
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 15, Number 2, pages 182–198, July 2025

Extended VLIW Processor with Overlapping RISC-V Compressed and Privileged Instructions

Haruhiro Tanaka

Graduate School of Information Science & Technology, Aichi Prefectural University
Aichi, 480-1198, Japan

im231006@cis.aichi-pu.ac.jp

Takahiro Sasaki

Graduate School of Information Science & Technology, Aichi Prefectural University
Aichi, 480-1198, Japan
sasaki@ist.aichi-pu.ac.jp

Received: February 14, 2025
Revised: May 2, 2025
Accepted: June 6, 2025

Communicated by Takashi Yokota

Abstract

RISC-V is an instruction set architecture that has attracted interest in both academic and
industrial fields in recent years. RISC-V provides compressed instructions that reduce the size of
each instruction. This feature contributes to the reduction of program size and is advantageous
for embedded processors that have tight constraints on instruction and data memories. There-
fore, implementation of compressed instructions is advantageous in terms of program size, but
disadvantageous in terms of hardware for embedded processors with heavy area constraints. To
solve the increase amount of hardware caused by supporting compressed instructions, we propose
Converting All Integer-instructions to Compressed-instructions (CAIC) method. Additionally,
we propose an extended VLIW processor called RVC-VOI (RISC-V Compressed - VLIW with
Overlapping Instructions) that adapts the CAIC method. The processor implements privileged
instructions which are not defined in compressed instructions, without increasing the issue slot
executes privileged instructions or hardware to align instruction length, by overlapping instruc-
tion fields. This paper evaluates the code size reduction rate achieved by the CAIC method
and the area of RVC-VOI. The CAIC method achieved a 7.2% reduction in the code size of
QuickSort and a 25.9% reduction in the code size of Dhrystone, and RVC-VOI achieved signif-
icant reductions in energy consumption of up to 98.7% and circuit scale of up to 98.6% while
maintaining execution time comparable to that of superscalar processors.

Keywords: RISC-V, Compressed instruction set, Computer architecture, VLIW

1 Introduction

In recent years, the Internet of Things (IoT) has become widespread across a broader range of
systems. The global pandemic of the COVID-19 has significantly accelerated this technology, and
modern IoT is now evolving into something closer to Internet of Everything [1,19]. IoT integration is
advancing in many systems, from electrical devices to systems that have never used electricity before
[15]. Embedded processors used in such IoT devices that have tight constraints on area and energy

182

International Journal of Networking and Computing

budget, but the increasing complexity of IoT applications has made it difficult to meet performance,
area and energy efficiency targets, increasing interest in those budgets [8]. Consequently, there is
a growing trend towards designing custom processors instead of using general purpose processors,
which typically have larger area and higher energy consumption.

This paper focuses on compressed instructions. Compressed instructions, such as ARM Thumb
[14], have been considered useful for embedded processors. Compressed instructions are also provided
as an extension function in the RISC-V instruction set architecture (ISA) [10], which has recently
attracted attention in both academia and industry [4,16]. RISC-V compressed instructions improve
memory efficiency by compressing the 32-bit fixed-length instructions for basic integer instructions
into 16-bit.

However, the RISC-V compressed instructions are not intended to be used independently. A
typical RISC-V compiler does not have the capability to generate programs with only compressed
instructions. For this reason, RISC-V compiler generates programs that combine compressed instruc-
tions and basic instructions that are not replaced by compressed instructions. The implementation
of compressed instructions can reduce the size of the program code, but the processor area increases
because additional hardware is required to align the lengths of fetched instructions. This is a disad-
vantage for embedded processors with heavy area constraints. Furthermore, running an operating
system (OS) on RISC-V requires 32-bit privileged instructions. Because RISC-V compressed ISA
does not support privileged instructions, it is not possible to run an OS using only compressed
instructions.

To solve the above problems, we propose a method called CAIC (Converting All Integer in-
structions to Compressed instructions). This method converts all instructions to 16-bit compressed
instructions by representing basic instructions as combinations multiple existing compressed instruc-
tions. Not implementing a custom, non-standard 16-bit instructions ensure portability to existing
processors and can be used as a method to handle the increase in code size caused by the com-
plexity of application programs. Additionally, we propose a VLIW (Very Long Instruction Word)
processor called RVC-VOI (RISC-V Compressed - VLIW with Overlapping Instructions) [17] which
supports programs constructed by only compressed instructions. By effectively using the VLIW
structure, RVC-VOI can execute privileged instructions that are not included in compressed in-
structions without modifying the RISC-V compressed ISA. RVC-VOI is expected to be used as an
embedded processor that requires an OS because it has a smaller area than a typical Out-of-Order
processor maintaining sufficient performance.

As an evaluation, we implement our proposed RVC-VOI using Register Transfer Level (RTL)
description and evaluated through simulations for the program execution time and energy consump-
tion. Additionally, we evaluated the circuit scales by logical synthesis. For comparison, we used
AnyCore [2], a tool that automatically designs superscalar processors, which are commonly used
as general-purpose processors. RVC-VOI successfully reduced energy consumption to 1.3% and cir-
cuit scale to 2.6% while maintaining execution times comparable to the minimum configuration of
AnyCore.

The remainder of this paper is structured as follows. Section 2 provides the RISC-V instruction
set architecture and the VLIW processor architecture as background to this paper. Section 3 pro-
vides related works on processors suitable for embedded systems. In Section 4, we propose the CAIC
method, which enables the standalone use of RISC-V compressed instruction set. Additionally, In
Section 5, we propose the RVC-VOI processor, an extended VLIW architecture that simultaneously
implements compressed and privileged instructions. Section 6 evaluates RVC-VOI in terms of exe-
cution time, energy consumption, and circuit scale. Section 7 presents the conclusions and outlines
directions for future work.

2 Background

RISC-V is one of the ISAs that has attracted the most attention recently [10]. While most commercial
ISAs require license fees, RISC-V is an open ISA and free to use. By its openness, RISC-V has
attracted interest not only from academia but also from industry. Consequently, many companies

183

Extended VLIW Processor with Overlapping RISC-V Compressed and Privileged Instructions

Figure 1: 4-issue VLIW structure.

and universities are currently entering the development of RISC-V. Additionally, RISC-V consists of
32-bit basic integer instructions that enables the minimal processor operation and several selectable
extension instructions. These extensions can be selectively implemented during processor design,
depending on the type of applications the processor is intended to run. Examples of extensions
include integer multiplication and division instruction set extension, single and double precision
floating-point instruction set extension, atomic instruction set extension, and compressed instruction
set extension. Particularly, compressed instructions reduce certain frequently used basic instructions
to 16-bit. Therefore, the implementation of this extension is expected to be used as embedded
processors because it reduces code size.

As a processor architecture for embedded systems, VLIW (Very Long Instruction Word) is one
of the useful methods. In a VLIW processor, the slots where specific instructions can be executed
are determined during the architecture design phase, and the dedicated compiler statically reorders
instructions according to the design. Figure 1 describes the architecture of a 4-issue and 4-stage
pipeline VLIW processor. While superscalar processors, which are common processor architecture
in recent years, depend on complex internal scheduling mechanisms to dynamically determine which
instructions can be executed in parallel, VLIW processors perform this task with the compiler. This
allows VLIW processors to have simpler internal mechanisms, reducing the circuit area. As a result,
VLIW processors can achieve high Instruction Level Parallelism (ILP) without complex internal
structure.

However, while RISC-V offers extensive support for superscalar processors, its support for VLIW
processors is limited. This is due to the fact that RISC-V was not originally designed as foundation
for VLIW architectures. Although the current RISC-V provides VLIW encoding through several
alternative approaches, the technique for encoding instructions longer than 32-bit is not fixed. Fur-
thermore, compressed instructions cannot be used independently and need to be combined with
basic instructions. As a result, the implementation of compressed instructions has led to an in-
crease in hardware. Detailed of the problem and our solutions to handle compressed instructions
are described in Section 4.1.

3 Related Works

ρ-Vex [18] is a VLIW processor based on the VEX ISA. ρ-Vex has an advantage in integer arithmetic
because it implements new instruction for generating 32-bit immediate value which is not provided in
the standard VEX ISA. This new instruction overlaps 2 slots and is executed by the same ALU used
for typical instructions. While this technique is similar to the approach in this work, the difference
is that ρ-Vex overlaps a new instruction to reduce code size, whereas our approach overlaps existing
instructions to reduce hardware complexity.

CV32E40P [7] (formerly known as RI5CY [6]) is a 4-stage in-order pipeline processor based on
the RISC-V ISA. The processor provides extension instructions including multiply-divide and com-
pressed instructions. CV32E40P is a processor with a small area, but it has low binary compatibility

184

International Journal of Networking and Computing

Figure 2: Comparison of basic and compressed addi instructions.

with other RISC-V processors and the hardware has also increased due to custom instruction set
extensions.

RVCoreP-32IC [11] is a 5-stage pipeline processor based on the RISC-V ISA. It implements both
basic and compressed instructions and achieves an efficient instruction fetch architecture by using 2
Program Counters (PC) for parallel fetching. However, this fetch architecture increases the amount
of hardware required. Furthermore, unlike the processor proposed in this work, RVCoreP-32IC is
a single-issue processor. Such processors have the possibility to lack sufficient performance for the
complexity of embedded applications in recent years.

As a VLIW based on the RISC-V ISA, Qui, Lin and Chen propose a 256-bit VLIW processor with
a dynamic scheduler [13]. This processor scheduler detects the dependencies of eight instructions
fetched at the same time and generates VLIW instructions within the processor. This mechanism
enables the execution of VLIW instructions without the need for a dedicated compiler. However,
this processor cannot fully utilize ILP, because it only detects the dependencies of eight fetched
instructions. Additionally, the scheduling mechanism increases the amount of hardware.

4 Translation Technique to Compressed Instructions

4.1 Overview of Compressed Instructions

The compressed instruction set is one of the extensions of the RISC-V ISA. Compressed instructions
can reduce some of 32-bit fixed-length basic integer instructions to 16-bit. Accordingly, compressed
instructions can replace equivalent basic instructions, thereby reducing the number of bits per in-
struction. Currently, using a general compiler such as gcc which supports compressed instructions,
50%-60% of the RISC-V instructions can be replaced with compressed instructions, which is equiv-
alent to a 25%-30% code size reduction [10].

Figure 2 shows the formats of the basic instruction addi and the compressed instruction c.addi
for performing register and immediate value addition. In Figure 2, the “rs1rd!=0” field refers to
the register number field used for both the rs1 and rd registers, indicating that they cannot use a
register number zero. The “nzimm” field stands for non-zero immediate, which means the immediate
value cannot be zero. Additionally, the opcode of the basic addi instruction consists of 7 bits from
bit 0 to bit 6, and the funct field is from bit 12 to bit 14. On the other hand, the opcode of the
compression instruction consists of two bits from bit 0 to bit 1, and the funct field is from bit 13 to
bit 15. In Figure 2, both instructions are described numerically. The 32-bit basic instruction addi
can be replaced by the compressed instruction c.addi. However, for example, the addi instruction
has a 12 bits immediate field, whereas the immediate field of the c.addi instruction is narrower and
cannot handle immediate values larger than 7 bits. Instruction with such large immediate values
cannot be replaced by a single compressed instruction and remains as 32-bit basic instructions during
compilation. Therefore, when designing a processor that implements compressed instructions, it is
necessary to include hardware to determine whether the fetched instruction is a basic or compressed
instruction. It is a disadvantage for embedded processors where the hardware area is a critical
concern.

185

Extended VLIW Processor with Overlapping RISC-V Compressed and Privileged Instructions

Table 1: CAIC method conversion of addi instruction.

Conditions Basic instruction Compressed instructions

imm ̸= 0 & rd == src1 addi rd, rd, imm c.addi rd, nzimm
imm ̸= 0 & rd ̸= src1 addi rd, src1, imm c.li rd, nzimm

c.add rd, src1
imm == 0 & rd == src1 addi rd, rd, 0 c.nop
imm == 0 & rd ̸= src1 addi rd, src1, 0 c.mv rd, src1
log2(imm) ≥ 7 addi rd, rd, imm c.li rd, imm[11:6]

c.slli rd, 6
c.addi rd, imm[5:0]

rd == src1 == x2 addi x2, x2, imm c.addi16sp imm
src1 == x2 & rd ̸= x2 addi rd, x2, imm c.addi4spn rd, imm

4.2 CAIC Method

In this work, we propose a method to implement all basic instructions using only compressed in-
structions by mapping basic instructions to combinations of available compressed instructions. We
call this method Converting All Integer-instructions to Compressed-instructions (CAIC). In this
paper, we describe the CAIC method using 3 major instructions as examples. The first is the addi
instruction of the simple ALU calculation, the second is the lw instruction of the data memory
access, and the third is the jalr instruction for control. These instructions cover the important cat-
egories of arithmetic operations, memory access, and control flow, and comprehensively cover the
basic operation of RISC-V.

Table 1 shows the CAIC method conversion of the addi instruction. The addi instruction adds the
value of the src1 register and an immediate, storing the result in the rd register. The addi instruction
can be converted with compressed instructions under several conditions. Conversion to standalone
c.addi instruction is performed only when the destination register and the source register are the
same. If the immediate value is 0 and the destination register and source register are the same,
it is replaced by the c.nop instruction. If the immediate value is 0 and the destination and source
register are different, it is replaced by the c.mv instruction. For addi instructions that handle the x2
register, which manages the stack pointer in RISC-V, there is a dedicated compressed instruction
available. For other patterns, the processing of the addi instruction is realized using combinations of
multiple compressed instructions. If the immediate value is non-zero and the destination and source
register are different, the processing can be realized by splitting it into 2 compressed instructions.
In the same way, if the immediate value is 7 bits or larger, the addi instruction can be converted
using 3 compressed instructions.

Table 2 shows the CAIC method conversion of the lw instruction. The lw instruction adds the
value of the src1 register and an immediate to compute a data memory address, then loads the data
from that address into the rd register. In this paper, registers marked with a prime symbol, such
as rd’ and src1’, refer to registers numbered from 8 to 15. Compressed instruction set includes the
c.lw instruction. A general compiler conversion to the c.lw instruction occurs when the immediate
value is a positive integer within 6 bits, and both the rd and src1 register numbers are between 8
and 15. When the immediate value is negative or more than 7 bits, the instruction is divided into
4 compressed instructions because the memory address needs to be generated in a register. If the
rd register is outside the range of 8 to 15, one register within this range is selected for data loading.
In Table 2, such registers are indicated as rx’. If no registers are available, use the c.mv or c.sw
instructions to generate a free register.

Table 3 shows the CAIC method conversion of the jalr instruction. The jalr instruction jumps
to the address computed by adding the src1 register and an immediate value, and stores the return
address in the rd register. Compressed instruction set includes the c.jalr instruction. The jalr
instruction is replaced by the c.jalr instruction when the immediate value is 0 and the rd register is

186

International Journal of Networking and Computing

Table 2: CAIC method conversion of lw instruction.

Conditions Basic instruction Compressed instructions

0 ≤ log2(imm) < 7 & lw rd’, offset(src1’) c.lw rd’, uimm(src1’)
x0 ≤ rd ≤ x15 & x0 ≤ src1 ≤ x15
imm < 0 || log2(imm) ≥ 7 lw rd’, imm(src1’) c.li rd’, imm[31:26]

c.slli rd’, 6
c.add rd’, src1’
c.lw rd’, src1[25:22](rd’)

rd ≤ x7 || x16 ≤ rd lw rd, imm(src1’) c.lw rx’, imm(src1’)
c.mv rd, rx’

rs1 == x2 lw rd, offset(x2) c.lwsp rd, uimm(x2)

Table 3: CAIC method conversion of jalr instruction.

Conditions Basic instruction Compressed instructions

rd == x1 && imm == 0 jalr x1, src1, 0 c.jalr src1
imm ̸= 0 jalr x1, src1, offset c.li x1, offset[11:6]

c.slli x1, 6
c.addi x1, offset[5:0]
c.add x1, src1
c.jalr x1

rd ̸= x1 jalr rd, src1, 0 c.mv rx, x1
c.jalr src1
c.mv rd, x1 (post-jump)
c.mv x1, rx (post-jump)

x1. Since the c.jalr instruction cannot handle immediate values, when the jalr instruction includes an
immediate value, the destination address needs to be generated in the x1 register before executing
the c.jalr instruction. Because the value of the x1 register is updated after the execution of the
c.jalr instruction, there is no need to save the original value of the x1 register. Additionally, the rd
register for the c.jalr instruction is fixed to the x1 register. Therefore, if the rd register is not x1,
the original value of x1 is temporarily stored to another register or data memory before executing
the c.jalr instruction. After c.jalr execution, the value of x1 is restored. In Table 3, the process is
indicated when values are stored in registers. If stored in data memory, data transfer is executed
using the c.sw and c.lw instructions.

In this manner, basic instructions that are not replaced with compressed instructions by general
compilers can be converted into combinations of multiple compressed instructions. This conversion
was verified for all 49 basic integer instructions, and we confirmed that integer instructions can be
implemented using only compressed instructions.

5 Extended VLIW Processor Architecture

Only compressed ISA cannot run an OS that requires privileged instructions, because compressed in-
structions do not include them. To solve this issue, this section describes an extended VLIW proces-
sor architecture capable of executing both compressed instructions and 32-bit privileged instructions.
The processor is called RVC-VOI (RISC-V Compressed - VLIW with Overlapping Instructions).

187

Extended VLIW Processor with Overlapping RISC-V Compressed and Privileged Instructions

Figure 3: 4-slot RVC-VOI instruction layout.

5.1 Instruction Layout

One significant difference from a standard VLIW is that the slot dedicated to privileged instructions
overlaps the lower 2 slots. Figure 3 shows the 2 VLIW formats in 4-slot configuration. In Format
1, slot 0 and slot 1 are allocated for integer arithmetic instructions, slot 2 is allocated for memory
access instructions, and slot 3 is allocated for branch instructions. In contrast, Format 2 allows
privileged instructions to utilize the slots designated for memory access and branch instructions. In
other words, a dedicated privileged instruction slot overlaps with slot 2 and slot 3. Therefore, when
a VLIW instruction does not contain a privileged instruction, instructions are allocated according
to Format 1. When a VLIW instruction contains a privileged instruction, instructions are allocated
according to Format 2, and the privileged instruction overlaps the 2 slots.

There are two alternative approaches to simply supporting privileged instructions. The first
approach introduces a custom, non-standard 16-bit privileged instruction. However, this method
has the issue of incompatibility with existing RISC-V processors. In contrast, our proposed method
maintains compatibility with existing processors by utilizing only the RISC-V instruction set.

The second approach introduces a dedicated 32-bit slot for privileged instructions. However,
since privileged instructions appear significantly less frequently than other instructions, this slot
would often be filled with superfluous no-operation (nop) instructions, leading to inefficiency. Our
proposed method addresses this issue by overlapping the slots for privileged and regular instructions.

Therefore, this approach allows the implementation of instructions with different lengths without
adding new slots and increasing nop instructions, and also ensures compatibility with existing ISA.

5.2 Architecture

Figure 4 shows a block diagram of the proposed processor. In general, VLIW processors can maintain
high ILP energy-efficiently in terms of static compiler scheduling. The extended VLIW processor
proposed in this work also conforms to the static compiler of VLIW. The processor implements
integer arithmetic, memory access and branch instruction slots. The number of integer arithmetic
slots is parameterized and can be changed from 1 to 6. This allows the performance of the RVC-VOI
processor to be adjusted according to the requirements of the embedded program during processor
design. The lower 2 slots are fixed for executing memory access instructions slot and branch in-
structions slot. Therefore, RVC-VOI supports the design of VLIW architectures with configurations
from a minimum of 3-slot to a maximum of 8-slot.

5.2.1 Pipeline Stage

RVC-VOI processor is designed with four stages: fetch, decode, execute, and writeback.
In the fetch stage, VLIW instruction is fetched from instruction memory and sent to the decode

stage. The fetch width is parameterized, depending on the number of integer arithmetic slots, and
the increment of the PC is also affected by the parameter.

The decode stage implements integer arithmetic instructions decoders, a memory access instruc-
tions decoders, a branch instruction decoder, and a privileged instructions decoder. Each decoder
decodes the VLIW instruction that is split into individual instructions, register values are read, and
these values are sent to execute stage.

188

International Journal of Networking and Computing

Figure 4: Block diagram of RVC-VOI.

The execute stage computes each instruction. Memory access instructions are managed by the
Load Store Unit (LSU), where store instruction is completed.

In the writeback stage, register file writes and PC updates due to branch instructions. If the
next instruction depends on the result, the computed value is forwarded to avoid a stall.

5.2.2 Commit Timing

RVC-VOI takes 4 cycles for most instructions, and 5 cycles for load instruction. Due to the different
commit timings of these instructions, when an instruction depends on the result of a previous load
instruction, it must wait for that load operation to complete. This dependency is identified at the
decode stage. Therefore, when RVC-VOI detects such dependencies, it generates a 1 cycle stall in
both the fetch and decode stages.

Additionally, RVC-VOI does not implement a branch predictor, a design choice aimed at mini-
mizing circuit scale. Consequently, when a branch instruction modifies the PC, the processor must
flush the instructions in the fetch and decode stages. Upon a successful branch, the execution stage
sends the correct branch target PC to the fetch stage. This process results in 2 cycles delay whenever
a branch instruction executes a branch.

5.2.3 Execution of Privileged Instruction

The System Decoder that handles privileged instructions decodes the lower 32 bits of a VLIW
instruction and recognizes it as a valid instruction only if it is a privileged instruction. The privileged
instruction slot overlaps with the memory access slot and the branch instruction slot. Therefore, the
instructions provided to the Mem Decoder and Ctrl Decoder are always simultaneously provided to
the System Decoder.

As an example, Figure 5 shows the bitmaps of the csrrs instruction, a type of privileged in-
struction, and the c.addi instruction, a type of compressed instruction. In RISC-V processors, the
type of instruction is identified by examining the opcode (OP) and function code (funct) within the
instruction. Specifically, the distinction between 32-bit and 16-bit instructions is made based on the
opcode of the lower 2 bits of the instructions. In the case of compressed instructions, the OP falls
into one of the values 00, 01, or 10. In contrast, the lower 2 bits of the OP for privileged instructions

189

Extended VLIW Processor with Overlapping RISC-V Compressed and Privileged Instructions

Figure 5: The bitmaps of the csrrs and c.addi instructions.

are fixed at 11. This difference in the OP allows the decoders to distinguish between compressed and
privileged instructions. Therefore, when the System Decoder receives memory access and branch
instructions provided in Format 1, it examines the lower 2 bits that are OP. If these bits do not
match 11, the instruction is identified as a non-privileged instruction and invalidated. Conversely,
if a privileged instruction is received, the same bit examination confirms its privileged instruction.

On the other hand, the process is different for the Mem Decoder and the Ctrl Decoder. The
Ctrl Decoder can access the lower 2 bits of privileged instructions, allowing it to distinguish between
privileged and compressed instructions. In contrast, the Mem Decoder only has access to the upper
16 bits of privileged instructions. As shown in Figure 5 with the csrrs instruction, the 16th and
17th bits of privileged instructions are not fixed but instead often represent register numbers or
immediate values. Therefore, depending on the values of the register numbers or immediate fields,
the Mem Decoder may incorrectly interpret the upper 16 bits of a privileged instruction as a valid
compressed instruction.

To solve this problem, when the System Decoder detects a valid privileged instruction, it in-
validates the instructions present in both the Mem Decoder and the Ctrl Decoder. This process
prevents incorrect interpretation of instructions caused by the immediate values and register num-
bers in privileged instructions. Furthermore, RISC-V privileged instructions that change the internal
state of the processor, such as switching machine modes or enabling interrupts, must be executed
atomically. This is solved by flushing the instructions existing in the fetch stage when the System
Decoder detects a valid privileged instruction. Therefore, in RVC-VOI, a privileged instruction is
executed only after the completion of any integer arithmetic instructions within the same VLIW
instruction. This allows safe access to the Control and Status Register (CSR) unit, which manages
the state of the RISC-V machine.

As specific examples, an example of the operation of Format 1 is shown in Figure 6, and an
example of the operation if Format 2 is shown in Figure 7. In Format 1, the Mem slot and Ctrl slot
instructions are input into the System Decoder. The System Decoder can invalidate these compressed
instructions by checking their OP. In Format 2, the System Decoder receives a privileged instruction,
while the Mem Decoder and Ctrl Decoder receive the upper 16 bits and lower 16 bits of the privileged
instruction, respectively. When the System Decoder detects a privileged instruction, it invalidates
the instructions in the Mem Decoder and Ctrl Decoder to prevent misinterpretation of instructions.
Additionally, it purges all instructions in the fetch stage to manage the processor status.

5.3 Implementation Method

Processors used in embedded systems are expected to reduce unnecessary increases in chip area by
designing performance to suit specific applications. However, processor design generally requires
more effort and time, designing processors for each system is challenging. To solve this issue, as
described in Section 5.2, the VLIW processor proposed in this paper can be designed with perfor-
mance suited to the system by adjusting the number of slots based on the supported application.
In superscalar processor field, AnyCore [2] is proposed as an automated processor design tool. It
is designed to generate a wide range of processors, from high-performance to low-power models by

190

International Journal of Networking and Computing

Figure 6: The operation of Format 1.

Figure 7: The operation of Format 2.

allowing parameterized configurations. The standard AnyCore cannot design VLIW processor, but
RVC-VOI is designed by modifying AnyCore to simplify the design. Since AnyCore does not support
compressed instructions, we have implemented decoder and execution units for them. Additionally,
because VLIW is scheduled by the compiler, the internal scheduling mechanism of AnyCore has been
removed to simplify the architecture. Since AnyCore manages parameters such as fetch width and
issue width, RVC-VOI inherits this functionality, allowing the number of issue slots to be adjusted
as parameters.

6 Evaluation

In this section, we evaluate the code size reduction rate achieved by the CAIC method. Additionally,
we evaluate execution time, energy consumption, and circuit area of the RVC-VOI processor. To
compare processor areas, Out-of-Order processors were designed using AnyCore. Table 4 shows the
parameters of the designed processors. Since RVC-VOI is a VLIW architecture, the parameters
are fundamentally identical by design. AnyCore1 has the minimal configuration of AnyCore, and
AnyCore2 has the same number of fetch, dispatch, issue, and commit widths as RVC-VOI. Since
AnyCore is an adaptive superscalar processor capable of dynamically adjusting structural sizes
[12], superscalar widths [3], and so on, this paper focuses on generating static cores by omitting
those dynamic features. This simplified configuration ensures a fairer comparison with RVC-VOI,
emphasizing static design efficiency.

In this paper, we also present the verification and evaluation of RVC-VOI using EDA/CAD. The
EDA/CAD tools and libraries used are listed in Table 5.

191

Extended VLIW Processor with Overlapping RISC-V Compressed and Privileged Instructions

Table 4: Parameters of the evaluated processors.

RVC-VOI AnyCore1 AnyCore2

Fetch width 4 1 4
Dispatch width 4 1 4
Issue width 4 3 4
Commit width 4 1 4

Table 5: EDA/CAD environment for evaluation

Functional verification Cadence NC-Verilog 15.20-s020
Logical synthesis Synopsys PrimeTime (Ver. U-2022.12-SP5-4)
Power estimation Synopsys Design Compiler (Ver. S-2021.06-SP2)
Layout Synopsys IC Compiler II (Ver. R-2020.09-SP5)
Standardcell library Rohm CMOS 0.18µm

6.1 Code Size

In the code size evaluation, we used a simple QuickSort program that was self-written in C program-
ming language and Dhrystone benchmark provided by RISC-V international [9]. These programs
were compiled into the programs with only 32-bit basic instructions using the riscv-gnu-toolchain [5],
and then manually converted to create a program consisting of only compressed instructions using
the CAIC method. The code size is evaluated by comparing the object file sizes of programs with
only 32-bit basic instructions, with only 16-bit compressed instructions and with a combination of
these instructions. Table 6 shows the results of code size. Since the code size of VLIW depends on
the number of slots, these results are based on the non-VLIW code size with CAIC applied.

By adapting the CAIC method, the program size of the QuickSort reduced 7.2% from using
only 32-bit basic instructions, and indicating a 2.1% increasing rate from the combination program
to the compressed program. Additionally, the program size of the Dhrystone reduced 25.9% from
using only 32-bit basic instructions Therefore, the code size increase due to the CAIC method is
considered sufficiently small.

The primary cause in the code size increase for the QuickSort program when adapting the CAIC
method is considered the load/store instructions with negative immediate values. These instructions
are frequently used in accessing the stack. As shown in Table 2, load/store instructions with neg-
ative immediate values need to be modified to create the address in a register because compressed
load/store instructions cannot have negative immediate values. As a result, these instructions are
broken down into at least 3 compressed instructions, and if the negative value becomes larger or
if registers that cannot be used with the c.lw instruction are involved, the number of instructions
increase further.

In the Dhrystone benchmark, 8-bit and 16-bit store instructions are the main cause of code size
increase. Since compressed instructions do not provide 8-bit and 16-bit load/store instructions, these
instructions are implemented by loading the destination data, modifying specific bits, and storing it
back. However, compressed instructions are not suited for generating large values, and it takes time
to generate masks to modify specific bits. Consequently, a single sb (store byte) instruction has the
possibility to be converted into more than 10 compressed instructions in the worst case.

Subsequently, we decomposed the basic instructions addi, lw, and jalr into multiple compressed
instructions and analyzed the occurrence frequency of each. The results are presented in Table 7. The
Reduction rate in Table 7 indicates the code size reduction rate from assembly programs composed
of basic instructions. This value is positive when the code size decreases and negative when the
code size increases. Instructions that do not have the number of splits corresponding to Table 1

192

International Journal of Networking and Computing

Table 6: Benchmark program code size.

QuickSort Dhrystone

Integer (bytes) 2,872 4,728
Compressed by CAIC method (bytes) 2,664 3,504
Integer and Compressed (bytes) 2,608 3,104

Table 7: Breakdown of converted instructions.

1 inst. 2 inst. 3 inst. 4 inst. Total Reduction rate

QuickSort addi 31 0 0 0 31 50%
lw 20 8 10 7 45 -4%
jalr 0 2 1 3 6 -58%

Dhrystone addi 34 1 1 0 36 46%
lw 30 0 4 6 40 18%
jalr 0 0 0 3 3 -100%

through Table 3 are due to an increase or decrease in the number of instructions by the generation of
immediate values. For example, if a single lw instruction is divided into 3 compressed instructions,
the operation is decomposed into the following steps: storing the data of src1 into an available
register rx, adding an immediate value to rx, and executing c.lw.

These results indicate that the addi instruction contributes to a decrease in the number of
instructions, while the jalr instruction tends to increase the number of instructions. On the other
hand, the reduction rate of the lw instruction was observed to vary depending on the program.
Although a comprehensive investigation using various benchmark programs is currently difficult due
to the absence of a compiler, we plan a more detailed analysis after the compiler under development
is completed.

6.2 Execution Time

For execution time evaluation, we used a QuickSort program and a highly parallel and long-running
program, as shown in Listing 1. In this paper, we call this program a high-IPC program. This
program has been used for evaluation in the research of AnyCore [2], and it is also employed in this
paper to ensure evaluation under the same conditions. The high-IPC is written to have high ILP
and is suitable for execution on superscalar processors. Additionally, the programs for the RVC-VOI
were generated by rearranging the assembly programs converted by the CAIC method into 4-issue
VLIW format. Since a compiler for RVC-VOI is still under development, this process was conducted
manually.

Listing 1: high-IPC program

1 int i,j,arr[10];
2 for(i=0; i<10; i++){
3 for(j=0; j<10; j++){
4 arr[j] = 0;
5 }
6 for(j=0; j<4096; j++){
7 arr[0] = arr[0] + 1;
8 arr[1] = arr[1] + 1;
9 ...

10 arr[9] = arr[9] + 1;
11 }
12 }

193

Extended VLIW Processor with Overlapping RISC-V Compressed and Privileged Instructions

Table 8: Execution time.
RVC-VOI AnyCore1 AnyCore2

QuickSort Number of execution instructions 3,942 1973 1,969
Execution time (Cycle) 4,080 15,017 17,319
IPC 0.97 0.13 0.11

High-IPC program Number of execution instructions 983,384 573,644 573,665
Execution time (Cycle) 573,705 577,620 244,985
IPC 1.71 0.99 2.34

Table 9: Power consumption of each processor at 100 MHz and energy consumption when executing
the high-IPC program.

RVC-VOI AnyCore1 AnyCore2

Power consumption (W) 0.0030 0.2383 0.4176
Execution time (Cycle) 573,705 577,620 244,985
Runtime energy consumption (J) 1,751 137,646 102,305

Table 8 shows the execution results, including the number of executed instructions, execution
time, and IPC for each program. In the QuickSort program, the RVC-VOI processor executes 3,942
instructions, while the AnyCore processors executes 1,970 instructions, indicating a difference of
about 2 times in the number of executed instructions. Similarly, in the high-IPC program, the
RVC-VOI processor executes 983,384 instructions compared to about 573,600 instructions on the
AnyCore processors, resulting in a difference of about 1.7 times. The reason for this is that the CAIC
method divides operations that typically be executed with a single basic instruction into multiple
compressed instructions.

In the QuickSort program, the RVC-VOI processor achieved the fastest execution time. This re-
sult can be attributed to the low parallelism of the QuickSort algorithm. The processors generated by
AnyCore had significantly slower execution times due to penalties associated with load instructions.
Superscalar processors execute instructions as soon as they are ready by scheduling them internally.
Consequently, AnyCore2, which fetches more instructions simultaneously than AnyCore1, retains a
larger number of in-flight instructions within the processor. This leads to delayed execution timing
of load instructions, which become a bottleneck. As a result, AnyCore2 exhibited the slowest exe-
cution time, while RVC-VOI, which incurred minimal penalties from load instructions, achieved the
fastest execution time.

In the high-IPC program, AnyCore2 achieved the fastest execution time. The bottleneck for
RVC-VOI in this program lies in branch instructions. AnyCore is equipped with a branch predictor,
and the penalty of branch mispredictions occurs only at the end branch instruction of the for-loop
shown in Listing 1. On the other hand, RVC-VOI does not have a branch predictor, causing a
2-cycle penalty each time the for-loop branches. Given that the high-IPC program executes about
40,000 loop iterations, this penalty becomes significant. Nevertheless, even though the CAIC method
increased the number of instructions to be executed by 1.7 times that of a superscalar processor, RVC-
VOI demonstrated faster execution than AnyCore1, indicating that it possesses sufficient processing
capability.

6.3 Energy Consumption

This section estimates power consumption using Synopsys PrimeTime (Ver. U-2022.12-SP5-4), as
shown in Table 5, and evaluates the total energy consumption required during the high-IPC program
execution. Table 9 shows the estimated power consumption of the RVC-VOI and the comparison
processors at a frequency of 100MHz. To shorten the design period, we designed the VLSI using the
ROHM 0.18µm CMOS process in this study. As a result, the clock frequency was relatively low.

194

International Journal of Networking and Computing

Table 10: Area evaluation.

RVC-VOI AnyCore1 AnyCore2

Number of gates* 70,210 2,698,259 4,920,978
* In terms of equivalent NAND gates.

Table 11: Area breakdown of each processor.
RVC-VOI AnyCore1 AnyCore2

Fetch 2,944 2,128,994 4,119,850
Decode 59,252 146,939 289,907
Rename 0 10,236 28,285
Dispatch 0 67 399
Issue 0 55,372 81,107
Execute 12,678 261,434 278,747
Writeback 1,532 95,444 123,296

Since RVC-VOI is currently under development, the processors are evaluated at the same fre-
quency in this paper, and a more realistic evaluation is a future work. along with the estimated
energy consumption when executing the high-IPC program. The total energy consumption was
derived based on the number of execution cycles obtained for the high-IPC program in Section 6.2.

As a result, the total energy consumption of RVC-VOI was successfully reduced to 1.3%, rep-
resenting a 98.7% reduction compared to AnyCore1, and to 1.7%, representing a 98.3% reduction
compared to AnyCore2. Therefore, RVC-VOI achieved a significant reduction in energy consumption
compared to superscalar processors.

6.4 Circuit Scales

RVC-VOI and the processors were designed by using AnyCore to evaluate the area by logical synthe-
sis using Synopsys Design Compiler Version S-2021.06-SP2. Table 10 shows the circuit evaluation
results in terms of the number of equivalent NAND gates.

Compared to the number of equivalent NAND gates of AnyCore2 which has the same issue
widths as RVC-VOI, the RVC-VOI area was reduced by 98.6%, achieving only 1.4% of the original
footprint. Similarly, compared to the number of equivalent NAND gates of AnyCore1 which is the
smallest configuration of AnyCore, the RVC-VOI area was reduced by 97.4%, resulting in 2.6%.
This reduction is attributed to RVC-VOI not having the complex configurations of Out-of-Order
processors, as well as its simpler architecture and not having a branch predictor.

A comparison of the circuit scales of the fetch stage shows that the reduction of a branch predictor
contributes to a significant reduction in circuit scales.

Table 11 shows the area breakdown for each processor. Due to the complexity of the architecture,
superscalar processors consist of many pipeline stages. In contrast, VLIW processors have a simpler
design, allowing certain stages to be eliminated. Additionally, branch predictor of AnyCore is
configured in the fetch stage.

Figure 8 shows the circuit scales based on changes in the number of ALU slots in RVC-VOI. It
can be observed that the circuit scales increase proportionally with the number of slots. However,
even at the maximum configuration of 8-slot, the scales remain smaller than that the superscalar
processors shown in Table 10, indicating that the RVC-VOI maintains a compact design.

Additionally, the layout design of the RVC-VOI processor configured with 4-slot was performed
using Synopsys IC Compiler II (Ver. R-2020.09-SP5). The layout diagram is shown in Figure 9. As
a result, the chip size was measured to be 1,089µm× 1, 088µm. Since the size of the AnyCore chip
within Reference [2] is 25mm2, the RVC-VOI chip is significantly smaller in comparison.

195

Extended VLIW Processor with Overlapping RISC-V Compressed and Privileged Instructions

Figure 8: Circuit scales of RVC-VOI at each parameter.

Figure 9: Layout diagram of a 4-slot RVC-VOI.

7 Conclusion and Future Work

In this paper, we proposed a method called CAIC, which converts all integer instructions to com-
pressed instructions, and an extended VLIW processor called RVC-VOI that adapts CAIC method
and implements privileged instructions. Through the CAIC method, compressed instructions, which
traditionally required simultaneous use with basic instructions in RISC-V, can be utilized inde-
pendently. Additionally, the RVC-VOI architecture enables the implementation of compressed in-
structions along with privileged instructions of different instruction lengths, without increasing the
number of slots and nop instructions.

The CAIC method achieved code size reductions of 7.2% for the QuickSort program and 25.9% for
the Dhrystone program compared to programs consisting only of basic instructions. The evaluation
of RVC-VOI covered execution time, energy consumption, and circuit scale. For execution time,
RVC-VOI outperformed the superscalar processor in the QuickSort program and indicated sufficient
execution times in the high-IPC program. In terms of energy consumption, it achieved a reduction of
up to 1.3%. Additionally, the circuit scale was successfully reduced to 2.8% compared to the minimal

196

International Journal of Networking and Computing

configuration of AnyCore. Therefore, RVC-VOI achieved performance comparable to superscalar
processors while significantly reducing both energy consumption and circuit scale.

In future work, we plan to improve the CAIC method for more efficient conversion by supporting
the Zc extension that provides byte and half word size memory access compressed instructions, and
developing a compiler that supports the RVC-VOI architecture to evaluate more realistic conditions.
We also plan to design the VLSI of RVC-VOI using more advanced process technology.

Acknowledgment

This work was supported VLSI Design and Education Center (VDEC) of the University of Tokyo
in collaboration with NIHON SYNOPSYS G.K., Cadence Design Systems and Rohm Corporation.
The authors are grateful for them for their support. We are also grateful to Eric Rotenberg and his
students for research collaboration on FabScalar and AnyCore at North Carolina State University.

References

[1] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on edge computing
research. IEEE Access, 8:85714–85728, 2020.

[2] Rangeen Basu Roy Chowdhury, Anil K. Kannepalli, Sungkwan Ku, and Eric Rotenberg. Any-
core: A synthesizable rtl model for exploring and fabricating adaptive superscalar cores. In 2016
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 214–224, 2016.

[3] Eric Chun, Zeshan Chishti, and T. N. Vijaykumar. Shapeshifter: Dynamically changing pipeline
width and speed to address process variations. In 2008 41st IEEE/ACM International Sympo-
sium on Microarchitecture, pages 411–422, 2008.

[4] Islam Elsadek and Eslam Yahya Tawfik. Risc-v resource-constrained cores: A survey and
energy comparison. In 2021 19th IEEE International New Circuits and Systems Conference
(NEWCAS), pages 1–5, 2021.

[5] RISC-V Foundation. riscv-gnu-toolchain. https://github.com/riscv-collab/

riscv-gnu-toolchain, Accessed on July 31, 2024.

[6] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor Loi, Antonio Pullini, Da-
vide Rossi, Eric Flamand, Frank K. Gürkaynak, and Luca Benini. Near-threshold risc-v core
with dsp extensions for scalable iot endpoint devices. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 25(10):2700–2713, 2017.

[7] OpenHW Group. Cv32e40p. https://github.com/openhwgroup/cv32e40p, Accessed on July
31, 2024.

[8] Mark Horowitz. Computing’s energy problem (and what we can do about it). In 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pages 10–14,
2014.

[9] RISC-V international. riscv-tests. https://github.com/riscv-software-src/riscv-tests,
Accessed on August 10, 2024.

[10] RISC-V international. Volume 1, unprivileged specification version 20240411, 2024. https:

//riscv.org/technical/specifications, Accessed on June 26, 2024.

[11] Takuto Kanamori and Kenji Kise. Rvcorep-32ic: An optimized risc- v soft processor support-
ing the compressed instructions. In 2021 IEEE 14th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC), pages 38–45, 2021.

197

Extended VLIW Processor with Overlapping RISC-V Compressed and Privileged Instructions

[12] Vasileios Kontorinis, Amirali Shayan, Dean M. Tullsen, and Rakesh Kumar. Reducing peak
power with a table-driven adaptive processor core. In 2009 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pages 189–200, 2009.

[13] Nguyen My Qui, Chang Hong Lin, and Poki Chen. Design and implementation of a 256-bit
risc-v-based dynamically scheduled very long instruction word on fpga. IEEE Access, 8:172996–
173007, 2020.

[14] S. Segars, K. Clarke, and L. Goudge. Embedded control problems, thumb, and the arm7tdmi.
IEEE Micro, 15(5):22–30, 1995.

[15] Kinza Shafique, Bilal A. Khawaja, Farah Sabir, Sameer Qazi, and Muhammad Mustaqim.
Internet of things (iot) for next-generation smart systems: A review of current challenges,
future trends and prospects for emerging 5g-iot scenarios. IEEE Access, 8:23022–23040, 2020.

[16] Manoj Sharma, Ekansh Bhatnagar, Kartik Puri, Amitav Mitra, and Jatin Agarwal. A survey
of risc-v cpu for iot applications. In Proceedings of the International Conference on Innovative
Computing & Communication (ICICC), 2022.

[17] Haruhiro Tanaka and Takahiro Sasaki. Extended vliw processor based on risc-v compressed
instruction set. In 2024 Twelfth International Symposium on Computing and Networking Work-
shops (CANDARW), pages 360–364, 2024.

[18] Stephan Wong, Thijs van As, and Geoffrey Brown. ρ-vex: A reconfigurable and extensible
softcore vliw processor. In 2008 International Conference on Field-Programmable Technology,
pages 369–372, 2008.

[19] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele Zorzi. Internet
of things for smart cities. IEEE Internet of Things Journal, 1(1):22–32, 2014.

198

