
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 15, Number 2, pages 220–239, July 2025

A Flow Distribution Algorithm with Segment Routing for Software-Defined Networking

Momoka Mizuno

Graduate School of Science and Technology,
University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan

Shigetomo Kimura

Institute of Systems and Information Engineering,
University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan

Received: February 14, 2025
Revised: May 5, 2025
Accepted: June 6, 2025

Communicated by Hideharu Kojima

Abstract

Previously, routers have been responsible for both data forwarding and network management.
Software-Defined Networking (SDN) separates these functions into a data plane and a control
plane in order to simplify network operations and enable the construction of programmable
networks. However, flow updates transmitted using the OpenFlow protocol introduce a com-
munication overhead. Since Ternary Content Addressable Memory (TCAM) is used to quickly
search flow entries, the associated costs rise significantly as the scale of the network increases.
To address these problems, a method has been proposed that reduces flow entry update work
and minimizes traffic overhead by aggregating some flows on a specific path in an SDN-managed
network using SR (Segment Routing)-MPLS (Multi-Protocol Label Switching). However, while
overall work is reduced, the load on the specific path used for the flow aggregation increases.

This paper proposes a flow distribution algorithm with SR that efficiently utilizes network re-
sources, while also addressing the two aforementioned limitations of Software-Defined Network-
ing (SDN) to enable a more reliable SDN infrastructure. To evaluate the proposed algorithm,
simulation experiments compared the proposed algorithm with the shortest-path algorithm on
four network topologies with 13, 24, 48 or 58 nodes, and our results showed that the average
standard deviation of the number of packets forwarded by each node under the proposed method
was 861.04–1496.17 packets lower by comparison with the shortest-path method when the total
number of transmitted packets was 50,000, and 1743.37–2950.34 packets lower when the total
number of transmitted packets was 100,000. We also noted that the average path length for each
packet under the proposed method was just 0.15–1.08 hops longer than that of the shortest-path
method.

Keywords: Flow Distribution Algorithm, Segment Routing, Traffic Engineering, Software-Defined
Networking

1 Introduction

Software-Defined Networking (SDN) has been a focus of interest due to its ability to simplify network
operations and enable the construction of programmable networks. Previously, routers have been

220



International Journal of Networking and Computing

responsible for both data forwarding and network management. SDN separates these functions
into a data plane and a control plane. In the data plane, SDN switches forward packets based on
their flow entries, while a centralized controller manages the control plane. For example, SDN can
implement traffic engineering (TE) [1], [2] to improve network utilization and enhance performance
in terms of latency and packet loss [3].

The communication between the SDN switches and the controller commonly uses the OpenFlow
protocol [4], [5]. When an SDN switch receives a packet whose forwarding switch cannot be de-
termined, it sends a Packet-In message including the packet to the controller. After the controller
receives the message, it installs, updates, or deletes some entries in the flow entries of the switch.

Each flow entry contains match fields, counters, and actions that determine how the switch should
process the packet such as forwarding to a particular port, dropping the packet, or modifying the
packet headers. Furthermore, OpenFlow supports a wide range of match fields between layer 2 and
layer 4 headers, as well as packet metadata for precise and complex flow definitions.

However, SDN presents two significant problems. The first problem is that traffic overhead
arises between the SDN controller and the data plane as each switch’s flow entry is periodically
updated, which may interfere with data forwarding. The second problem is that since Ternary
Content Addressable Memory (TCAM) is used to quickly search flow entries, the associated costs rise
significantly as the network scale increases [6], [7]. In the traditional SDN, forwarding information
was stored in each switch’s flow table and the SDN controller may update the flow table if needed.
In order to resolve these two issues, Ziyong Li et al [8] have proposed Segment Routing (SR) that
specifies flows through stacking segments. The first issue is addressed by eliminating the need to
update the switch’s flow table. For the second issue, even if the number of flows increases, the flows
are specified through SR segments stacked on the packets, which prevents the TCAM from being
overburdened.

This paper proposes a flow distribution algorithm with SR that efficiently utilizes network re-
sources, while also addressing the two aforementioned limitations of Software-Defined Networking
(SDN) to enable a more reliable SDN infrastructure [9].

The rest of this paper is organized as follows. Section 2 introduces MPLS (Multi-Protocol La-
bel Switching) and SR (Segment Routing) and then MPLS is compared with SR. Section 3 covers
previously published work that relates to our research. Section 4 explains the flow path determina-
tion method. Section 5 proposes the flow distribution algorithm. To show the effectiveness of the
proposed algorithm, Section 6 explains the network simulation experiments that were conducted to
compare the proposed algorithm with the shortest-path algorithm on three network topologies with
13, 24, or 58 nodes. The results of these experiments showed that the average standard deviation
of the number of packets forwarded by each node under the proposed method was 917.65–1523.46
packets lower by comparison with the shortest-path method when the total number of transmitted
packets was 50,000, and 1843.43–3025.4 packets lower when the total number of transmitted packets
was 100,000. We noted that the average path length for each packet under the proposed method
was just 0.15–0.81 hops longer than under the shortest-path method. Finally, Section 7 concludes
the paper and discusses future work.

2 Segment Routing

This section introduces MPLS (Multi-Protocol Label Switching) and SR (Segment Routing) based
on the proposed algorithm.

2.1 Multi-Protocol Label Switching

Larger networks operated by ISPs tend to employ Interior Gateway Protocols (IGPs) like OSPF for
internal routing and typically select the shortest path for the internal router. However, problems
can arise, depending on the network topology, that some links are overutilized, leading to congestion
on these links.

To address this issue, traffic engineering techniques have been introduced, including Multi-
Protocol Label Switching (MPLS) networks, among others. In MPLS, the Label Distribution Pro-

221



Flow Distribution Algorithm with SR for SDN

tocol (LDP) is generally used to exchange label information with neighbor routers and select the
shortest path as the Label Switched Path (LSP).

When a communication begins and the first packet arrives at the entrance of the MPLS network,
e.g., the upper left router in Fig. 1, its path within the MPLS network for the communication is
determined, and the label identification for this path is attached before the packet header. Routers
refer to this label for rapid packet forwarding. Subsequent packets with the same destination follow
the same path. Since the label is unique only per link, but not across the whole MPSL network,
each router swaps the label when forwarding a packet (the upper middle and upper right routers in
Fig. 1) or pops one when the packet is exiting the MPLS network (the lower right router in Fig. 1).

Explicit routing protocols, such as Resource Reservation Protocol-Traffic Engineering (RSVP-
TE) allow for the selection of non-shortest paths where this benefits traffic distribution. For example,
if less frequently used links are given higher priority, then traffic distribution is more balanced across
the entire network.

MPLS

push a label swap a label swap a label

pop a label

Figure 1: Label Switching of MPLS

2.2 Segment Routing

Segment Routing (SR) is another traffic engineering technique in which the network is represented
as a series of segments and packet forwarding is realized on the level of these segments. The most
typical segments are node segments, which indicate specific nodes, and adjacency segments, which
represent the adjacency relationships between nodes. Each node is assigned a Segment Identifier
(SID). The node ID is unique across the network. The adjacency ID is a local value specifying the
relationship between nodes.

In SR, the entrance node stacks segments into the packet header that represent the route from
the entrance node to the exit node. The internal routers then simply forward the packet according
to the segments in the packet header. Since the entrance node can stack multiple segments, SR also
allows implementations of Traffic Engineering (TE) [10].

222



International Journal of Networking and Computing

SR
push Node SID = 105

Node 
SID: 101

105
104

301

103

pop Node SID = 105 

Cost = 10

Cost = 20

Cost = 10

Cost = 10

102
302

301

301

301
301

302

302

302

303

Adjacency SID: 301，302，303

Figure 2: A Case Stacked SR Node SID = 105.

SR

pop Node SID = 104 
pop Adjacency SID = 301 

push Adjacency SID = 301,
Node SID = 104

301
302

301

301

301
301

302

302

302

303

Adjacency SID: 301，302，303

Node 
SID: 101

105
104

103102

Figure 3: A Case Stacked SR Node SID = 104 and Adjacency SID = 301.

For instance, in the network illustrated in Fig. ??sr node, the entrance node at Node SID = 101
stacks a segment with Node SID = 105. The packet will traverse through the nodes with Node SID
= 102, Node SID = 103 and Node SID = 105, which is the route with the minimum total cost.
If the path needs to route through the node with Node SID = 104, the entrance node will stack
the SIDs for Adjacency SID = 301 and Node SID = 104, as depicted in Fig. ??sr adj. From the

223



Flow Distribution Algorithm with SR for SDN

entrance node, the packet is forwarded via the node with Node SID = 102 and then to the node
with Node SID = 104 with the minimum cost. When the packet reaches this node, the Node SID
= 104 segment is popped from the stack, and the next SID in the stack, Adjacency SID = 301, is
referred to forward the packet to the corresponding adjacency segment, and the packet then reaches
the exit node with Node SID = 105.

Combining Node SIDs and Adjacency SIDs simplifies route policy management. Since SR na-
tively supports Equal Cost Multi Path (ECMP), flow distribution across equal cost paths is also
achieved.

2.3 MPLS vs SR

Although both MPLS and Segment Routing (SR) provide source routing technologies, SR is simpler
to implement as a protocol and makes it relatively easy to write route policies. In fact, MPLS requires
multiple protocols such as a Label Distribution Protocol (LDP) for label distribution and a Resource
Reservation Protocol with Traffic Engineering extensions (RSVP-TE) for signaling. MPLS also relies
on Interior Gateway Protocols (IGPs) such as Open Shortest Path First (OSPF) or Intermediate
System to Intermediate System (IS-IS) for exchanging route information between nodes. In contrast,
SR does not require LDP or RSVP-TE and can be implemented on a single IGP like OSPF or IS-IS.
This leads to a simpler network with lower operational costs [11].

Furthermore, if traffic has to be distributed across multiple Equal Cost Multi-Paths (ECMPs) in
MPLS, the entrance node needs to establish Label Switched Paths (LSPs) for each path. However,
since SR has native support for ECMP, the traffic is automatically distributed across ECMPs.
Moreover, SR allows straightforward path specification on a per-packet basis using Node IDs and
Adjacency IDs.

However, in SR, the entrance node can only stack a limited number of SIDs, commonly referred
to as the Maximum Stack Depth (MSD) [12]. Standard networks typically have such an upper limit.
When a large number of segments are stacked, the packet header may exceed this stack depth.

3 Related Works

A multipath load balancing mechanism on SDN has been proposed to improve both high throughput
and better Quality of Service (QoS) in the network [13]. This mechanism first employs the Depth
First Search (DFS) algorithm within the SDN controller to generate a list of optimal paths based on
routing distance. Communication between the controller and switches use the OpenFlow protocol.
The SDN controller periodically collects the available bandwidth of each link as the link cost. The
weights of all paths in the list obtained from the DFS algorithm are then calculated, and the optimal
path is selected.

Two Traffic Engineering (TE) schemes i.e., End-to-End Segment Routing (e2e-SR) and Per-
Domain Segment Routing (pd-SR) have been proposed for multi-domain networks [11]. When
packets are transmitted to nodes in other domains, the source domain controller is typically unaware
of the destination domain network, but for effective TE communication between SR controllers is
needed. The e2e-SR scheme facilitates communication between controllers that enables the source
domain’s controller to acquire an end-to-end segment list. In the pd-SR scheme, the destination
domain’s controller sends a virtual label instead of the segment list to the source domain’s controller.
Since only the destination domain’s controller can translate the virtual label into the correct segment
list for forwarding, the confidential internal topology information is preserved.

An algorithm has been proposed that divides flows into multiple sub-flows and transfers a single
flow across multiple paths [14]. When a large volume of flows arrives, the SDN controller first uses
the MPTCP algorithm to divide each flow into sub-flows. Switches then forward the packets based
on the SR segment list created by the controller, selecting as many sub-flows as possible that meet
the transmission conditions.

While existing research demonstrates the usefulness of SDN-based MPTCP, the issue of TCAM
memory limitations, as previously mentioned, remains unresolved.

224



International Journal of Networking and Computing

4 Proposed Network Architecture

This section proposes a flow distribution algorithm with Segment Routing (SR) for a Software-
Defined Networking (SDN) environment to improve the overall utilization of the network resources.
The proposed algorithm generally specifies Node SIDs, but uses Adjacency SIDs to reduce the
number of stacked labels in the header of each packet. However, each node is required to store all
Node SIDs in the SR network. The native Equal Cost Multi-Path (ECMP) functions in SR are also
utilized.

The SDN controller monitors the packet forwarding load across switches. If it detects that the
load on a certain switch is too high, it uses Adjacency SIDs to redistribute the flows through the
switch.

Fig. 4 explains the flow path determination method. SDN separates the network into a data
plane and a control plane. The data plane consists of switches, while the control plane includes the
SDN controller and a database that stores the network state. It is assumed that the SDN controller
is aware of the topology of the data plane.

When a switch receives a new flow, 1O the switch notifies the source and destination of the flow
to the SDN controller. 2O The controller refers to the network state stored its database. 3O Then,
the controller determines the segments to be stacked on packets in the flow. 4O The controller
sets the segments information to the flow entry of the switch. The switch appends the received
list of segments to the packet header and forwards the packet based on the stacked segments. The
computed path is stored for a predefined time in the switch to let subsequent packets in the same
flow follow the same path.

Fig. 5 explains how the network state is maintained. The database in the control plane stores
the number of packets forwarded by each switch. 1O Once a flow has been forwarded, 2O the switch
reports the number of transmitted packets to the controller. 3O The controller stores this information
in the database and uses it to determine the paths for new flows.

data plane

control plane

SDN controller database

① Notify
④ Let the switch append the segments to the packet header

② Check the network status

③ Calculate the path

: switch

Figure 4: Path Decision Method.

225



Flow Distribution Algorithm with SR for SDN

database

① Transmit

② Send the number of transmitted packets 

③ Store the number of 
transmitted packets per switch

data plane

control plane

SDN controller

: switch

Figure 5: Save Method of Network Status.

In the proposed architecture, link loads are adjusted every 10,000 total transmitted packets to
further distribute the packets. The next section provides a detailed explanation of this approach.

5 Proposed Flow Distribution Algorithm with SR for SDN

Algorithm 1 Change Node Alpha

Require: α, node[]
sum ⇐ 0
for all n ∈ node do
sum ⇐ sum+ n.packetCount

end for
ave ⇐ sum/node.number
for all n ∈ node do
if n.packetCount > ave ∗ 1.1 then
αn ⇐ αn − 1

else if n.packetCount < ave ∗ 0.9 then
n.link = 1

else if n.isAlphaChanged = true then
αn ⇐ α

end if
end for

αn is a variable assigned to each node that governs the probability with which each generated
path is selected. The initial value α is determined through experiments described in Section 6.2. αn

is dynamically adjusted by Algorithm 1.
To prevent switches being burdened with a higher load, Algorithm 1 adjusts the link cost and the

weight value αn for node n. This algorithm operates as an application within the SDN controller
and calculates the average ave of the packet forwarding count of all nodes. When the value αn

226



International Journal of Networking and Computing

is higher, the probability that the switch will be selected for a path becomes lower. The variable
n.count represents the number of packets forwarded by the node n, while n.link (initially set to 1)
represents the weight of all adjacent links to node n.

If the packet forwarding count of a switch exceeds ave∗1.1, the algorithm decrements the switch’s
α value by 1, which makes it harder for that switch to be selected for packets forwarding. Conversely,
if the count is less than ave ∗ 0.9, the costs of all adjacent links are reset to a minimum value of
1, which makes it easier for these links to be selected. For switches that do not meet either of
these conditions, the switch’s αn value is set to the initial value α. Note that the values 1.1 and
0.9 were chosen based on preliminary experiments that used the values 1.05 and 1.1 for the upper
boundary and 0.9 and 0.95 for the lower boundary. These preliminary experiments also attempted
combinations of these boundaries. Although the results are omitted for a space constraint, in the
majority cases, the combination of 1.1 for the upper boundary and 0.9 for the lower boundary gave
good results. Preliminary experiments to determine the α parameter show in Section 6.2.

Algorithm 2 Change Link Costs

Require: αn, α, ave, node[]
sum ⇐ 0
for all n ∈ node do
sum ⇐ sum+ n.packetCount

end for
ave ⇐ sum/node.number
for all n ∈ node do
if n.packetCount > ave+ αn then

n.link = α
else if n.packetCount < ave then
n.link = 1

end if
end for

Algorithm 2 is for changing the link costs. In this algorithm, if the packet forwarding count
n.count is greater than the average number ave of packets forwarded by all switches plus αn, the
cost n.link of adjacent links of a switch n is set to α. If n.count is less than ave, n.link is overwritten
with a cost of 1.

Algorithm 3 Generate Path

Require: sour-SID, dest-SID, node[]
Ensure: LIST
flag ⇐ false
for all n ∈ node do
flag ⇐ (flag or n.isLinkChanged)

end for
if not flag /* no link changed */ then
LIST ⇐ NodeSID (dest-SID)

else
LIST ⇐ []
for all n ∈ ShortestPath(sour-SID, dest-SID) do
LIST ⇐ LIST+ AdjacencySID(n)

end for
end if
return LIST

Algorithm 3 is for determining the SID to be stacked in the segment list. The functions NodeSID
and AdjacencySID are used to stack the argument SID onto the label header as either a NodeSID

227



Flow Distribution Algorithm with SR for SDN

or an AdjacencySID, depending on the functions. This algorithm operates as an application within
the SDN controller and is executed by the algorithm described in Fig. 4 3O. If the link cost is not
adjusted for any link, the shortest path of SR with ECMP support is generated. Otherwise, the
shortest path represented by Adjacency SIDs is generated.

6 Experiments and Evaluation

This section describes simulation experiments to evaluate the algorithm proposed in the previous
section and compares the results with those for the shortest-path algorithm, which always selects
the shortest path from the following perspectives:

� Standard deviation of the number of packets forwarded by each node.

� The number of hops until packet transmission is completed.

6.1 Simulation Settings

The network topologies used in the simulation experiments were the NSFNET (National Science
Foundation Network) [15], the USA backbone IP network (USNET, int short) [15], the DFN (Ger-
man National Research and Education Network for science and research) [16] and the PalmettoNet
(backbone network in North Carolina, South Carolina, USA) [16] as shown in Fig. 6.

Fig. 7 shows the histogram of betweenness centrality for each topology. The horizontal axis rep-
resents betweenness centrality (a metric that indicates how frequently a node appears on the shortest
paths between other nodes), and the vertical axis indicates the number of nodes.The small, medium,
and non-hub large topologies exhibit a gently decreasing distribution, suggesting that many nodes
possess moderate levels of betweenness centrality rather than a few nodes being exceptionally domi-
nant.A distinctive characteristic of the small topology is the absence of completely peripheral nodes
(i.e., nodes with zero betweenness centrality).In contrast, the large topology has an overwhelming
number of nodes with near-zero betweenness centrality,while only four nodes exhibit extremely high
betweenness centrality in the range of 0.2 to 0.5.

228



International Journal of Networking and Computing

Small Topology

Medium Topology

Non Hub Large Topology

Figure 6: Network Topologies

229



Flow Distribution Algorithm with SR for SDN

medium topology

small topology

non hub large topology

large topology

Figure 7: The histogram of the betweenness centrality

Although all distances of links between two adjacency nodes differ, only the number of hops is
considered in the simulation experiments. Other experimental parameters are shown in TABLE 1,
where the number of packets indicates the number of times during the task that a randomly selected
node sends a packet to a different randomly selected node. The default values of α were determined
as described in the next section.

Table 1: Experimental Parameters

topology small medium large non hub large
number of nodes 13 24 58 45
number of links 21 43 87 64

number of packets 50 k, 100 k 50 k, 100 k 50 k, 100 k 50 k, 100 k
default α 3, 4 4, 4 6, 7 8, 10

simulation times 30 times 30 times 30 times 30 times

6.2 Preliminary Experiments

Preliminary experiments were conducted to determine the α parameter used in the proposed algo-
rithm and the threshold of n.packetCount used in Algorithm 1. First, the results of the experiment
to determine the parameter α are described, followed by the results of the experiment to determine
the threshold.

The appropriate value of α varies depending on the topology and the number of packets, so
preliminary experiments were conducted for all topologies and packet numbers, and the appropriate

230



International Journal of Networking and Computing

α obtained from these experiments was used in the main experiment. Packets were transferred
from randomly selected nodes to other randomly chosen destination nodes, and the variation in the
number of packets transmitted by each node was observed. During the experiments, α was varied
from 1 to 10 in the small, medium and large topology, from 1 to 12 in the non hub large topology, and
the α value that resulted in the smallest variation in the number of packets transmitted—indicated
by the lowest standard deviation—was selected for the main experiment.

The standard deviations of the number of packets transmitted by the nodes were compared, and
the results are shown in Figs. 8, 9, 10 and 11.

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

po
pu

la
tio

n 
st

an
da

rd
 d

ev
ia

tio
n

alpha

small-50k small-100k

Figure 8: The standard deviation of the number of packets transmitted by the nodes in the small
topology

231



Flow Distribution Algorithm with SR for SDN

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10

po
pu

la
tio

n 
st

an
da

rd
 d

ev
ia

tio
n

alpha

medium-50k medium-100k

Figure 9: The standard deviation of the number of packets transmitted by the nodes in the medium
topology

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10

po
pu

la
tio

n 
st

an
da

rd
 d

ev
ia

tio
n

alpha

large-50k large-100k

Figure 10: The standard deviation of the number of packets transmitted by the nodes in the large
topology

232



International Journal of Networking and Computing

0

2000

4000

6000

8000

1 2 3 4 5 6 7 8 9 10 11 12

po
pu

la
tio

n 
st

an
da

rd
 d

ev
ia

tio
n

alpha

non-hub-large-50k non-hub-large-100k

Figure 11: The standard deviation of the number of packets transmitted by the nodes in the non
hub large topology

As a result of the experiments, in the small topology, α = 3 minimized the population standard
deviation for 50k packets, while α = 4 was the minimum for 100k packets. In the medium topology,
α = 4 was the minimum for both 50k and 100k packets. In the large topology, α = 6 was the
minimum for 50k packets, and α = 7 was the minimum for 100k packets. In the non-hub-large
topology, α = 8 was the minimum for 50k packets, and α = 10 was the minimum for 100k packets.
Therefore, these values were used in the experiments with the proposed algorithm.

The upper bound value of 1.1 and the lower bound value of 0.9 used in Algorithm 1 were also
determined through preliminary experiments. Similar to the determination of parameter α, packets
were transmitted from randomly selected nodes to other randomly chosen destination nodes, and the
number of packets forwarded by each node was compared. However, this experiment was conducted
only for the small and medium topologies. The combination of upper and lower bound values that
resulted in the smallest standard deviation of the number of packets forwarded by each node was
adopted for the algorithm across all topologies. The experimental results are presented in a table,
where the standard deviation values of the number of packets forwarded by each node are rounded
to the second decimal place.

Summarizing the experimental results, for 50k packets in the small topology, the best results
were obtained with an upper bound of 1.10 and a lower bound of 0.90. For 100k packets in the small
topology, the best results were also obtained with an upper bound of 1.10 and a lower bound of 0.90.
For 50k packets in the medium topology, the best results were obtained with an upper bound of 1.05
and a lower bound of 0.90, while the second-best results were obtained with an upper bound of 1.10
and a lower bound of 0.90. For 100k packets in the medium topology, the best results were again
obtained with an upper bound of 1.10 and a lower bound of 0.90. The most frequently optimal pair
was an upper bound of 1.10 and a lower bound of 0.90. Therefore, Algorithm 1 adopts an upper
bound value of 1.10 and a lower bound value of 0.90.

233



Flow Distribution Algorithm with SR for SDN

Table 2: The combinations of upper and lower bound values for 50k packets in the small topology
are as follows.

upper and lower bound values 0.90 0.95
1.05 342.82 559.14
1.10 340.67 562.12

Table 3: The combinations of upper and lower bound values for 100k packets in the small topology
are as follows.

upper and lower bound values 0.90 0.95
1.05 679.45 1173.65
1.10 678.31 1179.69

Table 4: The combinations of upper and lower bound values for 50k packets in the medium topology
are as follows.

upper and lower bound values 0.90 0.95
1.05 531.58 568.63
1.10 537.98 558.63

Table 5: The combinations of upper and lower bound values for 100k packets in the medium topology
are as follows.

upper and lower bound values 0.90 0.95
1.05 1077.24 1080.84
1.10 1063.35 1072.71

6.3 Analysis of Results

This subsection describes experiments where the parameter α, determined as described in the pre-
vious subsection, was used to compare the proposed algorithm with the shortest-path algorithm.

Box plots depicting the distribution of the number of packets transmitted by each node are
presented: Fig. 12 shows the results for 50,000 and 100,000 packets in the small topology; Fig. 13
represents the same simulations for 50,000 and 100,000 packets in the medium topology, respectively;
Fig. 14 represents for 50,000 and 100,000 packets in the large topology, respectively.

In both the small and medium topologies, the proposed algorithm shows significantly less vari-
ability compared to the shortest-path algorithm, regardless of the packet count.

On the other hand, in the large topology, the variation in the number of packets forwarded by
each node is larger compared to the small and medium topologies. However, while the median of the
shortest-path algorithm is positioned near the first quartile with many values concentrated below
the median, the proposed algorithm exhibits a more even distribution, with a wider gap between the
median and the first and third quartiles. This indicates that even in the large topology, the proposed
algorithm results in less variation in the number of packets forwarded per node compared to the
shortest-path algorithm. The reason for the larger variation in the number of packets forwarded by
each node in the large topology, compared to the small and medium topologies, is characterized by a

234



International Journal of Networking and Computing

small number of nodes having high betweenness centrality (ref. Fig. 7) Nodes with high betweenness
centrality are also referred to as hub nodes. Hub nodes tend to relay packets more frequently than
other nodes, and in a topology with many hub nodes, there exist flows that lack alternative routes. As
a result, hub nodes handle a higher number of packet transmissions, increasing the overall variation.

To further investigate this, we conducted experiments using a non-hub topology, which contains
fewer hub nodes than the medium topology but has a larger number of nodes. The results are
presented in Fig. 15. The proposed algorithm clearly reduces the variation among nodes compared
to the shortest-path algorithm. For 50k packets, the standard deviation for the proposed algorithm is
2508.26, whereas for the shortest-path algorithm, it is 3369.30, demonstrating a significant difference.

Based on these results, it is important to use a topology with fewer hub nodes to effectively
utilize the proposed algorithm. By employing a topology with fewer hub nodes, network resources
can be utilized more equitably under any conditions.

0

2000

4000

6000

8000

10000

12000

14000

16000

proposed-small-50k

dijkstra-small-50k

0

5000

10000

15000

20000

25000

30000

35000

proposed-small-100k

dijkstra-small-100k

Figure 12: The box plot for the average number of packets forwarded by each node in the small
topology (with 50 k, 100 k packets)

235



Flow Distribution Algorithm with SR for SDN

0

2000

4000

6000

8000

10000

12000

14000

16000

proposed-medium-50k 
dijkstra-medium-50k

0

5000

10000

15000

20000

25000

30000

35000

proposed-medium-100k 
dijkstra-medium-100k

Figure 13: The box plot for the average number of packets forwarded by each node in the medium
topology (with 50 k, 100 k packets)

0

5000

10000

15000

20000

25000

30000

proposed-large-50k 
dijkstra-large-50k

0

10000

20000

30000

40000

50000

60000

proposed-large-100k 
dijkstra-large-100k

Figure 14: The box plot for the average number of packets forwarded by each node in the large
topology (with 50 k, 100 k packets)

236



International Journal of Networking and Computing

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

proposed-non-hub-large-50k 
dijkstra-non-hub-large-50k

0

5000

10000

15000

20000

25000

30000

35000

proposed-non-hub-large-100k 
dijkstra-non-hub-large-100k

Figure 15: The box plot for the average number of packets forwarded by each node in the non hub
large topology (with 50 k, 100 k packets)

On the other hand, the number of hops to transmit a packet may increase due to flow distribution.
Figs. 16 depict the average number of hops and the 95% confidence interval with 50k and 100k packets
for both the proposed algorithm and the shortest-path algorithm in the small, medium, large and
non-hub-large topologies.

237



Flow Distribution Algorithm with SR for SDN

0

2

4

6

8

sm
all

me
diu
m

lar
ge

no
n-
hu
b-
lar
ge

50 k packets

proposed dijkstra

0

2

4

6

8

sm
all

me
diu
m

lar
ge

no
n-
hu
b-
lar
ge

100 k packets

proposed dijkstra

Figure 16: The average number of hops of packets in the topologies (with 50, 100 k packets)

The experimental results show no significant difference in the average number of hops required for
packet delivery. However, in the case of the large topology and non-hub-large topology, the proposed
algorithm shows approximately 1.1 more hops on average, i.e., packets need to travel approximately
one additional hop. This is because, compared to other two topologies, the large topology and
non-hub-large topology has fewer mesh-like sections and many nodes have only one adjacent node,
which may result in an extra hop when plotting a route.

7 Conclusion

This paper proposed a flow distribution algorithm utilizing Segment Routing (SR) for Software-
Defined Networking (SDN). Simulation experiments showed that the proposed algorithm effectively
distributes flows across the network at the cost of less than one extra hop. Additionally, a topology
with fewer hub nodes may effectively utilize the proposed algorithm.

However, the algorithm does not limit the number of labels in the SR label list, which can
lead issues such as communication overhead due to an excessive number of labels [14] and takes no
account of the limitation on the number of labels that MPLS devices can process, known as the
Maximum Stack Depth (MSD) [12]. Future research will focus on a more practical algorithm with
constraints on the number of labels.

References

[1] Priyanka Kamboj, Sujata Pal, Samaresh Bera, and Sudip Misra. QoS-Aware Multipath Rout-
ing in Software-Defined Networks. IEEE Transactions on Network Science and Engineering,

238



International Journal of Networking and Computing

10(2):723–732, 2023.

[2] Yufeng Xin and Yifei Wang. Partitioning Traffic Engineering in Software Defined Wide Area
Networks. In 2023 14th International Conference on Information and Communication Tech-
nology Convergence (ICTC), pages 596–601, 2023.

[3] Sugam Agarwal, Murali Kodialam, and T. V. Lakshman. Traffic engineering in software defined
networks. In 2013 Proceedings IEEE INFOCOM, pages 2211–2219, 2013.

[4] The Open Networking Foundation. OpenFlow Switch Specification Version 1.5.1. The Open
Networking Foundation, 2015.

[5] Marcelo Pizzutti and Alberto E. Schaeffer-Filho. Adaptive Multipath Routing based on Hybrid
Data and Control Plane Operation. In IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, pages 730–738, 2019.

[6] Rajesh Narayanan, Saikrishna Kotha, Geng Lin, Aimal Khan, Sajjad Rizvi, Wajeeha Javed,
Hassan Khan, and Syed Ali Khayam. Macroflows and Microflows: Enabling Rapid Network
Innovation through a Split SDN Data Plane. In 2012 European Workshop on Software Defined
Networking, pages 79–84, 2012.

[7] Rami Cohen, Liane Lewin-Eytan, Joseph Seffi Naor, and Danny Raz. On the effect of forward-
ing table size on SDN network utilization. In IEEE INFOCOM 2014 - IEEE Conference on
Computer Communications, pages 1734–1742, 2014.

[8] Ziyong Li and Yuxiang Hu. PASR: An Efficient Flow Forwarding Scheme Based on Segment
Routing in Software-Defined Networking. IEEE Access, 8:10907–10914, 2020.

[9] Momoka Mizuno and Shigetomo Kimura. A Flow Distribution Algorithm with Segment Routing
for Software-Defined Networking. In 2024 Twelfth International Symposium on Computing and
Networking Workshops (CANDARW), pages 15–21, 2024.

[10] Zahraa N. Abdullah, Imtiaz Ahmad, and Iftekhar Hussain. Segment Routing in Software De-
fined Networks: A Survey. IEEE Communications Surveys & Tutorials, 21(1):464–486, 2019.

[11] A. Giorgetti, A. Sgambelluri, F. Paolucci, F. Cugini, and P. Castoldi. Segment routing for
effective recovery and multi-domain traffic engineering. Journal of Optical Communications
and Networking, 9(2):A223–A232, 2017.

[12] Olivier Dugeon, Rabah Guedrez, Samer Lahoud, and Géraldine Texier. Demonstration of Seg-
ment Routing with SDN based label stack optimization. In 2017 20th Conference on Innovations
in Clouds, Internet and Networks (ICIN), pages 143–145, 2017.

[13] Farah Chahlaoui, Hamza Dahmouni, and Hassan El Alami. Multipath-routing based load-
balancing in SDN networks. In 2022 5th Conference on Cloud and Internet of Things (CIoT),
pages 180–185, 2022.

[14] Junjie Pang, Gaochao Xu, and Xiaodong Fu. SDN-Based Data Center Networking With Col-
laboration of Multipath TCP and Segment Routing. IEEE Access, 5:9764–9773, 2017.

[15] Gangxiang Shen and Rodney S. Tucker. Energy-Minimized Design for IP Over WDM Networks.
Journal of Optical Communications and Networking, 1(1):176–186, 2009.

[16] Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew Roughan. The
Internet Topology Zoo. IEEE Journal on Selected Areas in Communications, 29(9):1765–1775,
2011.

239


