
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 15, Number 1, pages 51–63, January 2025

Application of Network Calculus Models to Heterogeneous Streaming Applications

Clayton J. Faber

SimpleRose
St. Louis, MO, 63101, USA

Roger D. Chamberlain

Dept. of Computer Science and Engineering
Washington University in St. Louis

St. Louis, MO, 63130, USA

Received: June 22, 2024
Revised: October 17, 2024

Accepted: November 26, 2024
Communicated by Masahiro Shibata

Abstract

Network calculus has seen extensive use in the performance modeling of communications sys-
tems. Here, we apply network calculus techniques to the modeling of streaming data applications
running on heterogeneous computing platforms. We quantitatively compare the performance
predictions from network calculus with predictions from a discrete-event simulation model and
a previously presented queuing theory model for two different applications.

Keywords: Performance modeling, Network calculus, Streaming data systems

1 Introduction

In streaming data applications it can be difficult to reason about performance prior to deployment.
Moreover, the application might need to be expanded to transform data into the appropriate input
format or handle metadata processing. If one chooses to accelerate stages using heterogeneous
hardware, data movement also becomes a concern when data is migrated to a new memory domain
or the data movement takes place between physically separate networked compute resources.

When reasoning about performance in streaming applications it is often helpful to utilize an-
alytical models to gain insights into how to spend time and development resources prior to a full
deployment test. Queuing models have a long history for this purpose [3]. One can readily apply
queuing theory models to these streaming applications. Padmanabhan et al. [25] utilized queuing
models to reason about streaming applications on heterogeneous architectures. Faber et al. [12]
present a queuing model for the BLAST biosequence alignment application [2] deployed on hetero-
geneous execution platforms that we will use as one of our illustrative applications below. These
models, based on M/M/1 queuing networks, utilize isolated measurements of individual compute
stages and flow analysis to identify bottlenecks and identify where developers can focus their at-
tention for performance improvements. While these models can provide steady-state mean flow
analysis, similar to most queuing models, without further experimentation and measurement effort
to characterize both arrival and service distributions, it can be difficult to determine bounds on time

51



Application of Network Calculus Models

and buffering requirements. Furthermore, queueing models can also have difficulty capturing the
effects of data bundling between stages, and how the delay of waiting for jobs effects the overall
throughput. To answer these shortcomings we turn to network calculus.

Network calculus is an analytic modeling technique that applies system theory concepts to com-
puter communication networks utilizing min-plus algebra [10, 11, 21]. Although the technique was
originally designed with network elements in mind, in this paper we propose additions to the net-
work calculus modeling technique to reason about streaming data applications in a heterogeneous
environment where the movement of data between memory domains and across network links is of
vital importance. With modifications to support computational elements, in addition to network
elements, deterministic network calculus models can give insights into delay due to data aggregation
at nodes (packetization), end-to-end delay, and bounds on data flow through the overall application
or through individual subsets of stages in the stream. Furthermore, the models retain the desirable
property of being derived from measurements taken in isolation without a full deployment, similar
to the aforementioned queuing theory models.

Here, we propose the use of network calculus modeling techniques to analyze the performance
of streaming data computations. We include in the network calculus models elements of both data
communication (which is typical of network calculus) and data computation (which is new). We
compare the proposed network calculus models to a discrete-event simulation designed to mimic a
collection of computation nodes with multiple stages in a streaming data application. In the example
applications we model two types of communication links, traditional network links and PCIe buses,
in addition to compute components executing individual stages of a streaming data application.
Through both modeled results and simulated results we show the utility of network calculus when
considering performance in streaming data applications.

2 Background and Related Work

Network calculus is a modeling approach, similar to queuing theory, that is designed to analyze
systems that utilize queues and has historically been primarily used to analyze bounds and model
performance in networking systems. It relies on the min-plus and max-plus algebras, which define a
different set of operators compared to normal algebra. In min-plus algebra, addition is replaced by
the infimum operator and multiplication is replaced with addition. Similarly in max-plus algebra,
addition is replaced by the supremum and, once again, multiplication is replaced with addition.
These two algebras are used in conjunction with the convolution operator to reason about data as
it traverses a system.

In network calculus, data are modeled by a cumulative function with respect to time to represent
the flow in and out of systems. Systems are modeled in a similar fashion with curves representing
guarantees on flow into and out of the system, known as arrival and service curves, respectively.

Consider a data flow, in units of bits, r(t), arriving at a system and let α(t) be a wide-sense
increasing function with α(0) = 0. The flow is constrained by α(t) and is an arrival curve if and
only if for any 0 ≤ s ≤ t:

r(t)− r(s) ≤ α(t− s).

Following a similar logic the system offers a service guarantee for an output flow r∗(t). Allow β(t)
to be a wide-sense increasing function and β(0) = 0. β(t) is a service curve given to the flow r(t)
with an output curve r∗(t), defined by:

r∗(t) ≥ inf
s≤t

{r(s) + β(t− s)}.

Alternatively, this can be written as the min-plus convolution:

r∗(t) ≥ r(t)⊗ β(t).

Furthermore, we can define an upper-bound on service provided defined as:

r∗(t) ≤ r(t)⊗ γ(t),

52



International Journal of Networking and Computing

where γ(t) is the maximum (i.e., best case) service curve.
When utilizing a network calculus model it is up to the designer to use appropriate equations to

represent arrival and service curves. For arrival curves it is common to model the data flow using
an affine curve known as the leaky bucket arrival curve:

α(t) =

{
Rα · t+ b if t > 0

0 otherwise.

Here, Rα represents the rate of arrival and b is a burst, that is, how much data can be sent
instantaneously. When considering the service curves, these are commonly represented as rate
latency functions with an associated rate, Rβ , and delay, T , associated with them:

β(t) =

{
Rβ · (t− T ) if t > T

0 otherwise.

By utilizing these models we can reason about bounds on a specific node such as the backlog
generated by the flow entering the node, the delay data will experience at a given node, and what is
the upper-bound output flow of the node. Figure 1 displays a data over time plot of a leaky-bucket
arrival curve and two rate latency functions representing both a maximum and normal service curve
adapted from [21]. Also in this figure horizontal and vertical lines are included that are meant to
represent maximum virtual delay and backlog respectively. Finally from these two lines we can derive
an output flow bound, α∗(t), which, along with the delay and backlog, will be further expanded upon
below.

Figure 1: Plot of a Leaky Bucket Arrival Curve, α, and a Rate-Latency Service Curve, β, showing the
relation of the Backlog, x(t), Virtual Delay, d(t), and Output Flow, α∗, bounds. Adapted from [21].

The use of network calculus is widespread in networking systems [4, 5, 20, 28]. These applications
are mostly concerned with extensions to other models, such as network firewalls [33] and job schedul-
ing [23]. Network calculus also has two sub-branches; one that deals with probabilistic systems, that
behave in a stochastic manner, called stochastic network calculus [17], and the other dealing with
hard real-time deadlines, known as real-time network calculus [30]. In this particular work we use
the standard, deterministic, network calculus and this is, as far as we know, the first application of
these models to streaming computations that specifically target heterogeneous architectures.

There are of course other examples of modeling for heterogeneous architectures that use other
types of models. Faber et al. [12] apply a queuing network model to perform flow analysis, estimating
roofline performance for the overall application. In that study, the actual performance was almost
30% lower than what the roofline model predicted. While this model is indeed useful it would be

53



Application of Network Calculus Models

beneficial to have a more holistic view of the system along with a roofline, which the model presented
here aims to do. When considering queuing theory models it is important to point out that both
network calculus and queuing theory as mathematical models are designed to reason about queuing
systems and there has been work to explain how one represents network calculus ideas in a queuing
theory space [16, 26].

3 Network Calculus Modeling

As mentioned prior we want to use network calculus to reason about bounds on a given stream-
ing application that utilizes heterogeneous architectures, however some additional assumptions and
modifications to the standard model must be made in order to utilize it properly. Firstly, network
calculus in its original inception deals with continuous data flows that are bit-by-bit, however in the
modern era a majority of network equipment work on a per-packet scheme and are similar to jobs
flowing through a streaming application. This packetization does indeed have an effect on some of
the properties that network calculus models [21] and needs to be accounted for in our final model as
well. These adjustments come in the form modifying the arrival and service curves with a variable
that describes the size of the maximum packet lmax. Consider a flow r(t) and a packetizer, PL, the
packetized version of the arrival, service, and maximum service curves are [32]:

PL(r(t)) ≤ α(t) + lmax1t>0

β′(t) = [β(t)− lmax]
+

γ′(t) = γ(t).

where 1t>0 is 0 for t ≤ 0 and 1 for t > 0.
With these adjustments we can now talk about important bounds previously mentioned and

shown in Figure 1, virtual delay and backlog. The virtual delay, d(t), is a measure of the maximum
amount of time it takes for a system to output the same amount of data sent to the system. For a
leaky bucket arrival curve α and a rate latency service curve β the virtual delay is given by:

d(t) ≤ T +
b

Rβ
,

where T is the delay in the expression for β and b is the burst size in the expression for α. The
backlog bound, x(t), is a bound on the maximum amount of data that resides in the server before
output is sent, and is calculated as the maximum deviation between α and β. In this example it is
calculated as:

x(t) ≤ b+Rα · T.

Finally, we can make an estimation of the output bound of a system, α∗(t). This is known as
the output flow bound. It is found by calculating both a min-plus convolution and a min-plus
de-convolution utilizing the arrival curve of the node and both the maximum and normal service
curves:

α∗ = (α⊗ γ)⊘ β.

While these bounds are beneficial to have, it is important to know that these bounds assume
that Rα ≤ Rβ . If Rα > Rβ it is noted in [21] that the bounds are infinite, which is the same
result predicted by queuing theory if the arrival rate is greater than the service rate, resulting in
an infinite bound on the queue. Taking this into account, there are three particular scenarios that
we are interested in: when Rα < Rβ or standard operation, when Rα = Rβ , and finally when
Rα > Rβ . While the bounds are indeed infinite for backlog and virtual delay over the long run, we
hypothesize that we can use values given by the model to understand estimates on required queue
size for individual nodes as a job traverses a system implementing a streaming data application.

One important aspect of targeting heterogeneous architectures is the need to gather enough
data to make dispatching a job worthwhile. The inherent overheads associated with initiating a
computation on an attached accelerator, for example, can motivate the aggregation of a minimum

54



International Journal of Networking and Computing

data volume at the input to the accelerator prior to dispatching the job to the accelerator. We
call this metric the job ratio. To reflect this in the service curve representations, we have made a
modification to how initial delay is calculated at these nodes. For a node n that collects data of size
bn prior to initiation, where bn is larger than the burst rate of the previous node (bn > b∗n−1), the
latency at node n is:

T tot
n = T tot

n−1 +
bn

Rαn−1

+ Tn.

Intuitively, total latency is the summation of initial delay of the previous nodes, T tot
n−1, the time to

collect a job from the previous node, bn/Rαn−1 , and finally the initial delay of the current node, Tn.

4 Modeling of Biosequence Alignment Application BLAST

Actual streaming data applications are often modeled as a chain of nodes interconnected into a
directed acyclic graph. The model nodes in the chain might represent computation and/or commu-
nications (as described in [6]), especially given that data movement in a heterogeneous environment
can be critical for performance. We believe that network calculus is well suited for capturing this type
of data movement and can be a viable tool for measuring the effects of data channels in streaming
environments.

4.1 BLAST

The stages of our BLAST implementation mirror the stages of the NCBI BLASTN computation
pipeline, shown in Figure 2, and it is built using the Mercator framework on a GPU [9]. The DNA
database to be searched, represented in FASTA format, is first converted to two bits per DNA base.
This is a pre-processing step, fa 2bit, from the Data Integration Benchmark Suite (DIBS) [8] that
is implemented on an FPGA [13]. In the next computational stage, seed match, each byte-aligned
8-mer (8-base word) of the database is checked to see whether it appears in a hash table (stored in
GPU DRAM) constructed from all 8-mers of the query sequence. If the 8-mer at database position
p does appear in the table, a third stage, seed enumeration, accesses the table to enumerate all
positions q at which it appears, generating one or more 8-mer matches (p, q). These matches are
passed to the fourth stage, small extension, which attempts to extend each match to the left and
right by up to 3 bases. If a match (p, q) can be extended to a total length of at least 11, it is passed
on to the final stage, ungapped extension, which extends the match to the left and right, this time
allowing scoring of both matches and mismatches. Our implementation limits ungapped extension
to at most a fixed-size window (currently 128 bases) centered on the initial seed match. Only seed
matches whose highest-scoring ungapped extension score above a specified threshold are returned
for further processing. Our implementation does not presently perform gapped extension [1], but
for BLASTN, that stage takes negligible time compared to the rest of the pipeline [18] and would
be implemented on the host processor.

fa_2bit
seed

match

seed

enumeration

small

extension

ungapped

extension

FASTA

db

alignments

Figure 2: BLAST application.

Most stages of BLASTN act as filters over either database positions (seed matching) or matches
(small and ungapped extension). Their task is to eliminate inputs that should not proceed to the
next stage. Seed matching in particular is a highly effective filter, eliminating the vast majority
of input 8-mers, for query lengths much less than 216 bases. Seed enumeration, in contrast, may
produce multiple matches per input position if the same 8-mer occurs at several places in the query.
Except for highly repetitive query sequences, this stage produces on average 1-2 matches per input
position.

55



Application of Network Calculus Models

All stages of BLASTN produce a variable number of outputs per input, and most produce zero
outputs for the majority of their inputs. On a SIMD processor such as a GPU, executing all stages
of BLASTN independently in each thread will result in many threads discarding their inputs and
becoming idle early in the computation, resulting in many wasted cycles. The Mercator system
therefore inserts queues between each stage to collect and redistribute work among threads before
executing the next stage. These queues have limited size, so each stage may need to be executed
multiple times; scheduling execution of stages is performed so as to maximize GPU thread occupancy
and minimize overhead [27].

4.2 Network Calculus Model

Given a set of N nodes representing stages of a heterogeneous streaming application, we can create
network calculus maximum and normal service curves to represent the guarantees on service at each
node. Along with the actual compute nodes we can also create service curves to represent guarantees
on data movement. These nodes can be concatenated together to find the overall service curve of
the full system. Going further, we can create models for intermediate systems by finding service
curves for a subset of contiguous nodes.

To test this model we use the BLAST application [2] described in Faber et al. [12]. Figure 3
illustrates the setup of this application with nodes representing stages of the streaming data appli-
cation.

B C D E F GΛ A Out

1:1 1:1 1:11:1 1:16 64:1 1:1

Node Function Node Function
Λ Data source D Network link
A PCIe link E PCIe link
B FPGA computation F GPU computation
C PCIe link G PCIe link

Figure 3: Data flow diagram for BLAST. Nodes represent computations or communications, and the
job ratio is shown below each node (i.e., the ratio of input data block size to output data block size).
Node D decomposes large data blocks from the FPGA for delivery over the network, and Node E
composes even larger data blocks for delivery to the GPU.

We take these nodes as described and model their execution time in a discrete-event simulator
facilitated by the SimPy library [29] in Python3. Each node is given a maximum and minimum
execution time, a data packet size to consume, and data packet size to emit when the execution time
has completed. Discrete events in the simulation model include arrival of a data packet at a node,
initiation of execution of that data packet when the node becomes free (completes its execution
of previous data packets), and departure of the data packet from the node (once execution has
completed for that data packet). The time chosen for execution is chosen from a uniform random
distribution using the minimum and maximum times as bounds. A comprehensive description of the
discrete-event simulation techniques used is provided in [34], which primarily uses the simulation to
model graph neural network applications and also includes a simulation of the example application
of Section 5 below.

Following the approach of Timcheck and Buhler [31], we normalize the data volumes at each stage
referred to the input, as some stages have a natural lossless data compression. Below we report
all of the following: network calculus predictions on bounds, the results of the original M/M/1
queuing theory model and empirical measured performance (from [12]), and our simulated system
performance.

56



International Journal of Networking and Computing

The predictions from our network calculus model and discrete-event simulation are depicted
in Figure 4. The service curve, represented by β(t), corresponds to the lower bound of predicted
performance. The arrival curve, represented by α(t), corresponds to an upper bound on performance.
The output flow bound, represented by α∗(t), is a loose upper bound. The simulated data output
is shown by the stairstep curve that stays between the two bounds.

Figure 4: Network calculus model results for BLAST application.

Throughput predictions from the various models and experiments are presented in Table 1. As
is apparent, the network calculus throughput predictions align well with both the discrete-event
simulation results and the empirical results reported in [12].

Table 1: BLAST streaming data application throughput.
Source Value
Network calculus upper bound 704 MiB/s
Network calculus lower bound 350 MiB/s
Discrete-event simulation model 353 MiB/s
Queuing theory prediction [12] 500 MiB/s
Measured throughput [12] 355 MiB/s

Note that network calculus does not presume to make a nominal data throughput prediction.
Rather, it provides upper and lower bounds on the throughput. In this case, both the discrete-event
simulation throughput prediction and the measured throughput are just slightly above the network
calculus predicted lower bound.

While these throughput results are clearly of interest, they haven’t yet demonstrated the power of
network calculus, since they are merely confirming the conclusions from previous models. Additional
information we can glean from the network calculus model include the following:

1. The maximum virtual delay, d, through the system is modeled to be 46.9 ms.

2. The maximum data occupancy resident in the system (or backlog bound), x, is modeled as
20.6 MiB.

Points (1) and (2) above are corroborated by the discrete-event simulation model. For the maximum
virtual delay, the longest observed delay in the simulator is 46.4 ms and the shortest delay being

57



Application of Network Calculus Models

40.7 ms. The maximum amount of data in system backlog accounting for all nodes and queues was
observed to be 20.1 KiB. These values are within the bounds modeled using network calculus.

Further capabilities of the network calculus models include the ability to analyze any desired
subset of the streaming application separate from the rest of the application. For example, the
contributions of the data occupancy bounds that are due to each node in Figure 3 can be determined
analytically, which can assist a developer in allocating buffers.

5 Bump in the Wire Streaming Algorithms

Utilizing network calculus we can model other data streaming applications that utilize other hetero-
geneous technology (and validate the model predictions using our simulation tool). One that is of
particular interest to us is the utilization of what is known as “bump in the wire” communication [7].
Figure 5 shows the traditional interconnect for an FPGA accelerator, and Figure 6 shows the bump
in the wire configuration.

Figure 5: Traditional FPGA accelerator [19].

Figure 6: Bump in the wire FPGA accelerator [19].

This style of deployment particularly relies on a network connection to pass data to a new
node without having to be moved out of the heterogeneous memory pool back to CPU host memory.
There are many heterogeneous architectures that implement bump in the wire tech that are primarily
deployed in FPGAs, utilizing custom compute alongside network communication. In this scenario
instead of a specific streaming algorithm we want to look at adding functionality to a network
connection, tasks usually not associated with a specialized algorithm but still desireable in many
implementations. Tasks like security and/or compression are often afterthoughts when considering
an application development, frequently to be considered essential when it comes to deployment.
These algorithms, depending on their implementation, can be considered a type of streaming data
application by compressing/encrypting data blocks in chunks and then decompressing/decrypting
at the destination. Two FPGAs can be used in conjunction as a source and destination though a
network to offload the entirety of this computation from the endpoint CPUs freeing them up for
other processes.

Figures 7 and 8 show the source end flow graphs of the scenario described above, with Figure 7
indicating the data flow if the FPGA were installed in the system in the traditional way and Figure 8
indicating the data flow in a bump in the wire configuration [34]. Note that the benefit of the bump
in the wire configuration is that data no longer need to flow across the PCIe bus to move from the
FPGA to the network.

The FPGA manufacturer Xilinx maintains a set of of multi-purpose libraries with HLS imple-
mentations of various algorithms in the form of function primitives or fully implemented kernels.

58



International Journal of Networking and Computing

PCIe
compress/

encrypt
PCIe networkproducer ...

Figure 7: Example flow graph for FPGA accelerated compression/encryption using a traditional
FPGA interconnection.

PCIe network ...producer
compress/

encrypt

Figure 8: Example flow graph for FPGA accelerated compression/encryption using a bump in the
wire configuration.

They are designed to get any developer up and running with implementations of algorithms ranging
from image analysis, data analytics, and graph problems to name a few. Within the Vitis libraries
are implementations of various data compression and cryptography libraries that we wish to inves-
tigate for a bump in the wire implementation. Within the two categories one can find a plethora
of various compression and cryptography methods. Here, we have decided to target the LZ4 com-
pression and AES cryptography algorithms which are ubiquitous in their respective spaces. The
AES algorithm already exists as a streaming algorithm; no matter the size of the data target, it is
broken into 128 bit blocks and each one is encrypted/decrypted in order. In the case of LZ4 textual
compression/decompression, a target file or stream of data may need to be chunked and then run
through the kernel in order for it to be considered streaming. In the Vitis libraries implementation,
a streaming version of the LZ4 algorithm is implemented utilizing stream channels so data can be
passed from one kernel to the next in a FIFO. It is important to note, of course, that the effectiveness
of compression is dependent on the amount of repeated patterns in the target data and chunked
data may reduce similarity for the overall dataset which in turn will reduce the effectiveness of
compression.

In this application the amount of compression that the data will experience will effect how much
data a downstream node will see until it is decompressed. To account for this in a network calculus
model we will want to again normalize data in terms of the input but we want to make note of
the possible compression ratio achieved by LZ4. Service curves after compression will then take two
forms: one that considers the worst case scenario, a compression ratio of 1.0, and the other being the
largest observed compression ratio. As these compression ratios effect how much data is truly going
though the individual nodes, the lower bound service curve corresponds to a compression ratio of
1.0 and the maximum service curve will correspond to the maximum compression ratio. In addition,
because the data is normalized to the input data volume, the throughput reported by the maximum
service curve would be the baseline measured maximum service curve multiplied by the compression
ratio which is then removed from downstream maximum service curves after decompression.

The target platform for this application is the Open Cloud Testbed (OCT) [14, 22] which deploys
machines equipped with network capable Xilinx Alveo U280 FPGA cards, which can be targeted
by Vitis implementations. Similar to the queuing theory model, we will test each stage in isolation
and measure performance in isolation. Compression is implemented via a streaming LZ4 kernel and
encryption is provided by a 256-bit CBC AES kernel, both available in the Vitis libraries. Finally
the third kernel, the network communication kernel, is a demo implementation of a TCP stack and
CMAC kernels that facilitate network communication between two FPGA cards [15, 24]. While
Figure 8 illustrates the notion of the bump in the wire configuration, Figure 9 shows the flow graph
of the application we actually model. The measured throughput for each stage is shown in Table 2.

The resulting simulation and network calculus model performance can be seen in Figure 10. Like
in the previous model we combine all stages of the pipeline to create a single node for our network
calculus model to determine latency and backlog bounds. Here we have removed the maximum
service curve γ(t) from the plot as it skews the overall graph and is indicative of the maximum
observed throughput and also the maximum observed compression. Again we see the simulation

59



Application of Network Calculus Models

encrypt networkcompress decrypt decompress

Figure 9: Actual flow graph for FPGA accelerated compression/encryption using the bump in the
wire configuration.

Table 2: Listing of functions and their associated throughputs. The compression rates listed here
are normalized with respect to their observed compression ratios: 2.2× Average, 1.0× Minimum,
and 5.3× Maximum.

Throughput
Function Average Minimum Maximum
Compress 2662 MiB/s 1181 MiB/s 6386 MiB/s
Encrypt 68 MiB/s 56 MiB/s 75 MiB/s
Network 10 GiB/s 10 GiB/s 10 GiB/s
Decrypt 90 MiB/s 77 MiB/s 113 MiB/s
Decompress 1495 MiB/s 1426 MiB/s 1543 MiB/s
PCIe link 11 GiB/s 11 GiB/s 11 GiB/s

curve is below the potential maximum output bound for this system.
The quantitative predictions are shown in Table 3. As was the case for the BLAST applica-

tion, the network calculus lower bound is just below the predicted performance of the discrete-event
simulation. For both applications, the queueing theory predictions are somewhat optimistic (i.e.,
over-predict throughput), in part because they represent a simplified view of the system. For exam-
ple, they model Markovian behaviour at each stage of the pipeline, a limitation that is not present
in either the network calculus model or the discrete-event simulation model.

As was the case for BLAST, network calculus provides additional information that can be cleaned
from the model, such as the following:

1. The maximum virtual delay, d, through the system is modeled to be 38 µs.

2. The maximum data occupancy resident in the entire system, x, (or backlog bound) is modeled
as 3 KiB.

Points (1) and (2) above are corroborated by the discrete-event simulation model. For the
maximum virtual delay, the longest observed delay in the simulator is 36.7 µs and the shortest delay
being 25.7 µs. The maximum amount of data in system backlog accounting for all nodes and queues
was observed to be 2 KiB. These values are within the bounds modeled using network calculus.

One important thing to note about the simulation is that it is not modeling the breaking of
individual chunks of the encrypted AES output and sending them through the network node in
individual packets. For ease of simulation we instead assume that data will be gathered at maximum
in 1 KiB normalized chunks and then sent over the network. Another simulation shortfall is the
lack of a structure to simulate overlapping stream channels which would be utilized in an FPGA
deployment to transport data to downstream kernels. Furthermore we would like to corroborate
these simulated results with an actual deployment. In the future we would like to show the power of
network calculus as a tool to help make decisions about deployment when considering applications
that have an arrival rate greater than what can be provided by the service of the system and when
arrival rates need to be changed to accommodate queues that are at risk of overflowing.

6 Conclusions and Future Work

This paper has presented the use of network calculus models to bound the performance of streaming
data applications executing on heterogeneous execution platforms. The models provide both upper

60



International Journal of Networking and Computing

Figure 10: Network calculus model for our bump in the wire application.

Table 3: Bump in the wire streaming data application throughput.
Source Value
Network calculus upper bound 313 MiB/s
Network calculus lower bound 59 MiB/s
Discrete-event simulation model [34] 61 MiB/s
Queueing theory prediction 151 MiB/s

bounds and lower bounds for throughput as well as latency and data volume. For a pair of example
streaming applications, the bounds are tight enough to be helpful in understanding the performance
implications of candidate design changes, and appropriately bracket a discrete-event simulation
model of the same applications.

In future work, we would like to explore the use of these models on a wider set of streaming
applications and validate the models over a wider range of empirical experiments. Further expanding
the model we want to measure and quantify the effects of relaxing the constraint of Rα ≤ Rβ and
the adoption of variable rate servers for arrival curves. By relaxing this first constraint we can begin
to explore the possibilities of utilizing network calculus to guide the sizing and allocation of buffers
within the application. Furthermore, utilizing variable rate arrival curves can introduce the concept
of back pressure into the model, further increasing its utility.

Acknowledgments

This research was supported by the National Science Foundation under grant CNS-1763503 and a
gift from BECS Technology, Inc.

References

[1] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.
Nucleic Acids Research, 25:3389–402, 1997.

[2] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403–410, 1990.

61



Application of Network Calculus Models

[3] B. Avi-Itzhak and D. P. Heyman. Approximate Queuing Models for Multiprogramming Com-
puter Systems. Operations Research, 21(6):1212–1230, December 1973.

[4] S. Azodolmolky et al. An analytical model for software defined networking: A network calculus-
based approach. In Proc. of Global Comm. Conf., pages 1397–1402. IEEE, 2013.

[5] Mohamed Bakhouya, S. Suboh, Jaafar Gaber, and T. El-Ghazawi. Analytical modeling and
evaluation of on-chip interconnects using network calculus. In Proc. of 3rd ACM/IEEE Int’l
Symp. on Networks-on-Chip, pages 74–79. IEEE, 2009.

[6] J.C. Beard and R.D. Chamberlain. Analysis of a simple approach to modeling performance for
streaming data applications. In Proc. of Int’l Symp. on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, pages 345–349. IEEE, August 2013.

[7] Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar,
Juan Camilo Vega, Ken Eguro, Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Her-
bordt, et al. The future of FPGA acceleration in datacenters and the cloud. ACM Transactions
on Reconfigurable Technology and Systems, 15(3), 2022.

[8] Anthony M. Cabrera, Clayton J. Faber, Kyle Cepeda, Robert Derber, Cooper Epstein, Jason
Zheng, Ron K. Cytron, and Roger D. Chamberlain. DIBS: A data integration benchmark suite.
In Proc. of ACM/SPIE Int’l Conf. on Performance Engineering Companion, pages 25–28. ACM,
April 2018.

[9] Stephen V. Cole and Jeremy Buhler. MERCATOR: a GPGPU framework for irregular stream-
ing applications. In Proc. of 15th Int’l Conf. on High Performance Computing and Simulation,
pages 727–736, July 2017.

[10] R.L. Cruz. A calculus for network delay. I. Network elements in isolation. IEEE Trans. Inf.
Theory, 37(1):114–131, 1991.

[11] R.L. Cruz. A calculus for network delay. II. Network analysis. IEEE Trans. Inf. Theory,
37(1):132–141, 1991.

[12] C.J. Faber, T. Plano, S. Kodali, Z. Xiao, A. Dwaraki, J.D. Buhler, R.D. Chamberlain, and
A.M. Cabrera. Platform agnostic streaming data application performance models. In Proc.
of IEEE/ACM Workshop on Redefining Scalability for Diversely Heterogeneous Architectures,
November 2021.

[13] Clayton J. Faber, Anthony M. Cabrera, Oronde Booker, Gabe Maayan, and Roger D. Cham-
berlain. Data integration tasks on heterogeneous systems using OpenCL. In Proc. of 7th
International Workshop on OpenCL (IWOCL), May 2019.

[14] Suranga Handagala, Martin Herbordt, and Miriam Leeser. OCT: The open cloud FPGA
testbed. In Proc. of 31st International Conference on Field Programmable Logic and Appli-
cations (FPL), 2021.

[15] Z. He, D. Korolija, and G. Alonso. Easynet: 100 Gbps network for HLS. In Proc. of 31st
International Conference on Field-Programmable Logic and Applications (FPL), pages 197–
203. IEEE Computer Society, September 2021.

[16] Yuming Jiang. Network calculus and queueing theory: Two sides of one coin. In Proc. of Int’l
Conf. on Perf. Eval. Meth. and Tools, 2010.

[17] Yuming Jiang and Yong Liu. Stochastic Network Calculus. Springer, 2008.

[18] Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame Gyang,
Arpith Jacob, and Joseph Lancaster. Biosequence similarity search on the Mercury system.
Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 49(1):101–
121, 2007.

62



International Journal of Networking and Computing

[19] Joshua Lant, Javier Navaridas, Mikel Luján, and John Goodacre. Toward FPGA-based HPC:
Advancing interconnect technologies. IEEE Micro, 40(1):25–34, 2019.

[20] J.-Y. Le Boudec. Application of network calculus to guaranteed service networks. IEEE Trans.
Inf. Theory, 44(3):1087–1096, 1998.

[21] J.-Y. Le Boudec and P. Thiran. Network Calculus. Springer, 2003.

[22] Miriam Leeser, Suranga Handagala, and Michael Zink. FPGAs in the cloud. Computing in
Science & Engineering, 23(6):72–76, 2021.

[23] Meng Li, Guchuan Zhu, and Yvon Savaria. Delay bound analysis for heterogeneous multicore
systems using network calculus. In Proc. of 13th Conf. on Industrial Electronics and Applica-
tions, pages 1825–1830. IEEE, 2018.

[24] Suranga Mahesh. TCP-network-demo. https://github.com/OCT-FPGA/tcp-network-demo/,
2022. Accessed Dec. 2023.

[25] Shobana Padmanabhan, Yixin Chen, and Roger D. Chamberlain. Optimal design-space explo-
ration of streaming applications. In Proc. of IEEE Int’l Conf. on Application-specific Systems,
Architectures and Processors, pages 227–230, September 2011.

[26] Krishna Pandit, J Schmittt, and Ralf Steinmetz. Network calculus meets queueing theory - a
simulation based approach to bounded queues. In Proc. of 12th Int’l Workshop on Quality of
Service, pages 114–120, 2004.

[27] Tom Plano and Jeremy Buhler. Scheduling irregular dataflow pipelines on SIMD architectures.
In Proc. of 6th Wkshp. on Programming Models for SIMD/Vector Processing, pages 1:1–1:9,
February 2020.

[28] Jens B. Schmitt and Utz Roedig. Sensor network calculus–a framework for worst case analysis.
In Proc. of Int’l Conf. on Distributed Computing in Sensor Systems, pages 141–154. Springer,
2005.

[29] Team SimPy. SimPy: Discrete event simulation for Python. https://simpy.readthedocs.io,
2023. Accessed Aug. 2023.

[30] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for scheduling
hard real-time systems. In Proc. of Int’l Symp. on Circuits and Systems, volume 4, pages
101–104. IEEE, 2000.

[31] Stephen Timcheck and Jeremy Buhler. Reducing queuing impact in streaming applications with
irregular dataflow. Parallel Computing, 109:102863, March 2022.

[32] Amaury Van Bemten and Wolfgang Kellerer. Network calculus: A comprehensive guide. Tech-
nical Report 201603, Technical Univ. of Munich, 2016.

[33] Zenan Wang, Jiao Zhang, and Tao Huang. Determining delay bounds for a chain of virtual
network functions using network calculus. IEEE Communications Letters, 25(8):2550–2553,
2021.

[34] Chenfeng Zhao, Clayton J Faber, Roger D Chamberlain, and Xuan Zhang. HLPerf: Demysti-
fying the performance of HLS-based graph neural networks with dataflow architectures. ACM
Transactions on Reconfigurable Technology and Systems, 2024.

63


