
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 15, Number 2, pages 199–219, July 2025

Asynchronous Separation of Unconscious Colored Robots

Paola Flocchini

School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, Canada

Debasish Pattanayak

School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, Canada

Francesco Piselli

Department of Mathematics and Computer Science,
University of Perugia, Perugia, Italy

Nicola Santoro

School of Computer Science, Carleton University,
Ottawa, Canada

Yukiko Yamauchi

Faculty of ISEE, Kyushu University,
Fukuoka, Japan

Received: February 14, 2025
Revised: April 25, 2025
Accepted: June 9, 2025

Communicated by Akihiro Fujiwara

Abstract

We consider the recently introduced model of autonomous computational mobile entities
called unconscious colored robots. The entities are the traditional oblivious silent mobile robots
operating in the Euclidean plane in Look-Compute-Move cycles. However, each robot has a
permanent external mark (or color) from a finite set, visible by the other robots, but not by
the robot itself. The basic problem for these robots is separation, requiring all the robots with
the same color to separate from the other robots, each group forming a recognizable geometric
shape (e.g., circle, point, line); this task must be performed in finite time, in spite of the robots
being unconscious of their own color, unable to communicate, and oblivious. This problem
has been studied and solved in the synchronous setting (SSS 2023). In this paper we show
that the problem is solvable also under the more difficult asynchronous adversary, provided
the robots agree on the orientation of one axis, and no robot is uniquely colored. The proof is
constructive: we present a distributed algorithm that allows unconscious colored robots with
one-axis agreement to separate into parallel lines under the asynchronous scheduler.

Keywords: Mobile robots, Separation, Externally visible colors, Line Formation.

199

Asynchronous Separation of Unconscious Colored Robots

1 Introduction

1.1 Framework

In distributed computing, the theoretical interest in multi-robot systems and robotic swarms has
focused on computational and complexity issues arising in systems of autonomous mobile computa-
tional entities. Several models, emphasizing different computational aspects, have been considered,
including population protocol models (e.g., [1, 2, 3]), metamorphic robotic system models (e.g.,[4, 5, 6]),
and the de facto standard, oblivious silent mobile robots model (e.g.,[7, 8, 9]), which we consider here.

In the basic version of this last model, called OBLOT , the robots are simple mobile computational
entities operating in Look-Compute-Move cycles in the Euclidean plane, where they are viewed as
points. In each cycle, an active entity observes the position of other robots in its local coordinate
system (Look), determines a destination (Compute), and moves toward it (Move). Movements are rigid
if they always reach their destination, and non-rigid if guaranteed only to traverse at least a distance
δ (unknown to the robots). The entities are oblivious (have no memory of activities performed
in previous cycles), silent (they have no direct means of communication), and are homogeneous
(they have no internal identifiers nor external distinguishing features, and execute the same protocol
to determine their destination). Furthermore, there might be no agreement between their local
coordinate systems nor on clockwise orientation of the plane (called chirality).

Regarding time and synchronization of the robots, two settings, synchronous and asynchronous,
are considered, each controlled by an adversary called scheduler: in the synchronous setting, time is
divided into rounds and, in each round, the adversarial scheduler SSYNC selects a non-empty subset
of the robots to be active and execute their cycle simultaneously; in the asynchronous setting, there
is no common notion of time, and the decision of when a robot is activated and executes its cycle, as
well as the duration (arbitrary but finite) of each operation in that cycle, is made by the adversarial
scheduler ASYNC. The adversarial schedulers are however fair: they activate each robot infinitely
often. The fairness condition allows to measure time in terms of successive sequences of activations
of robots, called epochs: the first epoch starts with the first activation[] each epoch ends as soon as
all robots have been activated; and the successive epoch starts with the first activation after the end
of the previous epoch.

An extensive amount of research has been carried out on the computational and complexity
aspects of problem solving by robots in the OBLOT model. The majority of the research has
focused on the class of pattern formation problems (e.g., [7, 8, 9, 10, 11]), and in particular on the
point formation (also known as gathering or rendezvous) problem (e.g., [12, 13, 14, 15]). Complete
characterization of formable patterns has been established when the robots agree on chirality based
on the symmetry of initial and target patterns [9, 11], and, starting from any initial configuration,
based on the level of agreement on the local coordinate systems [8].

1.2 Heterogeneity

Each of the defining properties of the OBLOT model severely restricts the computational capability
of the robots. The extent and impact of the restriction is immediately evident for properties such as
lack of persistent memory and absence of direct means of communication. Less obvious but equally
damaging is homogeneity of the robots; indeed, the combination of anonymity (lack of distinguishing
features) and uniformity (executing the same protocol) may render symmetry breaking impossible,
which in turn renders many problems unsolvable for these robots.

This has motivated the investigation of systems where the robots, still oblivious and silent, are
however heterogeneous, and different models have been examined: each robot has a distinct identifier
(externally visible or invisible) [10]; every robot is assigned an identifier from a small set (hence there
are replications) which are visible by all [16]; the identifiers from a small set are externally invisible
[17, 18, 19].

In this line of research, a particularly interesting theoretical model is that of unconscious colored
robots recently introduced by Seike and Yamauchi [20]. This model, which we shall denote UCR,
extends the computational capabilities of OBLOT by endowing each robot with an identifier, called
color, from a small set, which is visible by the other robots but unknown to the robot (hence the

200

International Journal of Networking and Computing

term “unconscious”); more precisely, in the Look operation, a robot can see the colors of all the other
robots, but not its own. This model in practice describes a heterogeneous system of non-identical
robots lacking self-awareness; this means that, unlike the other heterogeneous models, UCR has the
unique property that, even if the robots have distinguishing features, they are still uniform in the
sense that they execute the same algorithm.

Further observe that the model of each entity having an input value, visible to all but not to itself,
is a central model in the field of Communication Complexity; the model, called Number-on-Forehead
(NOF), was introduced by Chandra, Furst, and Lipton [21], and is known to have connections to
circuit lower bounds and to additive combinatorics (e.g., [22, 23, 24]).

In this paper, we continue the investigation started in [20] by examining and solving a basic
problem described next.

1.3 The Separation Problem

The problem we consider is that of separation. At an abstract level, this is the basic problem in a
multi-robot system of having the robots to form groups based on certain identifiable property.

In addition to its inherent theoretical interest, this problem is also of practical interest. For
example, a solution to the separation problem can act as an intermediate procedure to determine
faults in the absence of internal diagnosis. There are several works [25, 26, 27] on detection of faults
by diagnosis by other robots in the system. Another application is partitioning of tasks [28, 29]
among a group of robots, where separation can be used as a precursor.

In the UCR model, the separation problem has a natural definition as the requirement that all
the robots with the same color separate from the other robots, each group forming a recognizable
geometric shape (e.g., point, circle, line); this task must be performed in finite time, despite the
robots being unconscious of their own color, unable to communicate, disoriented and oblivious.

This version of the problem has been introduced and studied in [20]. They first showed that
separation into points is not generally feasible, as there are initial configurations (those symmetric
with respect to the positions and colors of the robots) where the robots cannot separate into points
irrespective of the adversarial synchronization scheduler.

Then, they showed that, under the synchronous adversarial scheduler, SSYNC, the robots can
separate into concentric circles, starting from any arbitrary initial configuration with no uniquely
colored robots (i.e., where there are at least two robots for each color); they are able to do so
assuming that the robots agree on chirality (no other assumption on the coordinate system) and
that movements are rigid. That is, the separation is indeed solvable under SSYNC. This leaves open
whether separation is possible under the more powerful adversarial scheduler ASYNC, and under
what conditions. In this paper we provide definite answers to these questions.

1.4 Contributions

In this paper, we prove that it is possible for the robots to separate under ASYNC starting from any
initial configuration with no uniquely colored robots; they are able to do so under a weak assumption
on the level of agreement among the local coordinate systems, and with non-rigid movements.
Furthermore, we prove that, without any such agreement, the problem becomes unsolvable.

More precisely, we consider robots that agree on the direction and orientation of just one axis. We
show how, starting from any arbitrary initial configuration with no uniquely colored robots, under
the ASYNC scheduler, they can separate into parallel lines, one for each color. We present special
solutions for n < 5 robots, and a general solution for n ≥ 5.

We also analyze the complexity of the proposed algorithm and show that its execution time is
O(n⌈(h + w)/δ⌉) epochs under the ASYNC scheduler, where n is the total number of the robots,
h and w are the height and width of the smallest enclosing rectangle of the initial configuration,
respectively, and δ is the minimum distance a robot moves in one activation.

We conclude by proving that, without any form of agreement on direction and orientation of at
least one axis, the separation into lines problem is not always solvable, even if the robots agree on
chirality (that is, they agree on the clockwise and counterclockwise directions).

201

Asynchronous Separation of Unconscious Colored Robots

2 Model

We consider a set of n punctiform mobile robots R = {r1, r2, . . . , rn} located and operating in
the Euclidean plane R2. Let pi(t) denote the position of robot ri at time t, expressed in a global
coordinate system (unknown to the robots). Associated with each robot ri is an identifier ci, called
color, from a totally ordered set H known by all robots. Let C ⊆ H be the subset of colors for which
there exist robots holding those colors. Let |C| = κ be the size of C. The robot configuration at time
t is a multiset P (t) = {(p1(t), c1), . . . , (pn(t), cn)}. We assume that all robots are initially located in
distinct locations and that each color in C is held by more than one robot.

The robots are oblivious, i.e., they do not retain memory of past computations; anonymous, i.e.,
they do not possess identifiers; silent, i.e., they do not communicate explicitly; and uniform, i.e., they
execute the same algorithm. When a robot is activated, it performs a Look-Compute-Move cycle,
composed of three phases.

In the Look phase, a robot obtains a snapshot of the positions of all the other robots, expressed in
its local coordinate system; the snapshot contains also the colors; however, it cannot perceive its own
color. We shall denote the snapshot obtained by ri at time t by Zi(t). The snapshot is egocentric,
that it considers the position of ri as the origin; however chirality and unit distance might differ from
one robot to another.

In the Compute phase, using the obtained snapshot as input, it executes a deterministic algorithm
ψ (the same for all robots) to compute a destination.

In the Move phase, the robot moves toward the computed destination with non-rigid movements:
the robot movement can be stopped at any point after traversing a distance δ (unknown to the
robots).

The activation of the robots and the duration of the phases of their cycles are under the control
of an adversary, called scheduler. There are two types of settings, and thus schedulers, synchronous
and asynchronous. In the synchronous setting, time is divided into rounds and, in each round, the
adversarial scheduler SSYNC selects a non-empty subset of the robots; the selected robots become
active and execute their cycle simultaneously. In the asynchronous setting, there is no common
notion of time, and the decision of when a robot is activated and executes its cycle, as well as the
duration (arbitrary but finite) of each operation in that cycle, is made by the adversarial scheduler
ASYNC. In both settings, the scheduler is fair, i.e., it activates each robot infinitely often. Time is
measured in terms of successive epochs, each ending when all robots have completed at least one
cycle.

The robots agree on the positive direction of one axis (say the y-axis), but not necessarily on
that of the other.

The problem of separation into lines asks the following. A robot group located at arbitrary
initial distinct positions on the Euclidean plane R2, must position themselves on parallel lines Lci for
ci ∈ C, such that each line contains only robots of the same color. In other words, the robots must
satisfy the following geometric predicate:

SepL ≡{∃t : (∀t′ > t, P (t′) = P (t)) and

(∀ci ∈ C, ∃Lci : ∀(pj(t), cj) ∈ P (t),
cj = ci ⇐⇒ pj(t) ∈ Lci) and(
∀ci, cj ∈ C,Lci ∥ Lcj and Lci ̸= Lcj if ci ̸= cj

)
}

where Lci ∥ Lcj means that the lines Lci and Lcj are parallel. Note that, these lines are not
determined a priori.

3 Separation into Lines: n ≥ 5

In this section, we present a solution to the separation problem for n ≥ 5; the case n ≤ 4 will be
addressed in Section 4.

202

International Journal of Networking and Computing

3.1 Terminology

Given a configuration P , where pj = (xj , yj) (1 ≤ j ≤ n), let lx = min
1≤j≤n

(xj), rx = max
1≤j≤n

(xj),

dy = min
1≤j≤n

(yj), and uy = max
1≤j≤n

(yj). The rectangle with the four corners (lx, dy), (lx, uy), (rx, uy),

and (rx, dy) (ref. Fig. 1a) shall be called the Smallest Enclosing Rectangle of P , and denoted by
SER(P). The robots can always agree on the SER(P) since they agree on the direction of one
axis and thus obtain a clear ordering on the coordinates along the agreed axis, and simultaneously
determine extreme coordinates perpendicular to it.

The rectangle SER(P) is said to be improper if it degenerates to a horizontal line segment (i.e.,
if uy = dy) or vertical line segment (i.e., if lx = rx) or a point (i.e., if uy = dy and lx = rx), and
proper otherwise. For a proper SER(P), we define the height h as h = |uy − dy| and the width w as
w = |rx − lx|.

For a proper SER(P), we define two significant lines: Lu is defined as the upper side of the
rectangle; i.e., the line segment joining (lx, uy) and (rx, uy). Ld is defined as the bottom side of the
rectangle i.e., the line segment joining (lx, dy) and (rx, dy).

3.2 Outline of Algorithm SeparateLines for n ≥ 5

Ideally, the solution algorithm is composed of three stages: Initialization, Signaling, and Finalization.
In the Initialization stage, the first objective of the robots is to move so that they all are on

distinct locations of the same line, denoted Ξ, perpendicular to the y-axis.
If the SER of the initial configuration is proper, then Ξ coincides with Lu, the top side of the

smallest enclosing rectangle (ref. Fig. 1a). In this case, the robots will all move to reach Lu (ref.
Fig. 1b). If the SER of the initial configuration is improper because all robots are on the same
horizontal line, Ξ is exactly that line. If instead the SER of the initial configuration is improper
because all robots are on the same vertical line, Ξ is the horizontal line passing through the position
of the topmost robot; note that, in this last case, the second robot in the vertical order of the robots
will be made to move horizontally to create a proper SER.

The second and final goal of the robots in this stage is to move to equidistant positions on Ξ
in the segment delimited by the two extreme robots (i.e., the two robots at maximum horizontal
distance as depicted in Fig. 1c). Once the robots are equidistant on Ξ (ref. Fig. 1d), the following
grid G is uniquely defined: the width w of the grid is w = α(n−1), where α is the horizontal distance
between two consecutive robots on Ξ; the topmost horizontal points of the grid are precisely those
occupied by the robots on Ξ; the height h of the grid is h = α(κ+ 1), where κ is the size of color set
(ref. Fig. 1e). At this point, the robots proceed to the Signaling stage of the algorithm.

The Signaling stage begins by choosing the leader robots. If the number of robots is odd, there
exists a unique median robot on Ξ (robot at Em in Fig. 1h), and that is naturally chosen as the
leader. If the number of robots is even, the two extreme robots on Ξ (robots at El and Er in Fig. 1e)
are chosen as leaders; each will be responsible for its closer half of the other robots. The elected
leader robots then guide the other robots to reach an empty appropriate grid position in the same
column as the robot. The goal is that, at the end of this stage, all non-leader robots are located at
grid points such that each row of the grid only contains robots with the same color.

Thus the objective of this stage is to move each non-leader robot to a grid point corresponding to
its color. This is achieved by the leader(s) signaling its closest (non-leader) robot by moving to a
signal point at a predefined distance, chosen to be α/3. Any robot can determine the signaled robot
and the corresponding destination grid point (of the signaled robot) based on the angle the signal
point makes at the closest grid point (the location of the leader on Ξ) with Ξ. Upon observing the
leader at a signal point, the signaled robot moves vertically downwards to the grid point indicated by
the signal angle. The leader stops signaling and returns to its grid point on Ξ after it observes that
the signaled robot has reached the destination grid point. Subsequently, it continues the signaling
process for the next closest (non-leader) robot on Ξ. Once all the non-leader robots reach their
corresponding grid points, the Finalization stage begins.

In the Finalization stage, each leader robot moves to the grid point on its column corresponding
to the row of its color.

203

Asynchronous Separation of Unconscious Colored Robots

(a) P (0) and SER(P (0)) (b) Cpr

(c) Line Formation (d) CΞ

El Er

(e) CSignal for even n (f) Cfinal

(g) Cterm

Em

(h) CSignal for odd n

Figure 1: Figures showing a sample execution of Algorithm SeparateLines.

Consider first when the number of robots is odd, and let rl be the only leader robot. Let rc be
a robot of the same color as the leader. Such a robot rc always exists, since there are at least two
robots with the same color. The robot rc moves vertically downwards (for a fixed distance, chosen
to be α/4) to signal rl, and rl moves to the grid point corresponding to the grid row where rc was
located. Once rc observes that rl has reached the point, it returns to its grid point concluding the
separation.

When the number of robots is even, and thus there are two leaders, rl and r′l, the procedure
is a little bit more involved. If rl and r

′
l are of the same color and no other robot exists with the

same color as rl, then they do not need to move, and consequently do not need to receive signals.
Otherwise, each leader needs to be signaled by a robot of the same color.

Let rc be a robot with the same color as rl. If rc and rl are on the same half of Ξ, then rc moves

204

International Journal of Networking and Computing

down for a distance α/4, otherwise it moves up for the same distance (ref. Fig. 1f). This movement
of rc acts as a signal for rl. Notice that, rc can realize its own color by the vertical distance from Ξ.
Using this signal rl moves to the row of rc, and analogously for r′l (which reaches the same row of its
signaling robot r′c). Once rl (r

′
l) reaches the corresponding grid row of rc (r′c), rc (r′c) moves back to

its nearest grid point. This concludes the separation into lines (ref. Fig. 1g).

There are some exceptional cases that we need to consider when an initial configuration is similar
to a configuration from Signaling stage or Finalization stage, but the robots in the same row do not
have the same color. We call these configurations invalid signal and invalid terminal configurations.
In case of an invalid signal configuration, a leader can recognize the invalidity, and it signals reset to
form Ξ by moving to a special signal point (reserved for reset). Then the signaling stage restarts
again from configuration with equidistant robots on Ξ. In case of an invalid terminal configuration,
a leader robot may move to a row (due to a wrong signal). Then a robot (other than the leader)
realizing the invalidity, moves horizontally to break the grid. This restarts the Initialization stage.

3.3 Classes of Configurations

Let C be the set of all possible configurations P (t) such that all robots occupy distinct positions. Let
pi(t) = (xi, yi) be the position of robot ri. Define Cpr as the set of all possible configurations such
that xi ̸= xj for any pair of robots ri and rj (i ̸= j). We define Carb as C \ Cpr. For a configuration
in Cpr, let (p1, p2, . . . , pn) denote the robots’ positions in the increasing order of x-coordinates. Note
that two different robots may have different orders, since they do not agree on the positive direction
of x-axis (also referred to as the right side). If n is even, we designate the leaders as the two extremes
(i.e., robots at p1 and pn); if n is odd, the leader is the median robot (i.e., the one at p⌈n

2 ⌉).

We define the horizontal distance between two robot positions as |xi − xj |. Let α be |x2−xn−1|
n−3 .

An α-grid on the plane is a set of points where any two points are at a horizontal distance iα and
vertical distance jα, for i, j ∈ N. We call the grid lines parallel to the y-axis as columns, and the
ones perpendicular as rows.

First, we establish configurations that belong to the class Cα. Intuitively, this class of configurations
represents the configurations where each robot is located on some grid point of the α-grid except the
leader(s) and at most two additional robots. More precisely, in a configuration in Cα, at most one
non-leader robot can occupy a non-grid point on each side of the vertical line of symmetry. However,
all non-leader robots in Cα must remain on the grid columns.

The class of configurations CΞ contains the configurations where all the robots are in the same
row of an α-grid; in such a case the row where they are located is called the principal line Ξ.

For a configuration P (t) ∈ Cα, we define the leader base as the point that contains the leader(s):
Em = ((lx + rx)/2, uy(0)) when n is odd; El = (x2 − α, uy(0)) and Er = (xn−1 + α, uy(0)) when n is
even, where uy(0) represents the maximum value of y-coordinate in the initial configuration P (0).

Consider P (t) ∈ Cα. Let Lu be the uppermost row of the α-grid. Let τ = π/nκ be the unit angle.
The signal circle is a circle of radius α/3 centered at the leader base. A signal angle is always an
integral multiple of the unit angle. A signal point s is a point on the signal circle that makes a signal
angle with Lu at the leader base. We define a signal segment as the line segment joining a signal
point and the leader base, not including these endpoints.

We define Csignal ⊂ Cα for odd n as the class of configurations where either

(i) a leader is on the signal segment and all non-leader robots are on α-grid points, or

(ii) a leader is at a signal point and at most one non-leader robot is not at an α-grid point.

When n is even, Csignal has at most one non-leader robot on either side of the vertical line of symmetry
not on the α-grid.

We define Cfinal ⊂ Cα as the class of configurations where at most the leaders are not on an
α-grid point, and there are at most two robots that are vertically at most a distance of α/4 away
from a grid point of the α-grid.

The class of configurations where all the robots are on the α-grid points is denoted by Cterm.

205

Asynchronous Separation of Unconscious Colored Robots

Carb Cpr CΞ

CsignalCfinalCterm

Initialization Line Formation

S
ig
n
a
llin

g

Last

S
ig
n
a
llin

g

R
eset

Finish

R
es
ta
rt

R
es
ta
rt

Figure 2: Transition Diagram.

We defined all the classes of configurations for the set of points occupied by the robots. These
classes do not consider the color of the robots. To ensure that the robots satisfy the geometric
predicate SepL, the colors of the robots on the same row must be the same. While the positions of
the robots may belong to a particular class of configuration, there are many configurations where the
colors of the robots do not satisfy the required criteria. In that case, we show that there exists at
least one robot that identifies the invalidity of the configuration and leads to Restart(Reset) of the
configurations to Cpr(CΞ).

We present a transition diagram in Fig. 2 that shows the evolution of configurations over these
classes of configurations, and a series of figures showing the execution of Algorithm SeparateLines
in Fig. 1.

Procedure 1: Initialization
Input: Configuration Zi(t) ∈ Carb
Output: destination

1 Let uy be the maximum y-coordinate in Zi(t);
2 Let SER be the smallest enclosing rectangle;
3 if ∃rj ̸= ri : uy > yj > yi then
4 return (xi, yi); /* Higher priority robot moves */

5 else if ∃rj ̸= ri : xj = xi then
6 if yi > yj and (xi, uy) is empty then
7 return (xi, uy); /* Higher robot moves up */

8 else
9 rk ← closest horizontal robot to ri;

10 if rk exists then
11 x′i ← (xk + 2xi)/3;
12 return (x′i, uy); /* Move toward closest horizontal robot */

13 else
14 d← uy − yi;
15 return (xi + d, uy); /* No horizontal robot case */

16 else
17 return (xi, uy); /* Move up to Lu */

3.4 Procedure Initialization

Procedure Initialization transforms a configuration in class Carb into a configuration in class Cpr.
While doing so, it may form a line containing all the robots. The procedure operates moving

the robots in a sequential manner based on the decreasing order of the y-coordinates. Since the

206

International Journal of Networking and Computing

robots agree on the y-axis, they agree on such an order. All robots having the same y-coordinate
are allowed to move at the same time. The objective of this movement is to send the robots to the
upper-most line Lu of the SER(P (t)).

In Cpr, all robots must have distinct x-coordinates; hence, the case that needs special attention
is when there are multiple robots with the same x-coordinate. We remind that, in P (0) the robots
occupy distinct positions, hence no two robots share both x and y-coordinates.

When some robots have the same x-coordinate, then they move one by one as follows. Let r1 and
r2 be two robots located at (x1, y1) and (x1, y2) such that y1 > y2, and no other robot is located on
the line segment joining them. Now, the robot r1 has higher priority of movement among the two.
First r1 moves vertically such that it reaches (x1, uy). After r1 reaches Lu, r2 chooses a destination
that is on Lu as follows. Let r3 at (x3, y3) be a robot such that |x3 − x1| > 0 is the smallest among
all such robots, i.e., the closest horizontal robot. Now, r2 sets the destination to (x2, uy), where
x2 = (x3 + 2x1)/3 (ref. Fig. 1b).

We need to consider a special initial configuration when all robots share the same x-coordinate
but different y-coordinates. Let r1 be the topmost robot located at (x1, uy). Let r2 located at (x1, y2)
be the robot closest to r1. Robot r2 sets its destination to (x1 + uy − y2, uy). Once r2 reaches this
point, or stops on its way due to non-rigid movement, the configuration allows the execution of
the above process, where a closest horizontal robot with a different x-coordinate is needed. The
pseudocode is given in Procedure 1: Initialization.

3.5 Procedure Line Formation

The input configuration for Procedure Line Formation is a configuration in Cpr at time t̄, where
all robots have distinct x-coordinates. First step of line formation asks all the robots to move to the
upper line Lu of SER(P (t̄)). Since no two robots are on the same vertical line, all robots can move
in parallel to reach Lu adhering to their activation schedule. Once, all the robots are located on Lu,
the next step is to form an equidistant line to achieve a configuration in class CΞ.

Without loss of generality, let (r1, . . . , rn) be the ordering of the robots from left to right. First
they compute the equidistant positions on the line by dividing the distance between r1 and rn into
n− 1 parts. The ith equidistant position is at ℓi = (x1 + (i− 1)β, uy), where β = (xn − x1)/(n− 1).
A robot at ri that is the ith robot from the left, moves to ℓi if no other robot is located between pi
and ℓi. This results in a configuration of the class CΞ. The pseudocode is given in Procedure 2:
Line Formation.

Procedure 2: Line Formation
Input: Configuration Zi(t) ∈ Cpr
Output: destination

1 Let uy be the maximum y-coordinate in Zi(t);
2 Let (r1, . . . , rn) be robots ordered by increasing x-coordinate;
3 if yi ̸= uy then
4 return (xi, uy); /* Move to upper line */

5 else if ∄rj ̸= ri : yj ̸= uy then
6 if Zi(t) /∈ CΞ then
7 β ← (xn − x1)/(n− 1); /* Distance between points */

8 ℓi ← (x1 + (i− 1)β, uy); /* Target equidistant position */

9 if pi ̸= ℓi and no robot in piℓi then
10 return ℓi; /* Move if path is clear */

11 else
12 return (xi, yi); /* Stay in position */

207

Asynchronous Separation of Unconscious Colored Robots

3.6 Procedure Signal

Notice that configurations of CΞ are included in Csignal. First, we describe the behavior of the leader
in case of n being odd, and then we present additional requirements when n is even. The Procedure
Signal works in a sequential manner, with leader(s) giving “signals” to non-leader robots by moving
to a signal point.

The signaling works in three steps. Let τ be the smallest signal angle defined by π/(nκ), where
κ = |C|. Notice that any robot can determine κ from their observation, since no robot has a unique
color. When n is odd, the leader is the median robot located at Em and it determines the signal
point. A signal point s(i,k) is a point at a distance α/3 from Em such that it makes a signal angle
θ with Ξ. If the closest robot rx at px with color k located at iα distance from Em on the right
side is in the next turn to move, the leader computes the clockwise signal angle θ = ((i− 1)κ+ k)τ .
If the closest robot is on the left side, then θ is counterclockwise signal angle from Ξ. Precisely,
∠s(i,k)Empx = θ.

The robot located at rx observes the leader at the signal point s(i,k). Then it computes the
corresponding signal rank i and signal color k, from θ, as follows.

Let η =
θ

τ
. Then i =

⌈η
κ

⌉
, k = ((η − 1) mod κ) + 1.

The robot at horizontal distance iα from the leader moves to the line at vertical distance kα from
Ξ. Once the leader has verified that the signaled robot has reached its destination, it returns to Em.
Similarly, in the even case, the signal angles are determined by the smallest angle τ = π/(nκ), and
the ranks are determined by the distance iα from the closest leader robot El (or Er). At the end of
Procedure Signal, the configuration belongs to the class Cfinal.

Function 3: CheckLeader
Input: Robot position (xi, yi) of ri, Configuration Zi(t)
Output: (isLeader, E) where isLeader is boolean and E is leader base

1 if n is odd then
2 Em ← median position on Ξ ;
3 return (ri = closest robot to Em, Em) ;

4 else
5 El, Er ← leftmost and rightmost positions on Ξ ;
6 E ← closest of El, Er to ri ;
7 return (ri = closest robot to E,E) ;

Function 4: SignalConversion
Input: θ or (i, k), mode ∈ {angle2rank, rank2angle}
Output: (i, k) or θ

1 if mode = angle2rank then
2 η ← |θ/τ | ;
3 i← ⌈η/κ⌉ ; /* Target rank */

4 k ← ((η − 1) mod κ) + 1 ; /* Target color */

5 return (i, k)

6 else
7 θ ← ((i− 1)κ+ k)τ ;
8 return θ

208

International Journal of Networking and Computing

Procedure 5: Signal
Input: Configuration Zi(t) ∈ CΞ ∪ Csignal
Output: destination

1 τ ← π/(n|C|) ; /*Unit angle between signals*/

2 θreset ← π/2− τ ; /*Special angle for reset signal*/

3 (isLeader, E)← CheckLeader((xi, yi), Zi(t)) ;
4 if isLeader then
5 if on signal segment or at signal point then
6 θ ← arctan((yi − yE)/(xi − xE)) ; /*Current signal angle*/

7 if θ ∈ {θreset, π − θreset} then
8 if all robots on Ξ then
9 return E ; /*Reset complete*/

10 return (xE + α
3 cos(θ), yE + α

3 sin(θ)) ; /*Continue reset signal*/

11 (i, k)← SignalConversion(θ,angle2rank) ;
12 rt ← robot at horizontal distance iα from E with color k; /*Target robot*/

13 if rt does not exist or is at correct position then
14 return E ; /*Signal complete*/

15 return (xE + α
3 cos(θ), yE + α

3 sin(θ))

16 else
17 if different colored robots in the same row then
18 return (xE + α

3 cos(θreset), yE + α
3 sin(θreset))

19 rnext ← closest unpositioned robot on Ξ ;
20 if rnext exists then
21 θ ← SignalConversion(|xnext − xE |/α, color(rnext),rank2angle) ;
22 if (n odd & xnext < xE) or (n even & E = Er) then
23 θ ← π − θ ; /*Adjust for side*/

24 return (xE + α
3 cos(θ), yE + α

3 sin(θ))

25 else if leader at signal point then
26 θ ← arctan((ys − yE)/(xs − xE)) ;
27 if θ ∈ {θreset, π − θreset} then
28 return (xi, yΞ)

29 (i, k)← SignalConversion(θ,angle2rank) ;
30 if at iα from E then
31 return (xi, yΞ − kα)

32 return (xi, yi) ; /*Default: maintain position*/

3.6.1 Special Signal

The Special Signal handles initial configurations in Csignal that are invalid and may appear as
an intermediate stage of signaling. These invalid initial configurations are detected in two distinct
scenarios:

1. When the leader observes itself at a signal point in the configuration:

� The leader checks if its signal targets the closest non-positioned robot,

� If the signal is invalid, the leader immediately returns to Ξ.

2. When the leader is on Ξ in the configuration and the configuration contains non-leader robots
at wrong positions, i.e., robots of different colors occupy the same row in the α-grid.

209

Asynchronous Separation of Unconscious Colored Robots

The leader initiates a reset on observing this invalid configuration. The reset is initiated by the
leader moving to a special signal point at angle θreset = π/2− τ from Ξ, where τ is the unit angle.
This angle is specifically chosen to be distinct from any regular signal angle used during normal
operation.

Upon observing the leader at the reset signal point, all non-leader robots return to Ξ. The leader
maintains its position at the reset signal point until all robots have returned to Ξ. Once all robots
are back on Ξ, the leader returns to its base position, and the signaling process can start properly
from a valid configuration of the class CΞ. The pseudocode is given in Procedure 5: Signal, which
uses Function 3 CheckLeader and Function 4 SignalConversion.

3.7 Procedure Last Signal

Procedure Last Signal begins when only the leaders rl and r
′
l are on Ξ, and the non-leader robots

lie on their color lines.
If the two leaders have the same color and no non-leader shares their color, then SepL is already

achieved. Otherwise, there exists a robot ra with the same color as a leader. That robot moves
vertically downwards by a distance α/4. This indicates the leader with the same color to go to the
grid row corresponding to ra and stop. Then the robot ra returns to its original grid point.

When the number of robots is even, let ra be the closest robot to rl with cl, located at distance
|rlra|. The robot ra signals the leader by moving α/4 downwards if |rlra| < w/2, otherwise it moves
α/4 upwards. Once the robot rl reaches the grid row corresponding to ra, it stops. Analogously, the
robot with the same color as r′l does the same. This achieves SepL. There could also be the case
where the two leaders have the same color and only one robot shares their color, i.e., one robot must
signal both leaders. In that case, the robot first signals its closest leader and when it is correctly
positioned it signals the other one. Once both leaders are in place the signaling robot goes back to
its original position on the α-grid. Note that when the number of robots is odd, there may be two
robots signaling the median leader if both of them are at the same horizontal distance on either side
of the leader.

Another special situation could happen when the initial configuration is part of Cfinal, but a
signaling robot ru that is not located on the α-grid has a different color from the leader rl. Since
the leader cannot realize its own color, it moves to the grid-row corresponding to ru, which is not
desirable. In this case, any other robot rv that observes the configuration can identify that the
signaling robot ru and the leader robot rl are of different color. Then rv can move horizontally by a
distance α/4 to break the α-grid. This results in a configuration in class Cpr and the robots restart
Algorithm SeparateLines with Procedure Line Formation.

An analogous situation is also applicable to configurations in Cterm, when the leader rl is in the
same grid-row with a robot rw of different color. While both rl and rw cannot realize that they are
of different colors, but any other robot rv can realize this, and break the α-grid, forcing the robots to
restart Algorithm SeparateLines with Procedure Line Formation.

Using all the Procedures above, we present the pseudocode of Algorithm 7 SeparateLines.

3.8 Correctness and Complexity

We establish the correctness and complexity of Algorithm SeparateLines using the following
lemmata and theorem. The complexity is denoted in terms of epochs. Remember that, an epoch is
a minimal time interval in which every robot is activated at least once. Due to the fairness of the
ASYNC scheduler, such an interval is guaranteed to be finite.

Observation 1. We have the following observations with respect to the classes of configurations:

� C = Cpr
⋃
Carb and Cpr

⋂
Carb = ∅;

� Csignal ⊂ Cα ⊂ Cpr;

� Cterm ⊂ Cfinal ⊂ Cα.

210

International Journal of Networking and Computing

Procedure 6: Last Signal
Input: Configuration Zi(t) ∈ Cfinal
Output: destination

1 (isLeader, E)← CheckLeader((xi, yi), Zi(t)) ;
2 w ← width of configuration ;
3 if isLeader then
4 rs ← robot at distance α/4 from grid point ;
5 if rs exists then
6 d← |xs − xi| ; /*Horizontal distance to signaling robot*/

7 if d < w/2 then
8 if rs moved downward then
9 return (xi, ys + α/4) ; /*Accept close downward signal*/

10 else
11 if rs moved upward then
12 return (xi, ys − α/4) ; /*Accept far upward signal*/

13 return (xi, yi) ; /*Stay if no valid signal*/

14 if on grid point then
15 if two non-leader robots of different color in the same row then
16 return (xi + α/4, yi) ; /*Break invalid config*/

17 d← |xi − xl| ; /*Distance to nearest leader*/

18 if closest robot of the same color as nearest leader and not signaling then
19 if d < w/2 then
20 return (xi, yi − α/4) ; /*Signal down if close*/

21 else
22 return (xi, yi + α/4) ; /*Signal up if far*/

23 if at signal position then
24 if corresponding leader at correct grid row then
25 return nearest grid point ; /*Return to grid*/

26 return (xi, yi) ; /*Default: maintain position*/

Algorithm 7: SeparateLines

Input: Robot’s local view Zi(t) of configuration P (t)
Output: destination

1 if P (t) ∈ Cterm then
2 if different colored robots in same row then
3 return (xi + α/4, yi) ; /*Break invalid config*/

4 else if P (t) ∈ Cfinal then
5 return LastSignal(Zi(t)) ;
6 else if P (t) ∈ CΞ or P (t) ∈ Csignal then
7 return Signal(Zi(t)) ;
8 else if P (t) ∈ Cpr and P (t) /∈ CΞ then
9 return LineFormation(Zi(t)) ;

10 else if P (t) ∈ Carb then
11 return Initialization(Zi(t)) ;

12 return (xi, yi) ; /*Default: maintain position*/

211

Asynchronous Separation of Unconscious Colored Robots

Lemma 1. Given a configuration P (t) ∈ Carb, Algorithm SeparateLines using Procedure Initial-
ization reaches Cpr in at most O(n⌈h/δ⌉) epochs, where h is the height of SER(P (t)).

Proof. Procedure Initialization is invoked if the configuration is in class Carb. The objective of
Procedure Initialization is to ensure that all robots end up with distinct x-coordinates.

Since the robots agree on the orientation of y-axis, they can always obtain an order with respect to
the y-coordinates. The robot with the second highest y-coordinate moves to line Lu of SER(P (t)). In
the worst case, no two robots share y-coordinates, and hence the robot movements become sequential.

In Cpr, all robots must have distinct x-coordinates. Special attention is required when there are
multiple robots with the same x-coordinate. By the assumption on P (0), we already have distinct
initial positions for all the robots, hence no two robots share both x and y-coordinates initially.

When two robots share x-coordinates, the bottom robot r1 at (x1, y1) moves to a point on Lu

such that it is at distance |x1 − x2|/3 from the closest horizontal robot r2 at (x2, y2). This maneuver
ensures that r1 will reach a distinct point on Lu even when r2 maybe moving similarly as r1. Certainly,
r1 may stop due to non-rigid movement. In that case, it will have a clear path to Lu.

The maximum vertical distance that a robot needs to travel is h, and in case of non-rigid movement,
the first δ movement may not contribute entirely toward vertical movement. Thus a robot needs at
most ⌈h/δ⌉+ 1 activations.

In the worst case, Procedure Initialization is invoked O(⌈h/δ⌉) times for n− 1 robots to reach
Cpr. Thus in total the time complexity is O(n⌈h/δ⌉) epochs.

Lemma 2. Given a configuration P (t) ∈ Cpr \ Cα, Algorithm SeparateLines using Procedure Line
Formation reaches CΞ in at most O(n(⌈h/δ⌉+ ⌈w/δ⌉)) epochs, where h and w are the height and
width of SER(P (t)), respectively.

Proof. Any robot ri can verify that P (t) ∈ Cpr \ Cα, from its own view Zi(t). Then Algorithm
SeparateLines invokes Procedure Line Formation to form the principal line Ξ. To achieve that,
all robots move toward Lu based on their ranking of y-coordinates. A robot must traverse a vertical
distance of at most h to reach Lu, and hence it takes at most O(⌈h/δ⌉) epochs. In total, after at
most O(n⌈h/δ⌉) epochs, all robots are on Lu. Once all the robots are on Lu, a robot must traverse a
horizontal distance at most w to reach its corresponding equidistant position. In each configuration,
there must exist at least one robot that has no other robot blocking its path from the destination.
Thus it may take at most O(n⌈w/δ⌉) epochs for all the robots to be equidistant on Lu to form Ξ.
Hence in total, it takes at most O(n⌈(h+ w)/δ⌉) epochs to achieve CΞ.

Lemma 3. Given a configuration P (t) ∈ CΞ ∪ CSignal, Algorithm SeparateLines using Procedure
Signal reaches Cfinal in at most O(n⌈w/δ⌉) epochs, where w is the width of SER(P (t)).

Proof. The leader robot(s) can verify whether the configuration is in CΞ or CSignal. If P (t) ∈ CΞ,
they initiate the signaling phase. If P (t) ∈ CSignal and is invalid, they trigger the reset mechanism.

For the signaling phase, the leader moves to a signal point with α = w/(n− 1), where w is the
width of SER(P (t)). This movement requires at most ⌈α/3δ⌉ epochs when δ < α/3. Upon observing
the leader at a signal point, the signaled robot traverses at most κα distance to reach its grid position,
taking at most ⌈w/2δ⌉ epochs since κ ≤ n/2 and α ≤ w/(n− 1). The leader then returns to its grid
position in ⌈α/3δ⌉ additional epochs.

If the given configuration is invalid, the leader moves to a special signal point at angle θ = π/2− τ
from Ξ in at most ⌈α/3δ⌉ epochs. All non-leader robots then simultaneously return to Ξ, requiring
O(⌈w/δ⌉) epochs to traverse the maximum vertical distance of κα. The leader completes the reset
by returning to Ξ in ⌈α/3δ⌉ epochs. Then the configuration is in CΞ, and proceeds to signaling stage
as before.

The procedure handles O(n) robots through sequential signaling, with n − 1 robots for odd n
or n

2 − 1 robots for even n. The movement protocol ensures that during signaling, only one robot
moves at a time, while during reset, non-leader robots move simultaneously. Configuration validity is
verified through α-grid compliance, except for leaders.

Therefore, regardless of the initial configuration (CΞ or CSignal), Procedure Signal reaches to
Cfinal in O(n⌈w/δ⌉) epochs.

212

International Journal of Networking and Computing

(a) Three colors (v1) (b) Three colors (v2)

(c) Two colors (v1) (d) Two colors (v2.1) (e) Two colors (v2.2)

Figure 3: The observed configurations of a leader robot (top left) for n = 6 robots with different
color combinations (three or two different colors, with distinct positions). The circled robot is always
on the grid.

Lemma 4. In Algorithm SeparateLines, a leader robot can always recognize the α-grid if the
configuration is in Cfinal.

Proof. By definition of Cfinal, at most two non-leader robots are not located at grid points. For
configurations with n ≥ 7, there are at least three robots at grid points, and hence a leader robot
can always recognize the α-grid.

In case of n = 5, there are two cases: symmetric and asymmetric. In the asymmetric case, only
one robot would move to signal the leader and hence there are three other robots on the grid points,
which ensures that the leader can recognize the grid. In the symmetric case, two non-leader robots
on either side may move to signal the leader. The grid is determined by the vertical distance between
non-leader robots. If the vertical distance is 3α/4, then the top robots must have moved down. Thus
the grid corresponds to the bottom robots. Similarly, if the vertical distance is 5α/4, it indicates the
reverse.

This leaves us with the case for n = 6, where at most two non-leader robots are not on grid
points and at least two robots are on grid points. Through a case-by-case analysis, we show that in
all situations where exactly two robots have moved from the α-grid, the leader robots can always
recognize the α-grid points.

Let us consider the cases for n = 6. We divide the cases based on the distinct color combinations
that can be possible with 6 robots. Since no robot with unique color is present, there can be at most
3 colors for the robots. The distribution of colors leads to following three cases: (2, 2, 2), (4, 2) and
(3, 3). Since no robot is uniquely colored, a robot can always identify the case of (2, 2, 2), but it
cannot distinguish between (4, 2) and (3, 3). We consider all possible observation of a leader robot in
each of the color distributions, and show that it can always establish the α-grid.

Three colors: There are two cases:

– If both leaders have the same color, then no non-leader robot moves to signal the leader
robot. Hence all non-leader robots are on the α-grid (ref. Fig. 3a);

213

Asynchronous Separation of Unconscious Colored Robots

– If both leader robots have different colors, then there exists a color for which both robots
are non-leaders. They remain on the α-grid point. Hence the leaders can establish the
α-grid (ref. Fig. 3b).

Two colors: There are two different types of observed configuration for a leader robot:

– If there are three non-leader robots of the same color, then the middle of the three must
be on the α-grid since that would not signal any of the leaders (ref. Fig. 3c);

– If there are two non-leader robots of each color, there always exists a non-leader robot
which is not responsible for signaling either of the leaders. That robot is the closest
non-leader robot with opposite color from the other leader. In Fig. 3d, it is the second
non-leader red robot from the left. Similarly, in Fig. 3e, it is the second blue robot from
the left. Since this robot would not move to signal to either of the leaders, the α-grid
can be determined based on this robot’s position and correspondingly the signals to the
leaders.

We have shown that for all cases n = 5, n = 6, and n ≥ 7, the leader robots can always recognize the α-
grid in configurations belonging to Cfinal. This is because there are always sufficient robots remaining
on grid points to define the structure, even when the maximum number of robots have moved off the
grid for signaling purposes. Therefore, we can conclude that in Algorithm SeparateLines, a leader
robot can always recognize the α-grid if the configuration is in Cfinal, for all n ≥ 5.

Lemma 5. Given a configuration P (t) ∈ Cfinal, Algorithm SeparateLines using Procedure Last
Signal reaches Cterm in at most O(⌈w/δ⌉) epochs starting from Cfinal, where w is the width of
SER(P (t)).

Proof. Procedure Last Signal completes the final phase of robot separation through a signaling
mechanism despite the robots’ inability to determine their own colors. The foundation of this
mechanism relies on the leader robots’ ability to recognize the α-grid structure, as established
by Lemma 4. This grid recognition capability is crucial as it provides a consistent reference for
interpreting signals and validating configuration states throughout the procedure.

The signaling process begins with the identification of appropriate signaling robots for each leader.
By the no-unique-color assumption, for each leader robot rl, there exists at least one robot rc of the
same color. The robot rc determines its relative position to rl and initiates the signaling process
by moving vertically by a precise distance of α/4. For configurations with even n, the direction of
this movement is determined by the horizontal distance to the leader: if |rlrc| < w/2, the movement
is downward; otherwise, it is upward. This movement pattern, coupled with the leader’s ability to
recognize the α-grid, ensures unambiguous signal interpretation.

The choice of α/4 ensures that, even with two signaling robots, the grid row for the destination of
the leader robot remains valid. Subsequently, the signaling robot always returns back to the closest
grid point, ensuring the maintenance of the grid.

For configurations with even n and two leaders rl and r
′
l, the procedure handles several cases

efficiently. If both leaders share the same color and no other robot has their color, they remain
stationary. Otherwise, each leader receives signals from robots of their respective colors. In the
special case where one robot must signal both leaders, it does so sequentially, ensuring the closest
leader reaches its position before signaling the farthest. This sequential approach prevents signal
interference and maintains the integrity of the separation process.

The complexity analysis follows from the movement constraints within the grid structure. Each
leader’s movement is bounded by the maximum vertical distance in the grid, which is (κ+ 1)α ≤
(n/2 + 1)w/(n − 1) < w. Under non-rigid movement with minimum distance δ, this yields a
time complexity of O(⌈w/δ⌉) epochs. The procedure’s correctness is guaranteed by several key
properties: the consistent recognition and interpretation of signals based on the α-grid structure, the
unambiguous nature of the signaling protocol despite the absence of direct color knowledge, and the
careful sequencing of movements that prevents interference between different color groups. These
properties, combined with the grid-based movement strategy, ensure that the final configuration
satisfies the line separation predicate.

214

International Journal of Networking and Computing

Lemma 6. Given a configuration P (t) ∈ Cfinal or P (t) ∈ Cterm that is invalid, there exists at least
one non-leader robot r that can recognize invalidity and results in a configuration P (t) ∈ Cpr in one
epoch.

Proof. Consider an invalid configuration P (t) in Cfinal or Cterm. P (t) ∈ Cfinal and it is invalid. This
means that there exists a row in the α-grid of P (t) that contains at least two robots of different color.
For n ≥ 5, there are at least four non-leader robots. Hence there exists a third non-leader robot r
that can observe both of these robots. Once this robot r sees this invalidity, it moves horizontally
toward its closest leader for a distance α/4. This results in a configuration P (t) ∈ Cpr since the
equidistant primitive is not valid anymore. This takes at most one epoch.

Combining the above lemmata, we have the following theorem.

Theorem 1. Given any configuration P (t), Algorithm SeparateLines reaches Cterm satisfying
SepL in at most O(n(⌈h/δ⌉+ ⌈w/δ⌉)) epochs, where h and w are the height and width of SER(P (t))
respectively, and δ is the minimum distance traveled by a robot on each activation.

Proof. We prove both correctness and complexity of Algorithm SeparateLines. First, we show
that starting from any arbitrary configuration, the algorithm correctly transitions through the
configuration classes to reach Cterm satisfying SepL.

By Lemma 1, starting from any configuration in Carb, the algorithm reaches Cpr where all robots
have distinct x-coordinates. From Cpr, Lemma 2 ensures the algorithm reaches CΞ where all robots
are equidistant on a horizontal line Ξ.

Once in CΞ, Lemma 3 guarantees the algorithm reaches Cfinal through the signaling process,
where all non-leader robots of the same color are positioned on the same row of the α-grid. If an
invalid signal configuration is encountered initially, Lemma 3 also ensures that the algorithm returns
to CΞ and subsequently reaches Cfinal. By Lemma 4, the leader robots can always recognize the
α-grid in Cfinal, ensuring correct signaling and transitions. Similarly, if an invalid final configuration
is encountered, Lemma 6 guarantees return to Cpr for restart. From a valid Cfinal configuration,
Lemma 5 ensures the algorithm reaches Cterm where all robots are positioned on their color-specific
rows of the α-grid.

The resulting configuration Cterm satisfies SepL since all robots occupy parallel horizontal lines
(grid rows), each line contains only robots of the same color, and different lines contain robots of
different colors.

For the time complexity, we analyze each stage: The transition from Carb to Cpr takes O(n⌈h/δ⌉)
epochs, from Cpr to CΞ requires O(n(⌈h/δ⌉ + ⌈w/δ⌉)) epochs, from CΞ to Cfinal needs O(n⌈w/δ⌉)
epochs, and finally, from Cfinal to Cterm takes O(⌈w/δ⌉) epochs.

Invalid configurations require at most O(⌈w/δ⌉) epochs for reset from invalid signal and one
epoch for reset from invalid final configuration. Since each robot can detect invalidity immediately
and the reset process is deterministic, reset occurs at most once during the entire execution.

Therefore, the total complexity of Algorithm SeparateLines is O(n(⌈h/δ⌉+ ⌈w/δ⌉)) epochs.

4 Separation into Lines for n ≤ 4

We consider the cases for small numbers of robots separately since in each of these cases a robot can
always determine its own color due to the assumption that no robot is uniquely colored. We briefly
describe the solution for each of the cases. For n = 1, the problem is trivially solved as a single robot
already satisfies the separation predicate. For n = 2, since we assume at least two robots of each
color exist, both robots must be of the same color. As they occupy distinct positions by assumption,
they already form a line and satisfy SepL.

For n = 3, all robots must be of the same color. When at least two robots have distinct x-
coordinates, they form a horizontal line akin to Lu of SER(P (t)), otherwise they are already collinear
at P (0).

For n = 4, if all robots are of the same color, then they behave similarly to n = 3. Since no
uniquely colored robot exists, the other case to consider is that there are two robots of each color

215

Asynchronous Separation of Unconscious Colored Robots

(say blue and red). In the second case, the robots form an α grid similar to the generic algorithm,
and the blue robots move to occupy the bottom row, while red robots remain on the top row. The
only special case to consider is a blue robot on Lu remains there until a red robot reaches Lu in a
configuration that already has equidistant robots.

5 Necessity of Axis Agreement

Our result on the possibility of separation for UCR under the ASYNC adversarial scheduler holds if
there is limited agreement on (at least) one axis. In this section we prove that such a requirement is
necessary. We prove that, without any axis agreement the separation problem is generally unsolvable
even with the additional assumption of chirality.

Theorem 2. For a system of n ≥ 6 unconscious colored robots with no agreement on the axis, it is
impossible to achieve SepL starting from every initial configuration.

(a) Initial symmetric views (b) Symmetry after movement

Figure 4: Nine robots: three cyan (green) at triangle corners, and six alternating black (red) and
blue (blue) at hexagon corners.

Proof. Consider an initial configuration of n ≥ 6 unconscious colored robots, where n = g · k for some
integers g > 1 and k > 2. Assume there are g distinct colors, and k robots of each color. Position the
robots such that they are located at the vertices of a regular n-gon. Furthermore, arrange the robots
so that the k robots of the same color are themselves located at the vertices of a regular k-gon.

In the absence of agreement on the axis, each robot has its own local coordinate system, and
there is no common frame of reference. Under the asynchronous scheduler, the adversary can always
choose to activate the robots with the same color at the same time for the same duration of a
Look-Compute-Move cycle.

Consider a robot ri of color c. At any time t, in its Look phase, ri observes the positions and
colors of the other robots in its local coordinate system. Due to the symmetric initial configuration
and the adversary’s control over scheduling, for any two robots ri and rj of the same color c, the
adversary can ensure that their local views are identical up to rotation and reflection. This is because
there exists a symmetry of the robot configuration that maps ri to rj while preserving the colors.

Since the robots are homogeneous and execute the same deterministic algorithm ψ, if robots
ri and rj (of the same color) have identical views, their Compute phases will result in the same
destination relative to their local coordinate systems.

216

International Journal of Networking and Computing

In the Move phase, even with non-rigid movements, if the computed destinations are equivalent
in their local frames, and the adversary ensures similar movement durations, the actual movements
of ri and rj will be symmetrically equivalent.

Therefore, if the robots start in this symmetric configuration, under an adversarial asynchronous
scheduler, any deterministic algorithm will cause the robots of the same color to move in a coordinated,
symmetric manner. This coordinated movement will maintain the symmetry of the configuration for
each color group.

The degree of symmetry of a set of collinear points (forming a line) is at most 2 (identity and
reflection). Since k > 2, the group of k robots of the same color initially forms a regular k-gon with
a rotational symmetry of order k. As the algorithm progresses, the robots of the same color will
maintain some degree of symmetry s ≥ k > 2. A set of points forming a line has a symmetry of at
most 2. Therefore, the group of robots of the same color cannot reach a line configuration while
maintaining their symmetry of order k > 2. In Fig. 4, we show such a configuration for k = 3.

Since this argument holds for each color group, the robots cannot achieve a configuration where
each color group forms a distinct line. Thus, starting from this symmetric initial configuration, it is
impossible to achieve SepL without any agreement on the axis.

Observe that this result implies that, for the separation problem, agreement on chirality is a
computational condition strictly less powerful than agreement on one axis.

6 Conclusion

In this paper, we have presented a distributed algorithm that solves the separation problem for
UCR under the asynchronous adversarial scheduler. Our algorithm successfully separates robots into
parallel lines based on their colors, despite the robots being unaware of their own color, using a novel
signaling mechanism without any explicit communication.

This algorithm can be considered as a building block for the development of complex coordination
strategy of heterogeneous robots.

The algorithm works for any number of robots, provided that no robot is uniquely colored and
the robots agree on the orientation of one axis. While, as we have shown, the latter condition is
necessary, the necessity of the former is an open problem.

The results of this paper open several new research directions, including investigating the problem
in the limited visibility and the obstructed visibility models. A particular variant may consider robots
having a limited visibility for colors while having unlimited visibility for positions of the robots. An
important future research direction is to extend the setting of the problem to higher dimensions (e.g.,
drones in 3D).

References

[1] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta, “Computation in networks of
passively mobile finite-state sensors,” Distributed Computing, vol. 18, pp. 235—-253, mar 2006.

[2] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert, “The computational power of population
protocols,” Distributed Computing, vol. 20, pp. 279–304, 2007.

[3] G. A. Di Luna, P. Flocchini, T. Izumi, T. Izumi, N. Santoro, and G. Viglietta, “Fault-tolerant
simulation of population protocols,” Distributed Computing, vol. 33, no. 6, pp. 561–578, 2020.

[4] A. Dumitrescu, I. Suzuki, and M. Yamashita:, “Motion planning for metamorphic systems:
feasibility, decidability, and distributed reconfiguration,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 3, pp. 409–418, 2004.

[5] N. Nokhanji and N. Santoro, “Self-repairing line of metamorphic robots,” in 7th International
Conference on Automation, Robotics and Applications (ICARA), pp. 55–59, 2021.

217

Asynchronous Separation of Unconscious Colored Robots

[6] R. Yamada and Y. Yamauchi, “Search by a metamorphic robotic system in a finite 3d cubic grid,”
in 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND), pp. 20:1–20:16,
2022.

[7] I. Suzuki and M. Yamashita, “Distributed anonymous mobile robots: Formation of geometric
patterns,” SIAM Journal on Computing, vol. 28, pp. 1347–1363, Jan. 1999.

[8] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, “Arbitrary pattern formation by
asynchronous oblivious robots,” Theoretical Computer Science, vol. 407, pp. 412–447, Nov. 2008.

[9] N. Fujinaga, Y. Yamauchi, H. Ono, S. Kijima, and M. Yamashita, “Pattern formation by
oblivious asynchronous mobile robots,” SIAM Journal on Computing, vol. 44, pp. 740–785, Jan.
2015.

[10] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita, “Forming sequences of geometric
patterns with oblivious mobile robots,” Distributed Computing, vol. 28, no. 2, pp. 131–145, 2015.

[11] M. Yamashita and I. Suzuki, “Characterizing geometric patterns formable by oblivious anonymous
mobile robots,” Theoretical Computer Science, vol. 411, pp. 2433–2453, June 2010.

[12] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro, “Distributed computing by mobile
robots: Gathering,” SIAM Journal on Computing, vol. 41, pp. 829–879, Jan. 2012.

[13] P. Flocchini, P. Prencipe, N. Santoro, and P. Widmayer, “Gathering of asynchronous mobile
robots with limited visibility,” Theoretical Computer Science, vol. 337, no. 1-3, pp. pages 147–168,
2005.

[14] N. Agmon and D. Peleg, “Fault-tolerant gathering algorithms for autonomous mobile robots,”
SIAM Journal on Computing, vol. 36, no. 1, pp. pages 56–82, 2006.

[15] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita, “Rendezvous with constant memory,”
Theoretical Computer Science, vol. 621, pp. pages 57–72, 2016.

[16] Z. Liu, Y. Yamauchi, S. Kijima, and M. Yamashita, “Team assembling problem for asynchronous
heterogeneous mobile robots,” Theoretical Computer Science, vol. 721, pp. 27–41, Apr. 2018.

[17] S. Bhagat, P. Flocchini, K. Mukhopadhyaya, and N. Santoro, “Weak robots performing conflicting
tasks without knowing who is in their team,” in 21st International Conference on Distributed
Computing and Networking (ICDCN), pp. 29:1–29:6, 2020.

[18] Y. Asahiro and M. Yamashita, “Minimum algorithm sizes for self-stabilizing gathering and related
problems of autonomous mobile robots,” in 25th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), pp. 312–327, 2023.

[19] P. Flocchini, D. Pattanayak, N. Santoro, and M. Yamashita, “The minimum algorithm size
of k-grouping by silent oblivious robots,” in 35th International Workshop on Combinatorial
Algorithms (IWOCA), pp. 472–484, 2024.

[20] H. Seike and Y. Yamauchi, “Separation of unconscious colored robots,” in 25th International
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pp. 328–343,
2023.

[21] A. K. Chandra, M. L. Furst, and R. J. Lipton, “Multi-party protocols,” in 15th Annual ACM
Symposium on Theory of Computing (STOC), pp. 94–99, 1983.

[22] P. Beame and T. Huynh, “Multiparty communication complexity and threshold circuit size of
AC0,” SIAM Journal on Computing, vol. 41, no. 3, pp. 484–518, 2012.

[23] T. Lee, N. Leonardos, M. Saks, and F. Wang, “Hellinger volume and number-on-the-forehead
communication complexity,” Journal of Computer and System Sciences, vol. 82, no. 6, pp. 1064–
1074, 2016.

218

International Journal of Networking and Computing

[24] N. Linial and A. Shraibman, “Larger corner-free sets from better NOF exactly-n protocols,”
Discrete Analysis, vol. 10, 2021.

[25] J. O’Keeffe, D. Tarapore, A. G. Millard, and J. Timmis, “Adaptive online fault diagnosis in
autonomous robot swarms,” Frontiers in Robotics and AI, vol. 5, 2018.

[26] E. Khalastchi and M. Kalech, “Fault detection and diagnosis in multi-robot systems: A survey,”
Sensors (Basel, Switzerland), vol. 19, 2019.

[27] M. D. M. Kutzer, M. Armand, D. H. Scheidt, E. Lin, and G. S. Chirikjian, “Toward cooperative
team-diagnosis in multi-robot systems,” The International Journal of Robotics Research, vol. 27,
pp. 1069 – 1090, 2008.

[28] M. Frison, N.-L. Tran, N. Baiboun, A. Brutschy, G. Pini, A. Roli, M. Dorigo, and M. Birattari,
“Self-organized task partitioning in a swarm of robots,” in ANTS Conference, 2010.

[29] G. Pini, A. Brutschy, C. Pinciroli, M. Dorigo, and M. Birattari, “Autonomous task partitioning
in robot foraging: an approach based on cost estimation,” Adaptive Behavior, vol. 21, pp. 118 –
136, 2013.

219

	Introduction
	Framework
	Heterogeneity
	The Separation Problem
	Contributions

	Model
	Separation into Lines: n 5
	Terminology
	Outline of Algorithm SeparateLines for n 5
	Classes of Configurations
	[Initialization]
	[Line Formation]
	[Signal]
	Special Signal

	[Last Signal]
	Correctness and Complexity

	Separation into Lines for n4
	Necessity of Axis Agreement
	Conclusion

