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Abstract

The Kernel Polynomial Method (KPM) is one of the fast diagonalization methods used for
simulations of quantum systems in research fields of condensed matter physics and chemistry.
The algorithm has a difficulty to be parallelized on a cluster computer or a supercomputer due
to the fine-grain recursive calculations. This paper proposes an implementation of the KPM
on the recent graphics processing units (GPU) where the recursive calculations are able to
be parallelized in the massively parallel environment. This paper also describes performance
evaluations regarding the cases when the actual simulation parameters are applied, where one
parameter is applied for the increased intensive calculations and another is applied for the
increased amount of memory usage. Moreover, the impact for applying the Compress Row
Storage (CRS) format to the KPM algorithm is also discussed. Finally, it concludes that the
performance on the GPU promises very high performance compared to the one on CPU and
reduces the overall simulation time.
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1 Introduction

Today’s technological achievement in our everyday life is based on years of fundamental research
for a wide variety of materials with fascinating functionalities such as semiconductors, magnets, and
superconductors. Researchers in condensed matter physics revealed long ago that those different
properties of materials result from different behaviors of electrons, which are described by quantum
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mechanical equation of motion. Although it has been more than 80 years since quantum mechanics
was established, there are still many properties of matters whose origins are yet to be understood.
Such examples include copper based high temperature superconductors [2] and some of magnetic
insulators of organic compounds [13]. The common feature of these systems is a strong quantum
correlation between electrons, which is turned out to be crucial for determining their properties. It
is precisely this strong correlation that makes it difficult to treat these systems analytically without
introducing any bias in theory.

The best way to treat the strong quantum correlations is to solve quantum mechanical equa-
tion of motion numerically exactly. Because of exponential increase of degrees of freedom with
the number of electrons ∼ O(1023), we must still resort some sort of approximations. However,
unlike analytical treatments, numerical simulations can handle the strong correlation effects with
controllable approximations. Among many, well established numerical methods thus far are exact
diagonalization method [3, 11], quantum Monte Carlo method [4], density-matrix renormalization
group method [9, 10, 7, 12], and kernel polynomial method (KPM) [8]. Each method is suited to
particular sets of problems and at the same time each has severe limitations. For instance, the exact
diagonalization method is able to evaluate the ground state (and low energy excited states) in high
accuracy, but it is limited to a small size of systems.

The simulation evaluates various physical quantities such as density of states (DoS) and Green’s
functions for electrons, which are necessary to study electronic structures. In particular, a straight-
forward method to calculate the DoS by diagonalizing a Hamiltonian matrix requires computational
complexity O(D3), where D is the system size. This complexity is a performance bottleneck to eval-
uate higher energy excited states. In this respect, the KPM has an exceptional advantage because
the KPM reduces the complexity of diagonalization to O(D) at most by truncating polynomial ex-
pansions, which in turn controls the accuracy of the approximation. Thus, this paper focuses on the
KPM which appropriately evaluates the DoS and Green’s function including higher energy excited
states [8].

The KPM is an approximation method based on polynomial expansions from which physical
quantities are evaluated. In particular, the Chebyshev expansion is the most common and useful
polynomial to be applied. To avoid the Gibbs phenomenon due to truncated polynomial expansions
with a finite order, modified kernel polynomials are preferably used. For example, the Dirac’s
delta function is well approximated by truncating Chebyshev expansion with the Jackson kernel [8].
Moreover, in quantum statistical mechanics, it is required to evaluate the trace of large-dimensional
Hamiltonian matrices. This trace is efficiently approximated by using random vectors [8] (we call
it “stochastic trace method” in this paper). Therefore, combining these two methods, truncated
polynomial expansions and random vector bases, allows us to evaluate the DoS and other physical
quantities with significantly reduced complexity.

The computational cost inevitably increases with system sizes considered, and with the number of
polynomials kept and random vectors generated to meet the desired accuracy. It is therefore expected
to reduce the simulation latency drastically by implementing the KPM in parallel platform.

Regarding computer hardware, the graphics processing units (GPU) have become available to be
used for acceleration platform as a substitute of CPU. This is due to the recent drastic performance
growth of GPU. The recent GPU has already achieved the performance up to TFLOPS order.
Therefore, it is applied to various scientific fields to solve the grand challenge applications under a
personal computing environment [6].

The program on the GPU is called stream-based program which processes each data unit con-
tained in input data streams, and generates the corresponding data unit forming output data streams.
This computing style has benefits of 1) eliminating memory access bottleneck, which is seen in the
von Neumann style architecture, and 2) data parallelism because each data unit does not have any
dependency in the data streams. The recent challenges to speedup intensive computations enforce
algorithms to be redesigned to fit to GPU and to receive the benefit of especially the data parallelism
characteristics assigning small operations to the enormous number of the stream processors. This
computing style would become a typical computing style in the next supercomputing generation.

This paper focuses on a GPU-based implementation of the KPM applying the stream-based com-
puting style [14]. We propose an effective implementation of the KPM on the GPU to accelerate its
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performance faster than the recent CPU. As seen in the next section, vectors (higher order polyno-
mials) are generated recursively. This characteristic is suffered to parallelize the KPM effectively in
a CPU-based large system. Applying GPU resources and a stream-based programming style, this
paper will challenge to overcome the performance limitation caused by the recursive operation. In
addition, KPM has intensive matrix operations such as matrix-vector multiplication in which the
format of the matrix has a great impact on the performance and memory consumption. Therefore,
we will discuss the impact of applying a compressed format to the matrix in the algorithm.

This paper is organized as follows. Section 2 describes the detailed explanation of KPM and
the overview of the general purpose computing on the GPU. Section 3 proposes the design and
implementation of KPM on the GPU. Section 4 analyzes the performances of typical sets of input
parameters used in condensed matter physics and discusses the program behaviors when the param-
eters change to increase resource usage regarding processor and memory. Finally, section 5 concludes
this paper.

2 Background and definitions

2.1 Kernel polynomial method

2.1.1 Definition

The basis of KPM is the following (Chebyshev) polynomial expansion of a function f(x) defined in
[−1, 1],

f(x) =
1

π
√

1 − x2

[
µ0 + 2

∞∑
n=1

µnTn(x)

]
, (1)

where

µn =
∫ 1

−1

dx f(x)Tn(x) , (2)

and Tn(x) is the Chebyshev polynomial defined as

Tn(x) = cos [n arccos(x)] . (3)

It should be mentioned that the Chebyshev polynomials satisfies the following recursion relations,

T0(x) = 1 , T1(x) = x , (4)
Tn+2(x) = 2xTn+1(x) − Tn(x) . (5)

KPM is defined as

fKPM(x) =
1

π
√

1 − x2

[
g0µ0 + 2

N−1∑
n=1

gnµnTn(x)

]
, (6)

where the N , also known as truncation number, defines the number of Chebyshev polynomials and
controls the accuracy of the function. The additional coefficients gn is given by a kernel function to
eliminate Gibbs effect.

||f − fKPM|| N→∞−−−−→ 0 , (7)

where || · || is suitable well-defined norm.

2.1.2 Application to quantum systems

In quantum physics, we need to expand functions of the Hamiltonian matrix. In this paper, we focus
on the density of state (DoS). Then, we show an example of application of KPM for calculation of
DoS.

We consider the system described by the Hamiltonian matrix H. First, we apply the following
linear transformation in order to fit the spectrum of H to [−1, 1],

H̃ = (H − α+)/α− , (8)
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where
α± = (Eupper ± Elower)/2 , (9)

The parameters Eupper and Elower are the upper and lower limits of the eigenvalues of H obtained
by the Gerschgorin theorem.

The density of state (DoS) ρ(ω) of the D-dimensional Hamiltonian matrix H is defined by

ρ(ω) =
1
D

D−1∑
k=0

δ(ω − Ek) , (10)

where Ek is the k-th eigenvalue and δ(x) is the delta function. We apply the linear transformation
(8) and obtain the equation

ρ(ω̃) =
1
D

D−1∑
k=0

δ(ω̃ − Ẽk) , (11)

where
ω̃ = (ω − α+)/α− . (12)

In order to obtain the approximated DoS using KPM, the coefficients µn (2) in this case is obtained
as

µn =
∫ 1

−1

dω̃ ρ(ω̃)Tn(ω̃)

=
1
D

D−1∑
k=0

Tn(Ẽk)

=
1
D

D−1∑
k=0

〈k|Tn(H̃)|k〉 =
1
D

Tr[Tn(H̃)] , (13)

where |k〉 is the k-th eigenvector and 〈k| = |k〉†.

2.1.3 Stochastic evaluation of traces

In order to evaluate the trace in Eq.(13), we introduce the stochastic evaluation method of traces,
which estimates µn by average over only a small number R � D of randomly chosen vector.

First, we introduce an arbitrary basis {|i〉} a set of independent identically distributed random
variables {ξr,i|ξr,i ∈ R} which in terms of the statistical average 〈〈·〉〉 fulfill

〈〈ξr,i〉〉 = 0 , 〈〈ξr,iξr′,i′〉〉 = δrr′δii′ , (14)

a random vector is defined through

|r〉 =
D−1∑
i=0

ξr,i|i〉 . (15)

Using them, we can approximately evaluate the trace as follows,

µn =
1
D

Tr
[
Tn(H̃)

]
=

1
D

D−1∑
i=0

[
Tn(H̃)

]
ii

' 1
D

1
R

D−1∑
i,j=0

R−1∑
r=0

〈〈ξr,iξr,j〉〉
[
Tn(H̃)

]
ij

=
〈〈

1
D

1
R

R−1∑
r=0

〈r|Tn(H̃)|r〉
〉〉

. (16)
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Figure 1: Compressed Row Storage format

In order to make 〈r|Tn(H̃)|r〉, we use the following recursive relations for the vectors |rn〉 :=
Tn(H̃)|r〉 derived from the relations (4) and (5),

|r0〉 = |r〉 , |r1〉 = H̃|r0〉 , (17)

|rn+2〉 = 2H̃|rn+1〉 − |rn〉 . (18)

Then µn is expressed by this expression as

µn '
〈〈

1
D

1
R

R−1∑
r=0

〈r0|rn〉
〉〉

. (19)

2.2 Compressed Row Storage format

Compressed Row Storage format (CRS) is a well-known matrix compression technique that signif-
icantly reduces memory usage needed to store sparse matrices. Figure 1 a) shows a 6 × 6 matrix
that contains several zero elements. Figure 1 b) shows the matrix in CRS format. In order to store
the matrix in CRS format, three arrays are needed: A, CA, RA. A stores the value of the non-zero
elements of the matrix, CA stores the column indices of the non-zero elements in A, RA stores the
locations in array A that indicate each index for the corresponding to the next row. In Figure 1
example, CRS format reduces about 19% memory usage when the elements are stored in 4 bytes
integer.

The number of non-zero elements in Hamiltonian matrix depends on the physical lattice model.
In a 3D cubic lattice model for double exchange[1] simulation, each site has six nearest neighbours,
adding the on-site potential, we have seven non-zero elements per row. Thus, the total number of
the non-zero element is H SIZE × 7, where the H SIZE equals to D mentioned in section 2.1.
Since the elements are stored in double floating point format to achieve good accuracy of the result,
the memory needed to store the vector A becomes H SIZE × 7 × 8 bytes. The memory for the
vector CA is H SIZE × 7 × 4 bytes when CA is stored in 4 bytes integers. The memory for RA is
H SIZE × 4 bytes. By adding together the memory of the three vectors, the total memory usage
for storing a Hamiltonian matrix in the CRS format can be obtained as:

H SIZE × 88 (20)

bytes. Comparing with the memory usage in the case of the dense format, the compression ratio of
the CRS format can be presented as:

ratio =
11

H SIZE
(21)

which shows that the larger the matrix size is, the higher compression ratio is obtained.

2.2.1 Numerical complexity

The numerical complexity of the KPM is O(RSND) if the H̃ is sparse matrix, where S is the
number of the realization of the set of random variables {ξr,i}. The process costing O(D) is the
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Figure 2: A GPU architecture.

making part of |rn〉 shown in Eq. (18), which is the heaviest part in KPM. When the H̃ is considered
as a dense matrix, the complexity of the part becomes O(D2).The O(RS) comes from the average
and summation in Eq. (19) and O(N) from the recursive iteration in Eq. (18). This numerical cost
O(RSND) is very effective against the full diagonalization which costs O(D3) if S, R,N � D2, and
the H̃ is a sparse matrix. However, for a dense matrix, the numerical cost becomes O(RSND2) due
to all multiplications for all elements in the H̃ and the |rn〉 must be performed straightly without
considering the CRS (Compressed Row Storage) format for a sparse matrix. This paper not only
discusses the case when the CRS format is not applied to the memory maintenance for the H̃ but
also the performance and memory impact when the CRS is applied to the matrix.

2.3 General purpose computing on the GPUs

2.3.1 GPU architecture

A video adapter that includes a GPU and a Video RAM (VRAM) is connected to a CPU’s peripheral
bus such as PCI Express. The video adapter works as a peripheral device of the CPU, and its GPU
is controlled by the CPU to help a part of visualization tasks in the system. To utilize the GPU as a
computing resource for GPGPU applications, the CPU downloads application program to the GPU’s
instruction memory and also prepares input data for the program. The program fetches the data
and generates the result to the memory areas. The GPU reads/writes the VRAM directly to execute
the calculation for the program. In this case, the original data is prepared in the main memory. The
CPU copies the data to the VRAM. During the execution of the program, the GPU generates the
results to the VRAM. The CPU copies the results from the VRAM to the main memory.

The recent GPUs have only a kind of processor called the stream processor. The processor works
for general purpose processes in any kind of calculation. However, the computing style must be
followed in the stream-based one distributing elements included in streams into multiple stream
processors. GPU uses two types of memory called global and shared memories. The global memory
is provided by the memory placed outside of GPU such as DDR3 VRAM. The shared memory is
placed besides of the stream processor that works as if a cache.

2.3.2 CUDA

The Compute Unified Device Architecture (CUDA) has been proposed by NVIDIA Corporation [5].
The tools and APIs for programming on CUDA environment is now provided by the company’s
website.

The CUDA assumes an architecture model as illustrated in Figure 3 (a). The model defines a
GPU which is connected to a CPU’s peripheral bus. A VRAM (the global memory) that maintains
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Figure 3: CUDA programming environment.

data used for calculation on the GPU is connected to the GPU. The data is copied from the host
memory before the CPU commands to execute a program on the GPU. The program is executed as
a thread in a thread block. The thread blocks are tiled in a matrix of from one to three dimensions.
In the figure, thread blocks are tiled in two dimensions which size is ngrid×mgrid. Each thread block
has multiple threads in a matrix which size is varied from one to three dimensions. The figure also
shows a thread block that includes nblock ×mblock threads. Each thread block has individual shared
memory space where shared variables accessed among threads in the block are stored temporally.
Thus, the program targeted to GPU in the CUDA environment is invoked as threads. The threads
are grouped by the unit of the thread block. Therefore, obtaining a large parallelism, a large number
of threads are invoked concurrently.

In the program on the CUDA environment, the threads are described as a stream-based function
written in C called a kernel function as shown in Figure 3 (b). The program has two parts of the
codes targeted to CPU and GPU, which is initially invoked by the CPU; a main program for CPU
and a kernel function called as the thread on GPU. The kernel function is defined with the global
directive so that it is executed on the GPU. In the function, the global variables named gridDim,
blockDim, blockIdx, threadIdx, implicitly declared by the CUDA runtime, are available to be
used to specify the size of the grid and the thread block, the indices of the thread block and of the
thread respectively. For example, using these global variables, Figure 3 (b) performs a summation
of arrays A and B assigning each summation of the elements in those arrays to a thread and returns
the result to the array C. The function is called by the main program specifying the sizes of the
grid and the thread block with <<< >>>. Finally, reading data from the VRAM transferred by the
main program, the kernel function is assigned to GPU, and runs as multiple threads. Thus, because
programmer can just simply consider the stream-based kernel function and the calling code for the
function in the main program, using the conventional C language manner, the CUDA provides an
easy and transparent interface for GPGPU.

According to the backgrounds we have mentioned above, it is important for the simulation in the
quantum physics to apply a fast diagonalization method to reach the goal of the simulation quickly.
However, the KPM has difficulty of fine-grain parallelization in large scale computers such as cluster
computers or supercomputers due to the recursive calculation performed in the Eq. (18). Therefore,
it is worth for us to implement the KPM on a GPU where the massively parallel environment
is equipped with a large number of stream processors. Thus, this paper focuses on design and
implementation of the KPM on the GPU that challenges to achieve the advanced performance with
applying the stream-based computing style on the massively parallel environment.
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Figure 4: Design and implementaion of KPM on the GPUs.

3 Kernel polynomial method applying GPUs

3.1 Design for massively parallel platform

Figure 4 summarizes the KPM algorithm. The step (1) generates randomly a vector −→r that the
number of elements is H SIZE (this equals to the D in section 2.1). The step (2) gets −→r n from
−→r n−1 and −→r n−2 recursively calculating a matrix multiply of H and −→r n−1 in the step (2.1). This
multiplication is very hard to parallelize using MPI or OpenMP because of the dependencies due to
the recursive iteration although the part needs the most intensive calculation. Then a dot product
is calculated using −→r n again with −→r at the step (2.2) and generates µ̃n. Then the generation of the
µ̃n is iterated for RS times. This means each generation of µ̃n can be massively parallelized on the
GPUs. Finally, the average of all the µ̃ns is generated at the step (3). N µns are finally generated
from the RS-time iterations of the step (1) and (2). This generation of the moments achieves the
objective of the KPM. This summation to generate µ̃n can be parallelized on the GPU. Therefore,
implemented on the GPUs, two parallel processing parts are entirely performed during the evaluation
of the moments using KPM: a) generation of µ̃n and b) generation of µn. The maximum number
of parallelism at the both a) and b) parts becomes the RS because the total number of threads
executed in the stream processors is RS. Here, GPU has an architectural restriction to the number
of threads in a thread block referred as BLOCK SIZE in this paper. Therefore, the number of
thread blocks becomes RS/BLOCK SIZE. Considering the parallelization techniques above, let
us explain the implementation of a kernel program on CUDA that invokes both the a) and b) parts.

3.2 Implementation

We have implemented a kernel program for GPU using CUDA. The kernel receives the H SIZE, N
that is the number of moments and RS as the arguments. All calculations are performed based on
double precision. The kernel includes two important concepts. One is how to keep high parallelism.
Another is an effective memory management for the parallelism.

3.2.1 Parallelization of calculations

As we discussed in the last section, two heavy calculation parts (the a) and the b)) should be
parallelized and it would give the largest impact for the speedup.

Figure 5 a) shows the generation part for the −→r n. −→r n needs −→r n−1, −→r n−2 and −→r . The vector
−→r is randomly generated using Mersenne Twister random generator in our implementation. These
four vectors are obtained in the global memory and each block, which refers to the thread block
in CUDA, will write those vectors swapping the pointers without data copy. Here the number of
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Figure 5: Parallelization of KPM.

blocks is RS/BLOCK SIZE. In each block, BLOCK SIZE stream processors are concurrently
working to generate a part of those vectors. For the generation of vector −→r , the i-th element −→r [i] is
generated by the thread i%BS, where the BS is the block size. For the vector −→r n, the generation
of the i-th element −→r n[i] can be expressed:

−→r n[i] = 2 ×
D−1∑
k=0

H[i][k] ×−→r n−1[k] −−→r n−2[i], (22)

where D ≡ H SIZE. Similarly, the −→r n[i] is generated by the thread i%BS. Therefore, this part
will be fully parallelized into the total number of stream processors equipped on the GPUs. This
part will generate µ̃1, µ̃2, ..., µ̃N using −→r and −→r n for N time iteration.

Figure 5 b) depicts the parallelization of generation for µn. It performs just parallel summations
for generating a scalar µn where all thread blocks works in parallel.

3.2.2 Memory consumption

Let us consider the required memory amount for the operations in Figure 5 in the case of double
precision. For the operation a), because four −→r vectors are stored in the global memory for a
block. Each −→r vector has H SIZE elements. Therefore, this part consumes Number of Blocks ×
4 × H SIZE × 8 bytes. The operation b) is parallelized into the number of blocks. Each block
performs a part of summation using N µ̃s. The length of µ̃s is H SIZE. Therefore, it needs totally
Number of Blocks × N × H SIZE × 8 bytes.
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The operation a) writes µ̃n into the global memory. This needs to be kept with −→r vectors
simultaneously. Therefore, the total number of memory is Number of Blocks × H SIZE × (8 ×
N + 32).

Due to the recursive relationships among −→r n, −→r n−1 and −→r n−2, the KPM is treated generally
as one of very hard parallelized algorithms. However, as we can see in this section, on the GPU,
a massively parallel environment, the KPM is fully parallelized due to the stream-based computing
concept. Thus, we can expect an effective speedup that will be proportional to the number of
stream-processors.

4 Experimental performance analysis

This section shows performance evaluations of the KPM implemented on the GPU. The performance
based on the GPU is compared with the one based on CPU. The experimental environment is a
PC that consists of an Intel’s Core i7 930 processor at 2.80GHz with 12GB DDR3 memory, and the
NVIDIA Tesla C2050 with 448 streaming processors and 3GB Memory. The configuration of the
cache in the GPU is set to 16KB. Therefore, the shared memory size is 48KB. The OS of the PC is
the CentOS of the Linux Kernel 2.6.18. The driver version of the GPU is 3.0. All KPM calculations
are performed with double precision floating point. The CPU version is compiled with GCC 4.4.1
with O3 option.

We perform four kinds of performance analysis: (1) evaluation using actual sets of parameters,
(2) the one with increasing calculation size, (3) the one with increasing memory usage and finally
(4) the one with applying the CRS format to Hamiltonian matrix. The first evaluation hires sets
of parameters used in actual simulations of the meaningful model applied to the condensed matter
physics field. The second evaluation analyses the behavior of the performances when the parameter
N is increased. This means that more intensive calculation is loaded to the CPU and the GPU
following the increase of N . The third one shows the performance impacts when the H SIZE is
increased. This case needs the square sized memory to store the H matrix that is increased by the
impact of H SIZE2. The final evaluation shows the performance improvement of the CRS format
compared with the dense one.

In the following performance evaluation the KPM parameters R and S are 14 and 128, respec-
tively. For the GPU implementation, the block size is chosen 128, which gives the best performance in
our experiment. Following the formula RS/BLOCK SIZE introduced in section 3.2.1, the number
of blocks is 14.

4.1 Performance analysis using actual simulation parameters

In the field of the computational condensed matter physics, the KPM is applied to a simulation to
evaluate the DoS in a three dimensional lattice model. Let us consider a lattice model made of cubes
in 10 × 10 × 10 where an electron is placed in each corner. This model needs a Hamiltonian matrix
sized in 1000 × 1000 due to the presentations of correlations among the electrons at each corner.
The significant characteristics of the matrix include that 1) it is sparse and symmetric and 2) any
row contains seven non-zero elements with the condition where all diagonal ones are zeros and the
other non-zero ones are −1s. We evaluate the DoS in the case of the lattice that we assumed above
using the fixed parameters of the KPM with S = 14 and R = 128. Varying N from 128 to 1024 in
the steps of 2n, Figure 6 shows the execution time and the speedup comparing the performances on
the CPU with the ones on the GPU. The speedup keeps 3.5 times for all the cases.

We shall pickup two DoS data combinations from the parameter sets of Figure 6 and plot it to
a graph as depicted in Figure 7. The graph shows the DoS when N = 256 and N = 512. When N
is the smaller number, the truncation reduces to the resolution of the DoS. However, the processing
time is smaller than the case of a large N . Therefore, although the case of N = 512 shows higher
resolution of the DoS, it takes longer calculation time.
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Figure 6: Performances applying the lattice made of cubes placed in 10x10x10.

4.2 Performance analysis with increased intensive calculations

Obtaining the fixed parameters of H SIZE = 128, R = 14 and S = 128, we measure the per-
formances with varying the N from 128 to 2048. The graph of the performances is illustrated in
Figure 8. The graph shows the execution time with bars and the speedups (i.e. the CPU time is
divided by the corresponding GPU time) with a line. As increasing the N , that is, as increasing the
calculation amount, the speedup increases to almost 4 times. This means that the performance with
the higher intensive calculations affected by the larger N causes higher effective data parallelism on
the GPU when the calculation amount is increased without changing the size of the memory usage.
Thus, our implementation on the GPU clearly achieves higher performance than the CPU-based
KPM as increasing the calculation amount.

4.3 Performance analysis with increased memory usage

This analysis fixes N = 128, R = 14 and S = 128. We vary H SIZE from 512 to 4096 with the step
of 2n. The performance presents effects caused by increasing the memory usage. The graph of the
performance is depicted in Figure 9. When the amount of memory usage increases, the number of
memory accesses increases. Therefore, the CPU version needs to read/write the memory as increased
the size of H̃ matrix. On the other hand, in the matrix-vector multiplication, the vector elements
can be shared among the threads, so the performance will benefit from storing a part of the vector
in the fast shared memory. Thus, the execution time of the GPU version does not increase more
than the complexity (O(H SIZE2)). This causes almost four times faster performance than the
CPU version.

4.4 Performance comparison with/without CRS format

Applying the CRS format explained in section 2.2 to a Hamiltonian matrix, the memory usage and
memory access can be greatly reduced due to Eq. 21, where H SIZE usually is very large. It is
shown in Figure 4 that matrix-vector multiplication is the most calculation intensive part. Thus,
reduced memory access can significantly increase the performance as shown in Figure 10. In addition,
the speedup increases when the H SIZE becomes larger, which can be explained by Eq. 21 (i.e.
the larger H SIZE leads to higher compression ratio). Moreover, applying the CRS format, we
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Figure 7: The DoS comparison with truncations between N=256 and N=512 when the lattice is
made of cubes placed in 10x10x10, R=14 and S=128.
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Figure 8: Performance comparison increasing N.
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Figure 9: Performance comparison increasing H SIZE.
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Figure 10: Execution time with/without CRS format on the GPU
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Figure 11: Execution time on CPU and GPU applying CRS format

have performed comparison between the performance on the GPU and the one on CPU as shown in
Figure 11, which obtains up to 4.8 times better performance. Comparing the speedup without CRS
format, we can conclude that the CRS format is helpful for achieving higher speedup on the GPU
and CPU [15].

As we discussed in four kinds of evaluations above, the performances on the GPU achieve bet-
ter performances than the ones on CPU due to the highly parallelism caused by the GPU-based
implementation explained in this paper. The implementation achieves the advanced performance
even if it is applied to the actual examples from the condensed matter physics or the cases with
hard conditions virtually when the amounts of the computation and the memory usage are increased.
Moreover, we also confirmed that the CRS format obtains significant impacts not only on the perfor-
mance but also on the memory access frequency. Thus, we can conclude that the KPM is a suitable
algorithm that fits well to the GPU environment and the performance acceleration accomplishes
amazingly the high performance due to the CRS format.

5 Conclusions

This paper proposed an implementation of the KPM widely used in the physics and the chemistry
field to simulate various quantum states. Our GPU version shows about 5 times faster than the
CPU one applying the CRS format for representing the Hamiltonian matrix. Therefore, using a
GPU, productivity of the moments for a quantum state is accelerated to four times. Therefore, the
GPU version is expected to be used for various grand challenge simulations to find a new quantum
state that resolves unknown physical theories in the natural phenomenon.

For the future plans, we are considering to quest a method to find the best block size used in
the GPU that defines the size of the stream processors’ block. Moreover, the parallelization of the
KPM on a message passing and a shared memory paradigm is also challenging because the recursive
reference to get −→r n becomes a bottleneck to be parallelized in fine-grain. Moreover, we are also
planning to extend the GPU-based implementation to a GPU cluster for its parallelization.
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