a mean speedup of 7.3× and 6.7×, when applied to Louvain and LPA
respectively, compared to our parallel and optimized implementation of ∆-screening, a recently proposed
state-of-the-art approach. Finally, we show how to combine Louvain and LPA with the Dynamic Frontier
approach to arrive at a hybrid algorithm. This algorithm produces high-quality communities while being
14.6× faster than state-of-the-art, and identifying communities with the same quality score.1

Keywords: Dynamic graphs, Community detection, Parallel algorithms, Dynamic Frontier approach, Dy-
namic Louvain algorithm, Dynamic Label Propagation Algorithm (LPA), Dynamic Hybrid Louvain-LPA

1 Introduction
Graphs provide a powerful way to represent data and the relationships between them. In recent years, the use
of graphs to model data and their connections has grown significantly. These graphs are often vast, driven by
applications like machine learning and social networks.

Communities are groups of vertices that more strongly connected together to other vertices within their
groups, than those outside. Finding communities in graphs, have extensive applications in recommendation

1This work is partially supported by a grant from the Department of Science and Technology (DST), India, under the National
Supercomputing Mission (NSM) R&D in Exascale initiative vide Ref. No: DST/NSM/R&D Exascale/2021/16; and from the Science &
Engineering Research Board (SERB) of the Department of Science and Technology (DST), India, vide Project No: CRG/2023/005225.
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systems, targeted advertising, drug discovery, protein annotation, and topic discovery [13]. Communities
are intrinsic when defined solely by network topology and are disjoint when each vertex is assigned to only
one community. Community detection algorithms assess the quality of identified communities using the
modularity metric introduced by Newman et al. [28]. However, maximizing modularity to detect communities
is an NP-hard problem [12]. One must therefore resort to heuristics, which obtain a solution that is close to
the optimal one, in a reasonable amount of time.

Two popular heuristic-based algorithms for intrinsic and disjoint community detection are the Louvain
method [4] and the Label Propagation Algorithm (LPA) [30]. Several recent studies show how to implement
the Louvain method and LPA on modern architectures such as multi-core CPUs [10], GPUs [6], CPU-GPU
hybrid platforms [3], distributed platforms [11], and the like.

However, with the data deluge and ever-changing application requirements, newer challenges are emerg-
ing. Many real-world graphs evolve with the insertion/deletion of edges/vertices. For efficiency reasons, one
needs algorithms that update the results without re-computing from scratch — known as dynamic algorithms.
Nonetheless, parallelizing dynamic graph algorithms is challenging due to the complexities of handling con-
currency, optimizing data access, reducing resource contention, and load imbalance. Further, in the parallel
setting, processing a batch of updates is often an effective method as doing so offers scope for exploiting
parallelism and minimizes computational effort compared to processing individual updates. Given these
theoretical and practical efficiency considerations, designing parallel batch dynamic graph algorithms is nat-
urally more challenging. Examples of parallel dynamic graph algorithms include those for graph coloring [2],
shortest paths [18], and centrality scores [32].

Dynamic community detection algorithms aim to obtain communities on evolving graphs while mini-
mizing computation time. One does this usually by choosing a suitable algorithm, reusing old community
labels of vertices, and processing a subset of the graph likely to be affected by changes. Ideally, the algorithm
should identify a subset of the graph to be processed with a low overhead [31]. If the identified subset is too
small, we may end up with inaccurate communities; if it is too large, we incur a significant computation time.

A critical examination of the extant literature on dynamic community detection algorithms indicates a
few shortcomings. Some of these algorithms [8, 24] do not outperform static algorithms even for modest-
sized batch updates. Aynaud et al. [1] and Chong et al. [7] adapt the existing community labels and run an
algorithm, such as Louvain, on the entire graph. Often, this is unwarranted since not every vertex would need
to change its community on the insertion/deletion of a few edges. Riedy et al. [33] and Cordeiro et al. [8] do
not consider the cascading impact of changes in community labels, where the community label of a vertex
changes because of a change in the community label of its neighbor. Zarayeneh et al. [42] and Riedy et
al. [33] identify a subset of vertices whose community labels are likely to change on the insertion/deletion of
a few edges. However, as this set of vertices identified is large, the algorithm of Zaranayeh et al. [42] incurs
a significant computation time. In addition, most existing studies evaluate their algorithms on small graphs
(with less than a million edges) [15, 22, 26, 37, 41], leading to potentially misleading conclusions. Moreover,
many of the reported algorithms [15, 17, 22, 26, 37, 41–43] lack parallelism.

The above discussion, summarized in Table 1, motivates us to design efficient parallel algorithms that
update the community structures of an evolving graph.

Property [1, 7, 8, 22, 24] [41–43] [15] [33] This paper
Fully dynamic ✓ ✓ ✓ ✓ ✓
Batch update ✓ ✓ ✓ ✓ ✓
Process subset × ✓ ✓ ✓ ✓
Cascading updates × × ✓ × ✓
Parallel algorithm × × × ✓ ✓
Hybrid algorithm × × × × ✓

Table 1: Comparison of community detection papers.
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1.1 Our Contributions

This paper addresses the design of efficient parallel algorithms in the batch dynamic setting, where multiple
edge updates are processed simultaneously.

• We start by proposing our parallel Dynamic Frontier approach (Section 4.1), which we also refer to as
Alg. P-DF. Given a batch update consisting of edge deletions or edge insertions, Alg. P-DF incremen-
tally identifies an approximate set of affected vertices in the graph with a low run time overhead.

• Next, we show how to combine Alg. P-DF with two parallel algorithms: Parallel Louvain (Alg. StaticL)
and Parallel LPA (Alg. StaticLPA), in Sections 4.3 and 4.4 respectively. We refer to these algorithms
as Alg. P-DFL and Alg. P-DFLPA respectively. In addition to accepting the previous community
membership of each vertex, our algorithms accept auxiliary information to improve scalability.

• We also show how to use Alg. P-DF under a combination of both the Louvain and LPA to arrive at a
hybrid algorithm (Alg. P-DFH), in Section 4.5.

• In Sections 5.1 and 5.2, we present the correctness arguments of Alg. P-DFL and Alg. P-DFLPA.

• The implementation details of Alg. StaticL and Alg. StaticLPA are discussed in Sections 6.1 and 6.2,
respectively. This includes plots indicating how our static algorithms outperform well known imple-
mentations of the respective static algorithm.

• In Section 7, we compare our dynamic algorithms with our custom parallel implementation of the ∆-
screening approach running on a 64-core AMD EPYC server. Table 2 shows the speedup obtained by
our algorithms on a collection of eight graphs from four different classes. Our experimental results
use our optimized parallel implementation of the Louvain and LPA. In addition, we show that our
algorithms achieve good community stability, and have good scaling performance.2

Algorithm Dynamic Frontier
+ Louvain + LPA + Hybrid

Speedup 7.3× 6.7× 14.6×
Modularity 0.90 0.78 0.90

Table 2: Average speedup compared to parallel ∆-screening algorithm [42], and the average modularity score
achieved by our algorithms on a batch updates ranging from 10−7 to 0.01 times the number of edges in the
original graph.

2 Related work
Louvain method is a popular and efficient algorithm to identify communities with a high modularity. As a
result, it is widely favored by researchers [20, 23]. Existing works on Static Louvain algorithm propose a
number of algorithmic and programming optimizations [11, 14, 25, 25, 34].

While the Louvain method obtains high-modularity communities, we find it to be 2.3 − 14× slower
than LPA (which obtains communities of lower modularity by 3.0 − 30%). LPA is faster than the Louvain
algorithm, as it does not require repeated optimization steps and is easier to parallelize.

A growing number of research efforts have focused on detecting communities in dynamic networks. A
core idea among most approaches is to use the community membership of each vertex from the previous
snapshot of the graph instead of initializing each vertex into singleton communities [1, 7, 8, 33, 42]. Aynaud
et al. [1] run the Louvain algorithm after assigning the community membership of each vertex as its previous
community membership. Chong et al. [7] reset the community membership of vertices linked to an updated
edge, in addition to the steps performed by Aynaud et al., and process all vertices with the Louvain algorithm.
However, finding a subset of vertices that need to be processed can help minimize computation time.

2For reproducibility, our source code is at https://github.com/merferry/communities-cpu--artifact
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Meng et al. [24] introduce a Dynamic Louvain algorithm aiming for temporally smoothed community
structures in evolving graphs. They utilize an approximate delta-modularity optimization to mitigate abrupt
changes in community structure but fail to outperform the Static Louvain algorithm, achieving lower modu-
larity scores. This discrepancy is attributed to prioritizing temporal smoothing over modularity maximization.
Cordeiro et al. [8] propose a similar dynamic algorithm focusing on tracking communities over time. Their
method employs local modularity optimization for communities affected by edge and vertex changes, yield-
ing modularity scores comparable to the Static Louvain algorithm but at the cost of slower performance, even
for small batch updates.

The works of Kanezashi and Suzumura [17] and that of Nath and Roy [26] handle only edge insertions
and do not handle deletion of edges. Xie et al. [41] present a stabilized process for community detection
in dynamic graphs, based on LabelRank. However, they do not report runtime of their algorithm. We im-
plemented LabelRank, and observed it to perform slower than LPA. Han et al. [15] propose ALPA, another
dynamic approach, which first performs a warm-up LPA on a subset of the network, followed by expansion as
a frontier of nodes that change labels. However, their algorithm is sequential. Liu et al. [22] propose DLPAE
based on an improved version of their static algorithm. However, their evaluation is limited to small graphs,
and they do not report runtimes of their algorithm. Sun et al. [37] propose DCDID, a dynamic community
detection algorithm in the batch dynamic setting. However, their approach is sequential, and they test their
algorithm only on small graphs.

Riedy et al. [33] adapt their original static agglomerative community detection algorithm to the dynamic
setting by identifying vertices likely to change communities due to edge additions/deletions. However, they
overlook cascading changes in community memberships, and do not employ Louvain or LPA algorithms —
making direct comparison irrelevant.

Zarayeneh et al. [42] introduce Delta-screening, a method for updating communities in dynamic graphs.
It examines edge deletions and insertions to the original graph, and identifies a subset of vertices that are
likely to be impacted by the change, using the modularity objective. Despite possessing desirable properties
for dynamic community detection, our observations reveal that ∆-screening tends to flag a significant number
of vertices as affected, thus requiring a large amount of work to identify the new communities.

Most existing works mentioned above test their algorithms on small graphs (with less than a million
edges) [15, 22, 26, 37, 41]. In addition, the dynamic algorithms mentioned above are sequential [1, 7, 8, 15,
17, 22, 24, 26, 37, 41, 42]. Thus, there is a need for efficient parallel algorithms for community detection on
dynamic graphs. Further, none of the works recommend reusing the previous weighted degree of each vertex,
and the total community weight (for local-moving phase of the Louvain algorithm) as auxiliary information
to the dynamic algorithm. Recomputing it from scratch is expensive and becomes a bottleneck for Dynamic
Louvain algorithm.

3 Preliminaries
Let G(V,E,w) be an undirected graph, with V as the set of vertices, E as the set of edges, and wij = wji a
positive weight associated with each edge in the graph. If the graph is unweighted, we assume each edge to be
associated with unit weight (wij = 1). We denote the neighbors of each vertex i as Ji = {j | (i, j) ∈ E}, the
weighted degree of each vertex i as Ki =

∑
j∈Ji

wij , the number of vertices and edges in the graph as N =
|V | and M = |E| respectively, and the sum of edge weights in the undirected graph as m =

∑
i,j∈V wij/2.

3.1 Community detection

Disjoint community detection is the process of arriving at a community membership mapping, C : V → Γ,
which maps each vertex i ∈ V to a community-id c ∈ Γ, where Γ is the set of community-ids. We denote
the vertices of a community c ∈ Γ as Vc. We denote the community that a vertex i belongs to as Ci. Further,
we denote the neighbors of vertex i belonging to a community c as Ji→c = {j | j ∈ Ji and Cj = c},
the sum of those edge weights as Ki→c =

∑
j∈Ji→c

wij , the sum of edge weights within a community c as
σc =

∑
(i,j)∈E and Ci=Cj=c wij , and the total edge weight of c as Σc =

∑
(i,j)∈E and Ci=c wij [42].
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Q =
∑
c∈Γ

[
σc

2m
−
(
Σc

2m

)2
]

(1)

Like many authors, we use modularity Q to evaluate the quality of communities obtained, as shown in
Eq. 1. It is equal to the fraction of edges that fall within the given “modules”, minus the expected fraction
if edges were uniformly distributed/assigned at random. It lies in the range [−0.5, 1] and a higher value
is better [5]. Optimizing this function theoretically leads to the best possible grouping [27, 38]. The delta
modularity of moving a vertex i from the community d to the community c, denoted as ∆Qi:d→c, can be
calculated using Eq. 2. Here, Qi:d→i indicates the change in modularity when vertex i is moved from
community d to an isolated community, and Qi:i→c represents the change in modularity when i is transferred
from an isolated community into community c. Table 3 shows the commonly used notations in this paper.

∆Qi:d→c = ∆Qi:d→i +∆Qi:i→c

=

[
σd − 2Ki→d

2m
−
(
Σd −Ki

2m

)2
]
+

[
0−

(
Ki

2m

)2
]
−

[
σd

2m
−
(
Σd

2m

)2
]

+

[
σc + 2Ki→c

2m
−
(
Σc +Ki

2m

)2
]
−

[
σc

2m
−

(
Σc

2m

)2
]
−

[
0−

(
Ki

2m

)2
]

=
1

m
(Ki→c −Ki→d)−

Ki

2m2
(Ki +Σc − Σd)

(2)

Table 3: List of symbols, and their explanations.

Symbol Meaning

Gt(V t, Et) Current input graph
∆t−,∆t+ Edge deletions and insertions (batch update)
Ct−1 Previous community of each vertex
Kt−1 Previous weighted-degree of vertices
Σt−1 Previous total edge weight of communities
G′ Current/super-vertex graph.
C,C ′ Current community of each vertex in Gt, G′

K,K ′ Current weighted-degree of each vertex in Gt, G′

Σ,Σ′ Current total edge weight of each community in Gt, G′

τ, τagg Iteration, aggregation tolerance
δE, δC Are neighbors, or community affected?
H Hashtable mapping a community to associated weight

3.2 Algorithms for Static Graphs
3.2.1 Louvain algorithm [4]

Louvain is a greedy, modularity optimization based agglomerative algorithm that finds high-modularity com-
munities in a graph with a time complexity of O(LM) and a space complexity of O(N +M), where L is the
total number of iterations performed across all passes [20]. It consists of two phases: the local-moving phase,
where each vertex i greedily decides to move to the community of one of its neighbors j ∈ Ji that gives
the highest increase in modularity ∆Qi:Ci→Cj

(using Eq. 2), and the aggregation phase which collapses all
vertices in a community into a single super-vertex. These two phases make up one pass and repeat until there
is no further increase in modularity. As a result, we have a hierarchy of community memberships for each
vertex as a dendrogram. The top-level hierarchy is the final result. We use an efficient parallel implementation
of Louvain, detailed in Section 6.1, which we refer as Alg. StaticL
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3.2.2 Label Propagation Algorithm (LPA) [30]

LPA is a popular diffusion-based method for finding communities that is simpler, faster, and more scalable
(due to its lower memory footprint) than Louvain. In LPA, every vertex i is initialized with a unique label,
or community id, Ci. Each vertex adopts the label with the most interconnecting weight at every step, as
shown in Eq. 3. In the equation, Ki→c denotes the total interconnecting weight of each label, and argmax

c ∈ Γ

denotes the label with the most interconnecting weight. Through this iterative process, densely connected
groups of vertices form a consensus on a unique label that corresponds to a community. For a given tolerance
parameter τ , the algorithm converges when at least 1− τ fraction of vertices do not change their community
membership. LPA has a time complexity of O(LM) and a space complexity of O(N + M), where L is
the number of iterations performed. We present an efficient parallel implementation of LPA in Section 6.2,
referred to here as Alg. StaticLPA.

Ci = argmax
c ∈ Γ

Ki→c (3)

3.3 Dynamic Graphs
A dynamic graph is a sequence of graphs, where Gt(V t, Et, wt) denotes the graph at time step t with t ≥ 0.
The graph G0 is the base graph. We consider only changes to the edges of the graph over time. We use ∆t to
denote the changes to the edges of the graphs Gt−1(V t−1, Et−1, wt−1) and Gt(V t, Et, wt) at consecutive
time steps t − 1 and t. The set ∆t consists of a set of edge deletions ∆t− = Et−1 \ Et and a set of edge
insertions ∆t+ = Et \Et−1. Thus, ∆t = ∆t− ∪∆t+. We refer to the setting where ∆t consists of multiple
edges deleted and inserted as a batch update.

For simplicity, we consider a batch of edges where all edges in the batch are being inserted into Gt –
in which case ∆t = Et − Et−1, or the case where all edges in the batch are being deleted from Gt where
∆t = Et−1 −Et. In our experiments, we let G0 be a non-empty graph and run a static algorithm to identify
the community labels of each vertex in G0.

3.4 ∆-screening approach [42] for Dynamic Graphs
∆-screening uses modularity to determine an approximate graph region where vertices are likely to change
their community membership. Here, Zarayeneh et al. first separately sort the batch update consisting of edge
deletions (i, j) ∈ ∆t− and insertions (i, j, w) ∈ ∆t+ by their source vertex-id. For edge deletions within
the same community, they mark i’s neighbors and j’s community as affected. For edge insertions across
communities, they pick vertex j∗ with the highest change in modularity among all insertions linked to vertex
i and mark i’s neighbors and j∗’s community as affected. Edge deletions between different communities and
edge insertions between the same community are unlikely to affect the community membership of any vertex
and hence ignored.

The affected vertices identified by ∆-screening are processed in the first pass of Louvain algorithm
(for the remaining passes, all vertices are processed), and the community membership of each vertex, Ct, is
initialized at the start of the algorithm to that obtained in previous snapshot of the graph, Ct−1, where t ≥ 1.

The ∆-screening technique, as proposed in [42], is not a parallel algorithm. We redesign it as a multicore
parallel algorithm. To this end, we go through sorted edge deletions and insertions in parallel, apply ∆-
screening as mentioned above, and mark vertices, neighbors of a vertex, and the community of a vertex
using three separate flag vectors. Finally, we use the neighbors and community flag vectors to mark affected
vertices. For this, we use per-thread collision-free hash tables [34]. Every hash table comprises a vector of
keys, a vector of values (of size |V |), and a key count. The value corresponding to each key is stored or
accumulated at the index indicated by the key. To prevent false cache sharing, we allocate each key count
separately on the heap, as they are updated independently. Each hashtable is allocated separately, in order
to avoid false sharing between CPU caches. We further optimize it by taking as input the previous weighted
degree of each vertex Ki and total edge weight of each community Σc, and incrementally update them based
on the batch update instead of recomputing from scratch which is costly. We refer to this parallel version of
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Algorithm 1 Our Parallel ∆-screening approach (Alg. P-DS).

▷ Gt(V t, Et): Current input graph ▷ Inputs ↓
▷ ∆t−,∆t+: Edge deletions and insertions (batch update)
▷ Ct−1: Previous community of each vertex
□ δE, δC: Are neighbors, or community affected? □ Variables ↓
□ H: Hashtable mapping a community to associated weight

1: ▷ Step 1: Marking of affected vertices
2: function P-DS(Gt,∆t−,∆t+, Ct−1)
3: H, δE, δC ← {}
4: for all [i, j] ∈ ∆t− in parallel do
5: if Ct−1[i] = Ct−1[j] then
6: δE[i], δC[Ct−1[j]]← true
7: Mark i as affected
8: for all unique source vertex i ∈ ∆t+ in parallel do
9: H ← {}

10: for all (i′, j, w) ∈ ∆t+ | i′ = i do
11: if Ct−1[i] ̸= Ct−1[j] then
12: H[Ct−1[j]]← H[Ct−1[j]] + w

13: [c∗, w∗]← chooseCommunity(H)
14: δE[i], δC[c∗]← true
15: Mark i as affected
16: for all i ∈ V t in parallel do
17: if δE[i] then
18: for all j ∈ Gt.neighbors(i) do
19: Mark i as affected
20: if δC[Ct−1[i]] then
21: Mark i as affected

22: ▷ Step 2: Processing of affected vertices
23: function P-DS-PROCESS(Gt)
24: while iterations are not complete do
25: for all i ∈ V t do
26: if i is not affected then continue
27: Mark i as not affected (prune)
28: Pick best community for i
29: repeat until communities have converged

30: ▷ Step 3: Algorithm-specific post-processing (optional)

∆-screening as Alg. P-DS. Its pseudocode is shown in Algorithm 1. We apply Alg. P-DS to Louvain and
LPA, and refer to them as Alg. P-DSL and Alg. P-DSLPA, respectively.

4 Approach
Given a batch update on the original graph, it is likely that only a small subset of vertices in the graph would
change their community membership. Selection of the appropriate set of affected vertices to be processed —
that are likely to change their community — in addition to the overhead of finding them, plays a significant
role in the overall accuracy and efficiency of a dynamic batch parallel algorithm. Too small a subset may
result in poor-quality communities, while a too-large subset will increase computation time. However, Alg.
P-DS generally overestimates the set of affected vertices and has a high overhead. Our proposed Dynamic
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Frontier approach (which we from here on refer to as Alg. P-DF) addresses these issues.

4.1 Our Dynamic Frontier approach (Alg. P-DF)

We now explain our parallel Dynamic Frontier approach (Alg. P-DF), given in Algorithm 2. Consider a
batch update consisting of either edge deletions (i, j) ∈ ∆t− or edge insertions (i, j, w) ∈ ∆t+. We consider
that batch updates are undirected, i.e., if the edge (i, j, w) is in ∆t+, so is the edge (j, i, w). At the start, we
initialize the membership of each vertex, Ct, to that obtained in the previous snapshot of the graph Ct−1.

Algorithm 2 Parallel Dynamic Frontier approach (Alg. P-DF).

▷ Gt(V t, Et): Current input graph ▷ Inputs ↓
▷ ∆t−,∆t+: Edge deletions and insertions (batch update)
▷ Ct−1: Previous community of each vertex

1: ▷ Step 1: Initial marking of affected vertices
2: function P-DF-INITIAL(Gt,∆t−,∆t+, Ct−1)
3: for all (i, j) ∈ ∆t− in parallel do
4: Mark i as affected if Ct−1[i] = Ct−1[j]

5: for all (i, j, w) ∈ ∆t+ in parallel do
6: Mark i as affected if Ct−1[i] ̸= Ct−1[j]

7: ▷ Step 2: Incremental marking of affected vertices
8: function P-DF-INCREMENTAL(Gt)
9: while iterations are not complete do

10: for all i ∈ V t do
11: if i is not affected then continue
12: Mark i as not affected (prune)
13: Pick best community for i
14: if community of i changes then
15: Mark neighbors of i as affected
16: repeat until communities have converged

17: ▷ Step 3: Algorithm-specific post-processing (optional)

Alg. P-DF has two main steps, as show in Algorithm 2. Step 1 marks an initial set of vertices as
affected. If ∆t is a batch of edge insertions ∆t+, for each edge (i, j, w) ∈ ∆t+, we mark i and j as affected,
provided i and j have different community labels — ignoring edge insertions within the same community.
Similarly, suppose ∆t is a batch of edge deletions ∆t−, for each edge (i, j) ∈ ∆t−. In that case, we mark
i and j as affected, provided i and j belong to the same community, ignoring edges deletions across distinct
communities. Note that the edges we ignore are unlikely to impact the community structure of the graph,
as Zarayeneh et al. [42] also observe. Alg. P-DF is thus an approximate algorithm for dynamic community
detection, similar to Alg. P-DS.

In Step 2, the community membership of each vertex, obtained while running a community detection
algorithm, is used by Alg. P-DF to update the set of affected vertices, as follows, incrementally. If the
community label of an affected vertex i changes, then the neighbors of i are marked as affected. Once the
community detection algorithm has processed a vertex, we mark it as unaffected, to minimize unnecessary
computation. We call this the vertex pruning optimization. Subsequently, the community detection algorithm
continues to execute to identify the community labels of the affected vertices. This process continues until the
algorithm converges. Finally, in Step 3, depending on the community detection algorithm used, any necessary
post-processing steps are performed as needed.
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Application to the first pass of Louvain algorithm We apply Alg. P-DF to the first pass of Louvain
algorithm, as with Alg. P-DS. In subsequent passes, if the aggregation tolerance condition is not met (Line
14 in Algorithm 3), all super-vertices are marked as affected and processed according to Louvain. This takes
less than 14% of total time, so we do not use Alg. P-DF to find affected super-vertices. The tolerance
condition only fails in the case of large batch updates.

4.2 An Example of Dynamic Frontier approach (Alg. P-DF)
Figure 1 shows an example of Alg. P-DF.
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(b) Marking affected (initial)
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(c) After 1st iteration
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(d) After 2nd iteration
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(e) Communities converged

Figure 1: In this example of the Dynamic Frontier approach (Alg. P-DF), vertex community membership
is represented by border colors (red, green, or blue), with the algorithm progressing from left to right. A
batch update arrives, affecting vertices 1, 2, 4, and 12. In the first iteration, vertex 2 switches from red to
green, impacting neighbors 4, 8, and 10. In the second iteration, vertex 4 changes from red to blue, affecting
neighbors 2, 3, 6, 12, 14, and 15. Afterward, there are no more community changes.

Initial communities The original graph, shown in Figure 1(a) comprises a total of 16 vertices divided into
three communities distinguished by the border colors of red, green, and blue. We consider a batch of edge
insertions consisting of adding two edges to the original graph.

Batch update and Marking affected (initial) Subsequently, Figure 1(b) shows a batch update applied to
the original graph involving the deletion of one edge between vertices 1 and 2, and the insertion of one edge
between vertices 4 and 12. To process this batch update, we perform the initial step of Alg. P-DF, marking
endpoints 1, 2, 4, and 12 as affected. At this point, we are ready to execute the first iteration of a community
detection algorithm.

After first iteration During the first iteration (see Figure 1(c)), suppose that the community membership
of vertex 2 changes from red to green because it exhibits stronger connections with vertices in the green
community. In response to this change, the Alg. P-DF incrementally marks the neighbors of 2 as affected,
specifically vertices 4, 8 and 10. Vertex 2 is no longer marked as affected due to the pruning optimization.

After second iteration During the second iteration (see Figure 1(d)), suppose that vertex 4 is now more
strongly connected to the blue community, resulting in a change of its community membership from red to
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blue. As before, we mark the neighbors of vertex 4 as affected, namely vertices 2, 3, 6, 12, 14, and 15.
However, vertex 4 is no longer marked as affected due to vertex pruning.

Communities converged In the subsequent iteration (see Figure 1(e)), suppose that no other vertices have
a strong enough reason to change their community membership. At this point, the post-processing step is
invoked and we obtain the updated community labels — i.e., when employing Louvain, the aggregation
phase commences consolidating communities into super-vertices to prepare for the subsequent pass of the
algorithm. However, when employing the LPA, this marks the conclusion of the algorithm.

4.3 Our Dynamic Frontier based Louvain (Alg. P-DFL)
We now show how to apply the Dynamic Frontier approach (Alg. P-DF) to Louvain in Algorithm 3, which
we call Alg. P-DFL. We take as input the previous snapshot of the graph Gt−1, the batch update consisting
of edge deletions ∆t− and insertions ∆t+, the previous community membership of each vertex Ct−1, the
previous weighted degree of each vertex Kt−1, and the previous total edge weight of each community Σt−1

in Line 1. By using Kt−1 and Σt−1 of the previous graph Gt−1 as auxiliary information to the dynamic
algorithm, we are able to quickly obtain the updated Kt and Σt. To the best of our knowledge, none of the
existing dynamic algorithms for community detection make use of such auxiliary information.

Initial marking phase (Line 3): First, based on Alg. P-DF, we mark the initial set of vertices as affected.

Initialization phase (Lines 5-8): We initialize the community membership C of each vertex, obtain the
updated vertex weights K and community weights Σ, and get the graph G′, community membership C ′,
vertex weights K ′, and community weights Σ′ at the current pass.

Local-moving and aggregation phases (Lines 10-20): For each pass, we perform the local-moving phase
of Louvain in Line 11. If the community labels converge after one iteration, we terminate the algorithm
in Line 12. In Line 14, we check if only a small fraction of communities merged. We calculate the ratio
|Γ|/|Γold| of current to original number of communities. If it is below an aggregation tolerance, τagg (optimal
value in [34]), we avoid the expensive aggregation phase, as it does not provide a noticeable benefit.

In Line 15, we renumber the community-ids. This renumbering helps generate the aggregated graph G′

in the Compressed Sparse Row (CSR) format. In Line 16, we update the community membership of each
vertex C based on the community membership of each super-vertex, in order to obtain the top-level hierarchy
of the dendrogram as the final result. In Line 17, we proceed with aggregation, storing the result as graph G′.

Once the graph has been aggregated, we obtain the super-vertex weights K ′ in Line 18. In the aggregated
graph, each vertex belongs to its own singleton community. Hence, the super-community weights Σ′ are the
same as K ′. Next, in Line 19, we mark all super-vertices as affected, and initialize the community member-
ship of each super-vertex. In Line 20, we perform the threshold scaling optimization [25], i.e., we reduce
the tolerance τ using a factor TOLERANCE_DROP. This reduces local-moving phase iterations, enhancing
performance with minimal impact on community modularity. Once all necessary passes are complete, we
perform the dendrogram flattening in Line 21. Finally, in Line 22, we return the membership of each vertex
C, and the weighted degree of each vertex K and community Σ in the updated graph as auxiliary information.

Explanation of LOUVAINMOVE (Lines 23-35): We now discuss the local-moving phase of Alg. P-DFL.
For each iteration (Lines 24-33), and for each affected vertex i in the graph G′, we mark i as not affected, for
the next iteration, as vertex pruning step of Alg. P-DF (Line 27), and use per-thread collision-free hashtables
to obtain the best community c∗ linked to each vertex, as well as the associated delta-modularity (highest) δQ∗

using Eq. 2 (Lines 28-29). If the best community c∗ is different from the original community membership
C ′[i] of vertex i (Line 30), we update the community membership of the vertex C ′ and atomically update the
total edge weights linked to each community Σ′ in Lines 31-32. If c∗ is no longer the best choice, vertex i
will be re-processed in the next iteration. At the end of each iteration, if the total delta-modularity across all
vertices ∆Q is less than the specified tolerance τ , we terminate the local-moving phase (Line 34) and returns
the number of iterations performed. The algorithm stops when convergence is reached, or when the number
of iterations reaches MAX ITERATIONS.3

3In all of our experiments, we notice that the algorithm stops by convergence rather than by reaching MAX ITERATIONS.
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Algorithm 3 Dynamic Frontier Louvain (Alg. P-DFL).

▷ Gt(V t, Et): Current input graph ▷ Inputs ↓
▷ ∆t−,∆t+: Edge deletions and insertions (batch update)
▷ Ct−1: Previous community of each vertex
▷ Kt−1: Previous weighted-degree of vertices
▷ Σt−1: Previous total edge weight of communities
□ G′: Current/super-vertex graph □ Variables ↓
□ C,C ′: Current community of each vertex in Gt, G′

□ K,K ′: Current weighted-degree of each vertex in Gt, G′

□ Σ,Σ′: Current total edge weight of each community in Gt, G′

□ τ, τagg: Iteration, aggregation tolerance

1: function P-DFL(Gt,∆t−,∆t+, Ct−1,Kt−1,Σt−1)
2: ▷ Initial marking phase
3: P-DF-INITIAL(Gt,∆t−,∆t+, Ct−1) ▷ See Alg. 2
4: ▷ Initialization phase
5: Vertex membership: C ← [0..|V t|)
6: K ← vertexWeights(Kt−1,∆t−,∆t+)
7: Σ← communityWeights(Σt−1,∆t−,∆t+, Ct−1)
8: G′ ← Gt ; C ′ ← Ct−1 ; K ′ ← K ; Σ′ ← Σ
9: ▷ Local-moving and aggregation phases

10: for all lp ∈ [0..MAX PASSES) do
11: numIters← louvainMove(G′, C ′,K ′,Σ′)
12: if numIters ≤ 1 then break ▷ Globally converged?
13: |Γ|, |Γold| ← Number of communities in C, C ′

14: if |Γ|/|Γold| > τagg then break ▷ Low shrink?
15: C ′ ← Renumber communities in C ′

16: C ← Lookup dendrogram using C to C ′

17: G′ ← Aggregate communities in G′ using C ′

18: Σ′ ← K ′ ← vertexWeights(G′)
19: Mark all vertices in G′ as affected ; C ′ ← [0..|V ′|)
20: τ ← τ/TOLERANCE DROP ▷ Threshold scaling
21: C ← Lookup dendrogram using C to C ′

22: return Ct−1 ← C,Kt−1 ← K,Σt−1 ← Σ

23: function LOUVAINMOVE(G′, C ′,K ′,Σ′)
24: for all ls ∈ [0..MAX ITERATIONS) do
25: Delta modularity: ∆Q← 0
26: for all affected i ∈ V ′ in parallel do
27: Mark i as not affected (prune)
28: c∗ ← Best community linked to i in G′

29: δQ∗ ← Delta-modularity of moving i to c∗

30: if c∗ = C ′[i] then continue
31: Σ′[C ′[i]]− = K ′[i] ; Σ′[c∗]+ = K ′[i] atomic
32: C ′[i]← c∗ ; ∆Q← ∆Q+ δQ∗

33: Mark neighbors of i as affected
34: if ∆Q ≤ τ then break ▷ Locally converged?
35: return ls
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Application for Alg. P-DF to first pass of Louvain in Alg. P-DFL: Note that we apply Alg. P-DF only to
the first pass of Louvain, as with Alg. P-DS. In subsequent passes, if the aggregation tolerance τagg condition
is not met, all super-vertices are marked as affected and processed. This takes less than 14% of total time, so
we do not use Alg. P-DF to find affected super-vertices. The τagg condition only fails with large updates.

4.4 Our Dynamic Frontier based LPA (Alg. P-DFLPA)
We now show how to apply Alg. P-DF to LPA in Algorithm 4, which we call Alg. P-DFLPA. Here, We take
as input the previous snapshot of the graph Gt−1, the batch update consisting of edge deletions ∆t− and
insertions ∆t+, and the previous community membership of each vertex Ct−1 in Line 1.

Algorithm 4 Dynamic Frontier LPA (Alg. P-DFLPA).

▷ Gt(V t, Et): Current input graph ▷ Inputs ↓
▷ ∆t−,∆t+: Edge deletions and insertions (batch update)
▷ Ct−1: Previous community of each vertex
□ G′: Current graph □ Variables ↓
□ C ′: Current community of each vertex in G′

□ τ : Iteration tolerance

1: function P-DFLPA(Gt,∆t−,∆t+, Ct−1)
2: P-DF-INITIAL(Gt,∆t−,∆t+, Ct−1) ▷ See Alg. 2
3: Vertex membership: C ′ ← Ct−1 ; G′ ← Gt

4: for all ls ∈ [0..MAX ITERATIONS) do
5: ∆N ← lpaMove(G′, C ′)
6: if ∆N/N ≤ τ then break ▷ Converged?
7: return Ct−1 ← C ′

8: function LPAMOVE(G′, C ′)
9: Changed vertices: ∆N ← 0

10: for all affected i ∈ V ′ in parallel do
11: Mark i as not affected (prune)
12: c∗ ←Most weighted label to i in G′

13: if c∗ = C ′[i] then continue
14: C ′[i]← c∗ ; ∆N ← ∆N + 1
15: Mark neighbors of i as affected
16: return ∆N

First, in Line 2, based on Alg. P-DF, we mark the initial set of vertices as affected. In Line 3, we
initialize the community membership of each vertex C ′. For each iteration (Lines 4-6), we perform the label-
propagation step of LPA in Line 5. If only a small fraction of vertices changed their community membership,
we recognize that the communities have converged and hence end the algorithm (Line 6).

Explanation of LPAMOVE (Lines 8-16): In the label diffusion step of LPA, for each affected vertex i in
the graph G′, we mark i as not affected, for the next iteration, as vertex pruning step of Alg. P-DF (Line
11), and use a per-thread collision-free hash table to identify the label, c∗, of the maximum weight in parallel
using Eq. 3 (Line 12). If this label is different from the original label C ′[i] of vertex i (Line 13), we update
the label associated with vertex i in Line 14. In addition, based on Alg. P-DF, we mark neighbors of vertex i
as affected (Line 15).

4.5 Our Dynamic Frontier Hybrid Louvain-LPA (Alg. P-DFH)
Louvain is known for its high-modularity community detection but at the cost of being slow. On the other
hand, LPA is fast, but the communities it detects are of moderate modularity [16]. We combine the strengths
of both algorithms by creating a Hybrid dynamic algorithm, which we call Alg. P-DFH. To this end, we use
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Louvain as the base/static method and LPA as the dynamic method (i.e., Alg. P-DFH), as shown in Algorithm
5. This provides us with superior performance, while obtaining communities with high modularity score.

Algorithm 5 Dynamic Frontier Hybrid Louvain-LPA (Alg. P-DFH).

▷ Gt(V t, Et): Current input graph ▷ Inputs ↓
▷ ∆t−,∆t+: Edge deletions and insertions (batch update)
▷ Ct−1: Previous community of each vertex

1: function P-DFH(Gt,∆t−,∆t+, Ct−1)
2: if t = 0 then return Alg. StaticL(G

t)

3: return Alg. P-DFLPA(G
t,∆t−,∆t+, Ct−1)

4.6 Time and Space complexity
To analyze the time complexity of our algorithms, we use NB to denote the number of vertices marked as
affected (which is dependent on the size and nature of batch update) by the dynamic algorithm on a batch
B of edge updates, use MB to denote the number of edges with one endpoint in NB , and L to denote the
total number of iterations performed. Then the time complexity of Algorithms 3-5 is O(LMB). In the worst
case, the time complexity of our algorithms would be the same as that of the respective static algorithms, i.e.,
O(LM). The space complexity of our algorithms is the same as that of the static algorithms, i.e., O(N+M).

5 Correctness

5.1 Correctness of Dynamic Frontier based Louvain (Alg. P-DFL)
Given a batch update consisting of edge deletions ∆t− and insertions ∆t+, we now show that Alg. P-DFL
marks the essential vertices, which have an incentive to change their community membership, as affected.
For any given vertex i in the original graph (before the batch update), the delta-modularity of moving it from
its current community d to a new community c is given by Equation 4 — as detailed earlier in Section 3.1.
We now consider the direct effect of each individual edge deletion (i, j) or insertion (i, j, w) in the batch
update, on the delta-modularity of a vertex, as well as the indirect cascading effect of migration of a vertex to
another community.

∆Qi:d→c =
1

m
(Ki→c −Ki→d)−

Ki

2m2
(Ki +Σc − Σd) (4)

5.1.1 On edge deletion

Lemma 5.1. Given an edge deletion (i, j) between vertices i and j belonging to the same community d,
vertex i (and j) should be marked as affected.

Consider the case of edge deletion (i, j) of weight w between vertices i and j belonging to the same
community Ci = Cj = d (see Figure 2, where j = i1 or i2). Let i′′ be a vertex belonging i’s community
Ci′′ = d, and let k′′ be a vertex belonging to another community Ck′′ = b. As shown below in Case (1),
the delta-modularity of vertex i moving from its original community d to another community b after edge
deletion (i, j), ∆Qnew

i:d→b, has a significant positive factor w/m (indicated with square brackets). Note that
∆Qi:d→b represents the delta-modularity of vertex i moving from community d to community b before the
edge deletion. There is thus a chance that vertex i would change its community membership, and we should
mark it as affected. The same argument applies for vertex j, as the edge is undirected. On the other hand, for
the Cases (2)-(3), there is only a small positive change in delta-modularity for vertex k′′. Thus, there is little
incentive for vertex k′′ to change its membership, and no incentive for a change in membership of vertex i′′.
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Note that it is possible that the community d would split due to the edge deletion. However, this is
unlikely, given that one would need a large number of edge deletions between vertices belonging to the same
community for the community to split. One can take care of such rare events by running Alg. StaticL every
1000 batch updates, which also helps us ensure high-quality communities. The same applies to Alg. P-DSL.

∆Qnew
i:d→b =

Ki→b − (Ki→d − w)

m
− Ki − w

2m2
((Ki − w) + Σb − (Σd − 2w))

=
Ki→b −Ki→d

m
− Ki

2m2
(Ki +Σb − Σd) +

w

m
+

w

2m2
(Σb − Σd + w)

= ∆Qi:d→b + [
w

m
] +

w

2m2
(Σb − Σd + w)

Case 1. ∆Qnew
i:d→b = ∆Qi:d→b + [ wm ] + w

2m2 (Σb − Σd + w) (see steps above)

Case 2. ∆Qnew
i′′:d→b = ∆Qi′′:d→b − wKi′′

m2

Case 3. ∆Qnew
k′′:b→d = ∆Qk′′:b→d +

wKk′′
m2

Now, consider the case of edge deletion (i, j) between vertices i and j belonging to different commu-
nities, i.e., Ci = d, Cj = e (see Figure 2, where j = j1). Let i′′ be a vertex belonging to i’s community
Ci′′ = d, j′′ be a vertex belonging to j’s community Cj′′ = e, and k′′ be a vertex belonging another
community Ck′′ = b. As shown in Cases (4)-(8), due to the absence of any significant positive change in
delta-modularity, there is little to no incentive for vertices i, j, k′′, i′′, and j′′ to change their community
membership.

Case 4. ∆Qnew
i:d→e = ∆Qi:d→e − w

m + w
2m2 (2Ki +Σe − Σd − w)

Case 5. ∆Qnew
i:d→b = ∆Qi:d→b +

w
2m2 (Ki +Σb − Σd)

Case 6. ∆Qnew
i′′:d→e = ∆Qi′′:d→e

Case 7. ∆Qnew
i′′:d→b = ∆Qi′′:d→b − wKi′′

2m2

Case 8. ∆Qnew
k′′:b→d/e = ∆Qk′′:b→d/e +

wKk′′
m2 ⋄
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Figure 2: Processing edge deletions in the Dynamic Frontier (DF) approach. Here, pre-existing edges are
shown by solid lines, while deletions are marked by dashed lines. Vertex i is the source of edge deletions.
Vertices i1, i2, and j1 are the destination vertices for deleted edges. Vertices j′ and k′ are neighbors of
i, while i′′ and k′′ are non-neighbors. Vertices marked as affected, initially, are indicated with a yellow
highlight. Communities are indicated with labels b, e, and d.

5.1.2 On edge insertion

Lemma 5.2. Given an edge insertion (i, j, w) between vertices i and j belonging to different communities d
and e, vertex i (and j) should be marked as affected.

Let us consider the case of edge insertion (i, j, w) between vertices i and j belonging to different com-
munities Ci = d and Cj = e respectively (see Figure 3, where j = j1 or j2). Let i′′ be a vertex belonging i’s
community Ci′′ = d, j′′ be a vertex belonging to j’s community Cj′′ = e, and k′′ be a vertex belonging to
another community Ck′′ = b. As shown below in Case (9), we have a significant positive factor w/m (and
a small negative factor) which increases the delta-modularity of vertex i moving to j’s community after the
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insertion of the edge (i, j). There is, therefore, incentive for vertex i to change its community membership.
Accordingly, we mark i as affected. Again, the same argument applies for vertex j, as the edge is undirected.
Further, we observe from other Cases ((10)-(13)) there is only a small change in delta-modularity. Thus, there
is hardly any to no incentive for a change in community membership of vertices i′′, j′′, and k′′.

Case 9. ∆Qnew
i:d→e = ∆Qi:d→e + [ wm ]− w

2m2 (2Ki +Σe − Σd + w)

Case 10. ∆Qnew
i:d→b = ∆Qi:d→b − w

2m2 (Ki +Σb − Σd)

Case 11. ∆Qnew
i′′:d→e = ∆Qi′′:d→e

Case 12. ∆Qnew
i′′:d→b = ∆Qi′′:d→b +

wKi′′
2m2

Case 13. ∆Qnew
k′′:b→d/e = ∆Qk′′:b→d/e − wKk′′

2m2

Now, consider the case of edge insertion (i, j, w) between vertices i and j belonging to the same com-
munity Ci = Cj = d (see Figure 3, where j = i1). From Cases (14)-(16), we note that it is little to no
incentive for vertices i′′, k′′, i, and j to change their community membership. Note that it is possible for
the insertion of edges within the same community to cause it to split into two or more strongly connected
communities, but it is very unlikely.

Case 14. ∆Qnew
i:d→b = ∆Qi:d→b − w

m −
w

2m2 (Σb − Σd − w)

Case 15. ∆Qnew
i′′:d→b = ∆Qi′′:d→b +

wKi′′
m2

Case 16. ∆Qnew
k′′:b→d = ∆Qk′′:b→d − wKk′′
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b d eFigure 3: Processing edge insertions in the Dynamic Frontier (DF) approach. Here, pre-existing edges are
represented by solid lines, and i represents a source vertex of edge insertions in the batch update. Edge
insertions in the batch update with i as the source vertex are denoted by thickened lines. Vertices i1, j1, and
j2 represent the destination vertices of edge insertions. Vertices i′, j′, and k′ signify neighboring vertices of
vertex i. Finally, vertices i′′ and k′′ represent non-neighbor vertices (to vertex i). Vertices marked as affected,
initially, are indicated with a yellow highlight. Communities are indicated with labels b, c, and d.

5.1.3 On vertex migration to another community

Lemma 5.3. When a vertex i changes its community membership, and vertex j is its neighbor, j should be
marked as affected.

We considered the direct effects of deletion and insertion of edges above. Now we consider its indirect
effects by studying the impact of change in community membership of one vertex on the other vertices.
Consider the case where a vertex i changes its community membership from its previous community d to a
new community e (see Figure 4). Let i′ be a neighbor of i and i′′ be a non-neighbor of i belonging to i’s
previous community Ci′ = Ci′′ = d, j′ be a neighbor of i and j′′ be a non-neighbor of i belonging to i’s
new community Cj′ = Cj′′ = e, k′ be a neighbor of i and k′′ be a non-neighbor of i belonging to another
community Ck′ = Ck′′ = b. From Cases (17)-(22), we note that neighbors i′ and k′ have an incentive
to change their community membership (and thus necessitate marking), but not j′. However, to keep the
algorithm simple, we simply mark all the neighbors of vertex i as affected.

Case 17. ∆Qnew
i′:d→e = ∆Qi′:d→e + [ 2wii′

m ]− KiKi′
m2

Case 18. ∆Qnew
i′:d→b = ∆Qi′:d→b + [wii′

m ]− KiKi′
2m2
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Case 19. ∆Qnew
j′:e→d = ∆Qj′:e→d −

2wij′

m +
KiKj′

m2

Case 20. ∆Qnew
j′:e→b = ∆Qj′:e→b −

wij′

m +
KiKj′

2m2

Case 21. ∆Qnew
k′:b→d = ∆Qk′:b→d − wik′

m + KiKk′
2m2

Case 22. ∆Qnew
k′:b→e = ∆Qk′:b→e + [wik′

m ]− KiKk′
2m2

Further, from Cases (23)-(28), we note that there is hardly any incentive for a change in community
membership of vertices i′′, j′′, and k′′. This is due to the change in delta-modularity being insignificant.
There could still be an indirect cascading impact, where a common neighbor between vertices i and j would
change its community, which could eventually cause vertex j to change its community as well [42]. However,
this case is automatically taken care of as we perform marking of affected vertices during the community
detection process.

Case 23. ∆Qnew
i′′:d→e = ∆Qi′′:d→e +

KiKi′′
m2

Case 24. ∆Qnew
i′′:d→b = ∆Qi′′:d→b − KiKi′′

2m2

Case 25. ∆Qnew
j′′:e→d = ∆Qj′′:e→d +

KiKj′′

m2

Case 26. ∆Qnew
j′′:e→b = ∆Qj′′:e→b +

KiKj′′

2m2

Case 27. ∆Qnew
k′′:b→d = ∆Qk′′:b→d +

KiKk′′
2m2

Case 28. ∆Qnew
k′′:b→e = ∆Qk′′:b→e − KiKk′′
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Figure 4: Processing community migration of vertices from one community to another, in the Dynamic
Frontier (DF) approach. Here, pre-existing edges are represented by solid lines, and i represents the migrating
vertex. Vertices i′, j′, and k′ signify neighboring vertices of vertex i. Finally, vertices i′′ and k′′ represent
non-neighbor vertices (to vertex i). Vertices marked as affected, in the current iteration of the algorithm, are
indicated with a yellow highlight. Communities are indicated with labels b, e, and d.

5.1.4 Overall

Finally, based on Lemmas 5.1, 5.2, and 5.3, we can state the following for Alg. P-DFL.

Theorem 5.4. Given a batch update, Alg. P-DFL marks vertices having an incentive to change their com-
munity membership as affected.

We note that with Alg. P-DFL, outlier vertices may not be marked as affected even if they have the
potential to change community without any direct link to vertices in the frontier. Such outliers may be
weakly connected to multiple communities, and if the current community becomes weakly (or less strongly)
connected, they may leave and join some other community. It may also be noted that Alg. P-DSL is also an
approximate approach and can miss certain outliers. In practice, however, we see little to no impact of this
approximation of the affected subset of the graph on the final quality, i.e., modularity, of the communities
obtained, as shown in Section 7.
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5.2 Correctness of Dynamic Frontier based LPA (Alg. P-DFLPA)
Given a batch update consisting of edge deletions ∆t− and insertions ∆t+, we now show that Alg. P-DFLPA
marks all vertices as affected that might change their community membership. With LPA, the label Ci of a
vertex i (before the batch update) is determined using Equation 5, as detailed in Section 3.1. We now consider
the direct effect of each individual edge deletion (i, j) or insertion (i, j, w) in the batch update, on the label of
a vertex — along with the indirect cascading effect of the change of label of a vertex, on the label associated
with other vertices.

Ci = argmax
c ∈ Γ

Ki→c (5)

5.2.1 On edge deletion

Lemma 5.5. Given an edge deletion (i, j) between vertices i and j having the same label, vertex i (and j)
should be marked as affected.

Consider the case of edge deletion (i, j) of weight w, between vertices i and j having the same label
Ci = Cj = d. The new label of i would be Cnew

i = argmax
c ∈ Γ

Knew
i→c , where Knew

i→d = Ki→d − w. Note that,

Knew
i→c denotes the total interconnecting weight of each label c ∈ Γ to vertex i after the edge deletion (i, j),

while Ki→c represents the total interconnecting weight of label c to vertex i before the edge deletion. Here,
we have a reduced total weight associated with the previous best label d. Thus, i’s label can change, and we
mark it as affected. The same argument applies to vertex j as the edges are undirected.

Now consider the case of edge deletion (i, j) between vertices i and j having different labels Ci = d and
Cj = e respectively. The new label for vertex i would be Cnew

i = argmax
c ∈ Γ

Knew
i→c , where Knew

i→d = Ki→d.

As we do not have any reduction in total weight associated with the previous best label d, the label of vertex
i cannot change. Again, the same argument applies from vertex j. ⋄

5.2.2 On edge insertion

Lemma 5.6. Given an edge insertion (i, j, w) between vertices i and j having different labels, vertex i (and
j) should be marked as affected.

Consider the case of edge insertion (i, j, w) between vertices i and j having different labels Ci = d
and Cj = e. The new label for vertex i would be Cnew

i = argmax
c ∈ Γ

Knew
i→c , where Knew

i→d = Ki→d and

Knew
i→e = Ki→e +w. Here, the label e may be the new maximum label for vertex i. We thus mark vertex i as

affected. Again, the same argument applies for j due to the edges being undirected.

Now consider the case of edge insertion (i, j, w) between vertices i and j having the same label Ci =
Cj = d. The new label for vertex i would be Cnew

i = argmax
c ∈ Γ

Knew
i→c , where Knew

i→d = Ki→d + w. Now,

here we actually have an increase in the total weight associated with the previous best label d. Thus, the label
of vertex i cannot change. Again, the same argument applies to j. ⋄

5.2.3 On vertex migration to another community

Lemma 5.7. When a vertex i changes its label, and vertex j is its neighbor, the neighbor vertex j should be
marked as affected.

We now consider the indirect effects of deletion and insertion of edges by observing the impact of change
in the label of one vertex on the labels of other vertices. Consider the case where a vertex i with label Ci = d
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changes its label to Cnew
i = e. Let i′ be a neighbor of i with i’s previous label Ci′ = d, j′ be a neighbor of i

with i’s new label Cj′ = e, and k′ be a neighbor of i with another label Ck′ = b.

From Cases (29)-(31), we note that neighbors i′ and k′ have a possibility to change their community
membership (as thus necessitate marking), but not j′. However, to keep the algorithm simple, we simply
mark all the neighbors of vertex i as affected. Finally, consider the case where vertices i and i′′ are not
neighbors, and vertex i changes its label. Note that by the definition of LPA, this cannot affect the label of
vertex i′′. However, there could still be an indirect impact, where a common neighbor between vertices i and
i′′ would change its label, which could eventually cause vertex i′′ to change its label. Note that this case is
automatically taken care of, as we mark affected vertices during the community detection process.

Case 29. Cnew
i′ = argmax

c ∈ Γ
Knew

i′→c, where Knew
i′→d = Ki′→d − wii′ and Knew

i′→e = Ki′→e + wii′

Case 30. Cnew
j′ = argmax

c ∈ Γ
Knew

j′→c, where Knew
j′→e = Kj′→e + wij′

Case 31. Cnew
k′ = argmax

c ∈ Γ
Knew

k′→c, where Knew
k′→d = Kk′→d − wik′ and Knew

k′→e = Kk′→e + wik′ ⋄

5.2.4 Overall

Finally, based on Lemmas 5.5, 5.6, and 5.7, we can state the following for Alg. P-DFLPA.

Theorem 5.8. Given a batch update, Alg. P-DFLPA marks vertices that could change labels as affected.

6 Implementation details

6.1 Our Parallel Louvain implementation

We use an asynchronous implementation of the Louvain method (Algorithm 3), where threads work indepen-
dently on different parts of the graph. Such asynchronicity allows for faster convergence but can also lead
to more variability in the final result [4, 14]. We allocate a separate hashtable per thread to keep track of the
delta-modularity of moving to each community linked to a vertex in the local-moving phase and to keep track
of the total edge weight from one super-vertex to the other super-vertices in the aggregation phase.

Our optimizations include using OpenMP’s dynamic loop schedule, limiting the number of iterations
per pass to 20, using a tolerance drop rate of 10, setting an initial tolerance of 0.01, using an aggregation
tolerance of 0.8, employing vertex pruning, making use of parallel prefix sum and preallocated Compressed
Sparse Row (CSR) data structures for finding community vertices and for storing the super-vertex graph
during the aggregation phase and using fast collision-free per-thread hashtables, well separated in memory.

6.2 Our Parallel LPA implementation

Like Louvain, we use an asynchronous parallel implementation of LPA (Algorithm 4). Further, we allocate a
separate hashtable per thread that keeps track of the total weight of each unique label linked to a vertex. We
observe that parallel LPA obtains communities of higher quality than its sequential version, possibly due to
randomization in the processing order of vertices.

For LPA, our optimizations include using OpenMP’s dynamic loop schedule, setting an initial tolerance
of 0.05, enabling vertex pruning, employing the strict version of LPA, and using fast collision-free per-thread
hashtables which are well separated in their memory addresses.
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7 Evaluation

7.1 Experimental Setup
7.1.1 System

We use a server that has a 64-core x86-based AMD EPYC-7742 processor running at 2.25 GHz. Each core
has an L1 cache of 4 MB, an L2 cache of 32 MB, and a shared L3 cache of 256 MB. The machine has 512
GB of DDR4 memory and runs on Ubuntu 20.04. We use GCC 9.4 and OpenMP 5.0 [29], and all programs
are compiled with the -O3 flag enabled.

7.1.2 Configuration

We use 32-bit unsigned integer for vertex ids, 32-bit floating point for edge weights, but use 64-bit floating
point for hashtable values, total edge weight, modularity calculation, and all places where performing an ag-
gregation/sum of floating point values. Unless mentioned otherwise, we execute all parallel implementations
with a default of 64 threads (to match the number of cores available on the system).

7.1.3 Dataset

Table 4 shows the graphs we use in our experiments. All of them are obtained from the SuiteSparse Matrix
Collection [19]. The number of vertices in the graphs varies from 3.07 million to 214 million, and the number
of edges varies from 25.4 million to 3.80 billion. These graphs are big enough in size and do not fit in the
system cache(s). This makes the results of our experiments on these graphs interesting and realistic. We
ensure that all edges are undirected and weighted with a default weight of 1.

Existing dynamic graphs in the SNAP repository [21] are small in size and do not help us study the
proposed algorithms at scale. Further, the datasets from SNAP with ground-truth communities have a non-
disjoint community structure where each vertex may be part of multiple communities. Our work is aimed at
disjoint communities and hence we could not use the ground-truth that SNAP provides.

Table 4: List of 8 graphs obtained from the SuiteSparse Matrix Collection [19] (directed graphs are marked
with ∗). Here, |V | is the number of vertices, |E| is the number of edges (after making the graph undirected),
|Γ| is the number of communities obtained using Static Louvain. Suffixes B, M, and K refer to a billion, a
million, and a thousand respectively.

Graph |V | |E| |Γ|
Web Graphs (LAW)

it-2004∗ 41.3M 2.19B 5.28K
sk-2005∗ 50.6M 3.80B 3.47K

Social Networks (SNAP)
com-LiveJournal 4.00M 69.4M 2.54K

com-Orkut 3.07M 234M 29
Road Networks (DIMACS10)

asia osm 12.0M 25.4M 2.38K
europe osm 50.9M 108M 3.05K

Protein k-mer Graphs (GenBank)
kmer A2a 171M 361M 21.2K
kmer V1r 214M 465M 6.17K

7.1.4 Batch generation

We take a base graph from the dataset and generate a random batch update [42] consisting purely of edge
deletions or insertions for simplicity [7], each with an edge weight of 1. All batch updates are undirected, i.e.,
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for every edge insertion (i, j, w) in the batch update, the edge (j, i, w) is also a part of the batch update. For
simplicity, we generate these edges such that the selection of each vertex (as endpoint) is equally probable,
and we do not add any new vertices to the graph. Testing with mixed batch updates is part of our future work.

7.1.5 Adjusting batch size

For all dynamic graph-based experiments, we modify the batch size as a fraction of the total number of edges
in the original (undirected) graph from 10−7 to 0.1 (i.e., from 10−7|E| to 0.1|E|). For a billion-edge graph,
this amounts to a batch size of 100 to 100 million edges. Keep in mind that dynamic graph algorithms are
helpful for small batch sizes in interactive applications. For large batches, it is usually more efficient to run
the static algorithm. We employ multiple random batch updates for each batch size and report the average
across these runs in our experiments.

7.1.6 Determining optimality of result

Community detection is an NP-hard problem and existing polynomial algorithms are heuristic. We study
correctness in terms of modularity score of communities identified (higher is better), similar to previous
works in the area [9, 11, 39, 42]. As Figure 7 shows, modularity of communities detected by our proposed
dynamic algorithms is close to the modularity of communities detected by corresponding static algorithms.

7.2 Performance of Alg. StaticL

Figures 5(a) shows the runtime taken by our parallel implementation of Louvain, in contrast to Vite [11],4

both running on the system given in Section 7.1.1, while Figure 5(b) shows the modularity of obtained com-
munities. Our parallel Louvain, Alg. StaticL, has a runtime of 6.2 seconds on the undirected sk-2005
graph containing 1.9 billion edges, and is on average 42× faster than Vite, an MPI+OpenMP implemen-
tation of Louvain method for undirected graph clustering [11]. We observe that graphs with lower aver-
age degree (road networks and protein k-mer graphs) and graphs with poor community structure (such as
com-LiveJournal and com-Orkut) have a larger time/|E| factor.

We note that 48% (most) of the runtime is spent in the local-moving phase, while the aggregation phase
accounts for only 29% of the run time. Further, 68% (most) of the runtime is spent in the first pass of the
algorithm, which is the most expensive pass (later passes work on super-vertex graphs) [40].
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Figure 5: Runtime in seconds and modularity of communities obtained, by Vite (Louvain) and Alg. StaticL

7.3 Performance of Alg. StaticLPA

Figures 6(a) shows the runtime taken by our parallel implementation of LPA, in contrast to NetworKit LPA
[35],5 both running on the system given in Section 7.1.1, while Figure 6(b) shows the modularity of obtained

4The source code Vite is obtained from https://github.com/ECP-ExaGraph/vite
5The source code for NetworKit is obtained from https://github.com/networkit/networkit
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communities. Our parallel LPA, Alg. StaticLPA, has a run time of 2.7 seconds on the undirected sk-2005
graph containing 1.9 billion edges, and is on average 57× faster than NetworKit LPA, a popular parallel
implementation of LPA. We observe that graphs with a lower average degree, such as road networks and
protein k-mer graphs, have a larger time/|E| factor.
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Figure 6: Runtime in seconds and modularity of communities obtained, by NetworKit LPA and Alg. StaticLPA

7.4 Performance of Alg. P-DFL (Algorithm 3)

7.4.1 Overall Performance

We first study the performance of Alg. P-DFL on batch updates of size varying from 10−7|E| to 0.1|E|, and
compare it with parallel Alg. StaticL and Alg. P-DSL (Alg. P-DS applied to Louvain).

Figure 7(a) shows the average results of the experiment. The average execution time is calculated using
the geometric mean ensuring consistent scaling across graphs, while average modularity score is calculated
using arithmetic mean due to less variation across graphs and batch sizes. We observe the following from
Figure 7(a). The modularity of communities obtained by both Alg. P-DFL and Alg. P-DSL is nearly identical
to that obtained by Alg. StaticL. Alg. P-DFL converges the fastest with an average speedup of 128.8× over
Alg. StaticL, and 7.3× over Alg. P-DSL. As the batch size increases, the number of vertices marked as
affected by Alg. P-DFL increases. This increases the time taken by Alg. P-DFL as the batch size increases.
Further, as Figure 7(b) shows, dynamic approaches significantly outperform Alg. StaticL on social networks,
road networks, and protein k-mer graphs (which do not have a dense community structure or have a low
|E|/|V | ratio).

We note that the difference in modularity score of communities identified by Alg. P-DFL and Alg.
StaticL across graphs and batch sizes is less than 0.004. Therefore, the average modularity score is shown
only in Figure 7(a) with the modularity score anchored to the Y2-axis. At a batch size of 0.1|E|, the base
graph has a 10% increase/decrease in the number of edges which arbitrarily disrupt the original community
structure. This results in the static algorithm needing more iterations to converge.

The slowdown of Alg. StaticL can be attributed to uniform batches of edge deletions and insertions,
which arbitrarily disrupt the original community structure. This results in the static algorithm needing more
iterations to converge.

From our experiments, we also note that the pre-processing step of copying the auxiliary information of
vertex and community weights from the current graph to the new graph takes under 1% of the total run time
on average. The actual computation of identifying the new community labels of affected vertices consumes
more than 90% of the total run time, and post-processing corresponding to community aggregation and
recomputing vertex and community weights for the next batch update takes under 5% of the total run time on
average across instances and batch sizes.
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Figure 7: Time taken (solid lines), and modularity of communities obtained (dashed lines) along the Y2 axis,
by Alg. StaticL, Alg. P-DSL, and Alg. P-DFL on batch updates of increasing size from 10−7|E| to 0.1|E|.
Both axes are logarithmic. The numbers on the lines corresponding to Alg. StaticL and Alg. P-DSL indicate
the speedup of Alg. P-DFL over the two algorithms.

23



Parallel Multicore Algorithms for Community Detection in Dynamic Graphs

7.4.2 Affected vertices and Performance

We now study the difference in the number of vertices marked as affected by Alg. P-DFL and Alg. P-DSL.
In Figure 8, we show the fraction of vertices marked as affected by Alg. P-DFL and Alg. P-DSL on average
over the instances in Table 4. The numbers on the line corresponding to Alg. P-DSL in Figure 8 shows the
ratio of the number of vertices marked affected by Alg. P-DSL to that of Alg. P-DFL.

We notice from Figure 8 that Alg. P-DFL marks a significantly smaller fraction of vertices as affected
compared to Alg. P-DSL. The run time of these algorithms, however, do not differ in this ratio as observed
from Figure 7(a). This is because of the following reasons. Alg. P-DSL marks entire communities of vertices
as affected but many such affected vertices may not really undergo a change in their community label. So, a
large fraction of such affected vertices converge in only one iteration. In addition, Alg. P-DF needs to expand
— so the work is not proportional to affected vertices.
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Figure 8: Fraction of vertices marked as affected (average) by Alg. P-DSL and Alg. P-DFL, as mentioned in
Section 7.4, on graphs in Table 4. The numbers on the line corresponding to Alg. P-DSL indicate the ratio of
the fraction of vertices identified as affected by Alg. P-DSL to that of Alg. P-DFL.

7.4.3 Stability of Alg. P-DFL

Intuitively, if the graphs Gt and Gt′ are identical for some t and t′, we expect Alg. P-DFL to produce the same
communities for Gt and Gt′ . We refer to this property of a dynamic algorithm as its stability, measured as the
percentage of vertices that agree on the community label across two identical graphs. Vertices within weak
communities structures tend to be unstable, as they connect to multiple communities with similar strength.

To measure the stability of Alg. P-DSL and Alg. P-DFL, we proceed as follows. Let G be an initial graph.
We generate random batch updates of size 10−7|E| to 0.1|E| consisting of edge deletions to obtain the graph
G1. We then apply each of the above algorithms on G1 to identify the new communities. Subsequently, we
create another batch of updates that consists of inserting the edges deleted in the prior time step. This graph,
G2, is essentially the original graph G. We obtain the community labels of the vertices in the graph G2 by
appealing to the dynamic algorithms. Finally, we compare the community label of each vertex in the graphs
G and G2. We measure the resulting match in community membership of vertices with Alg. P-DSL and Alg.
P-DFL on batch updates of size 10−7|E| to 0.1|E|.

Our results indicate that Alg. P-DSL has minimum of 99.68% match with the original community
memberships across all batch sizes, while Alg. P-DFL has a minimum of 99.70% match. This indicates that
both the algorithms are stable.
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7.5 Performance of Alg. P-DFLPA (Algorithm 4)

7.5.1 Overall Performance

In this experiment, we study the performance of Alg. P-DFLPA with random batch updates of size ranging
from 10−7|E| to 0.1|E|, and compare it to parallel Alg. StaticLPA and Alg. P-DSLPA.

Figure 9(a) shows the average result of the experiment, obtained with geometric mean of the respective
runtimes. While all approaches obtain communities of equivalent modularity, Alg. P-DFLPA converges on
average 48.8× faster than Alg. StaticLPA, and 6.7× faster than Alg. P-DSLPA from a batch size of 10−7|E| up
to 0.01|E|. As shown in Figure 9(b), it has good performance on web graphs and social networks (graphs with
high |E|/|V | ratio). Graphs with a low |E|/|V | ratio are likely to have more affected vertices for a given batch
size, more hashtable resets, low cache use, and more community updates. Note, however, that the modularity
of communities obtained with LPA is not on par with Louvain. The slowdown of the static algorithm can
be attributed to the uniform batches of insertions/deletions, which arbitrarily disrupt the original community
structure — necessitating more iterations for the static algorithm to converge.

7.5.2 Stability of Alg. P-DFLPA

Just as in Section 7.4.3, we study the stability of Alg. P-DSLPA and Alg. P-DFLPA on random batch updates of
size 10−7|E| to 0.1|E|. From the results, we observe that Alg. P-DSLPA has minimum of 95.53% match with
the original community memberships across all batch sizes, while Alg. P-DFLPA has a minimum of 95.75%
match. This indicates that Alg. P-DFLPA is stable.

7.6 Performance of Alg. P-DFH (Algorithm 5)

7.6.1 Overall Performance

We now study the performance of Alg. P-DFH on batch updates of size 10−7|E| to 0.1|E|, and compare it
with Alg. P-DFL and Alg. P-DFLPA.

The average modularity of communities obtained by Alg. P-DFH is nearly identical to that obtained by
Alg. P-DFL, as shown in Figure 10(a) while obtaining a mean speedup of 2.0× across batch sizes of 10−7|E|
to 0.01|E|. Alg. P-DFH is thus an efficient and high-modularity dynamic community detection approach,
especially on road networks and protein k-mer graphs, as shown in Figure 10(b), where it significantly out-
performs Alg. P-DFL for smaller batch updates. Alg. P-DFLPA has about the same performance but obtains
communities of lower modularity (see blue dotted line in Figure 10(a)).

7.7 Scalability of Alg. P-DFL, Alg. P-DFLPA, and Alg. P-DFH

Finally, we study the strong-scaling behavior of Alg. P-DFH and compare it with Alg. P-DFL and Alg.
P-DFLPA. To do this, we fix the batch size at 10−3|E|, vary the number of threads in use from 1 to 64, and
measure the speedup of each algorithm to its sequential version.

As shown in Figure 11(a), Alg. P-DFL, Alg. P-DFLPA, and Alg. P-DFH obtain a speedup of 7.0×,
16.1×, and 16.1× respectively at 64 threads; with their speedup increasing at a mean rate of 1.38×, 1.59×,
and 1.59× respectively for every doubling of threads. The y-axis of Figure 11(a) shows the ratio of the time
taken by the respective algorithms using one thread to the time taken using a given number of threads. Also
note from Figure 11(b) that Alg. P-DFH offers good speedup on web graphs and social networks (consider
the scale of the y-axis), but does not scale well on road networks and protein k-mer graphs (with low |E|/|V |
ratio). We can also observe from Figure 11(b) that for some of the graphs (it-2004, asia osm, europe osm,
kmer A2a, kmer V1r) the speedup achieved drops when scaling beyond 32 threads. This could be attributed
to the lack of enough work for all the 64 threads in these instances.
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Figure 9: Time taken (solid lines), and modularity of communities obtained (dashed lines) along the Y2 axis,
by Alg. StaticLPA, Alg. P-DSLPA, and Alg. P-DFLPA on batch updates of increasing size from 10−7|E| to
0.1|E|. Note that both axes are logarithmic. The labels corresponding to Alg. StaticLPA and Alg. P-DSLPA
indicate the speedup of Alg. P-DFLPA over the two algorithms.
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(b) Results of each graph

Figure 10: Time taken (solid lines), and modularity of communities obtained (dashed lines) along the Y2
axis, by Alg. P-DFL, Alg. P-DFLPA, and Alg. P-DFH on batch updates of increasing size from 10−7|E| to
0.1|E|. Note that both axes are logarithmic. The number on the line corresponding to Alg. P-DFL indicates
the speedup of Alg. P-DFH over Alg. P-DFL.
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Figure 11: Strong scalability result of Alg. P-DFL, Alg. P-DFLPA, and Alg. P-DFH (Algorithms 3, 4, and 5)
on batch updates of size 10−3|E|. The number of threads is doubled from 1 to 64 (logarithmic scale).
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7.8 Further Discussion

7.8.1 Processing a mixed batch of insertions and deletions

The batch updates that we generate contain a set of edges that are to be inserted or deleted. This practice
is in line with other existing works [36, 42]. Our algorithms do not need any changes to handle a batch
update consisting of a mix of insert and delete operations. Keeping them separate has minimal impact on the
performance of the algorithm.

7.8.2 Weighted Graphs

In our experiments, we set the weight on every edge to be 1. This corresponds to an unweighted setting.
We note that our algorithms and programs continue to work in the case of weighted graphs also with minor
changes. We focused our testing on unweighted graphs because publicly available datasets of large real-
world weighted graphs are scarce. Further, since these minor changes equally impact our algorithms and the
∆-screening based algorithms, we expect the performance to be along similar lines.

7.8.3 Comparison with respect to Riedy and Bader

Riedy and Bader [33] propose a batch parallel dynamic algorithm for community detection. They compare the
run time of their dynamic algorithm to that of a static recomputation. On the graphs caidaRouterLevel,
coPapersDBLP, and eu-2005, and at respective batch sizes of 0.08|E|, 0.03|E| and 0.06|E|, they report
a speedup of 40.1×, 10.8×, and 327× over their corresponding static algorithm. On these three graphs and
respective batch sizes, Alg. P-DFH achieves a speedup of 41.7×, 29.5×, and 14.5×, respectively, compared
to a full static recomputation. This might compare unfavorably. However, the algorithm of Riedy and Bader
does not identify cascading changes to communities. As their source code is not available, we could not do a
more direct comparison.

7.8.4 Maintaining modularity across batches

In our experiments with continuous batch updates of edge insertions of size 10−3|E|, we find that the modu-
larity of communities obtained using Alg. P-DSLand Alg. P-DFL starts to drop (compared to Alg. StaticL) by
48% and 5.7% respectively after around 1300 batches of updates. The same happens for Alg. P-DFH by 10%
after around 600 updates. Therefore, we recommend the reader to run Alg. StaticL once for 1000/500 updates
to maintain the modularity of communities across multiple batch updates and correct the error introduced.

7.9 Reproducibility

All our results are reproducible. The source code for the experiments reported in this paper along with
necessary scripts for obtaining the datasets and compiling the software is available at https://github
.com/merferry/communities-cpu--artifact.

8 Conclusion

In conclusion, this paper focused on designing high-speed community detection algorithms for batch dy-
namic settings. We introduced the Dynamic Frontier approach (Alg. P-DF), which efficiently handles edge
deletions and insertions by processing only the affected vertices with minimal overhead. Through parallel
implementations of the Louvain and LPA algorithms, we demonstrated up to 7.3× and 6.7× performance im-
provements, respectively, compared to ∆-screening. Our hybrid algorithm also achieved high-quality results,
running 14.6× faster than the state-of-the-art. In the future, we plan to explore applying our algorithms to
GPUs, along with applications of Alg. P-DF in other social network algorithms.
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