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Abstract

One of the key points of success in high performance computation using an FPGA is the
efficient usage of DSP slices and block RAMs in it. This paper presents a FDFM (Few DSP
slices and Few block RAMs) processor core approach for implementing RSA encryption. In our
approach, an efficient hardware algorithm for Chinese Remainder Theorem (CRT) based RSA
decryption using Montgomery multiplication algorithm is implemented. Our hardware algorithm
supporting up-to 2048-bit RSA decryption is designed to be implemented using one DSP slice,
one block RAM and few logic blocks in the Xilinx Virtex-6 FPGA. The implementation results
show that our RSA core for 1024-bit RSA decryption runs in 13.74ms. Quite surprisingly, the
multiplier in the DSP slice used to compute Montgomery multiplication works in more than
95% clock cycles during the processing. Hence, our implementation is close to optimal in the
sense that it has only less than 5% overhead in multiplication and no further improvement
is possible as long as CRT-based Montgomery multiplication based algorithm is applied. We
have also succeeded in implementing 320 RSA decryption cores in one Xilinx Virtex-6 FPGA
XC6VLX240T-1 which work in parallel. The implemented parallel 320 RSA cores achieve 23.03
Mbits/s throughput for 1024-bit RSA decryption.

Keywords: RSA decryption, FPGA, Montgomery modular multiplication, Chinese Remainder
Theorem, DSP slice

1 Introduction

An FPGA is a programmable logic device designed to be configured by the customer or designer by
hardware description language after manufacturing. Since an FPGA chip maintains relative lower
price and programmable features, it is widely used in those fields which need to update architecture
or functions frequently such as communication and education. The most common FPGA architecture
consists of an array of logic blocks, I/O pads, Block RAMs and routing channels. A recent trend has
been to take the coarse-grained architectural approach a step further by combining the logic blocks
and interconnects of traditional FPGAs with embedded microprocessors which broaden a growing
range of other areas. Furthermore, embedded DSP blocks have integrated into an FPGA that makes
a higher performance and a broader application.

Figure 1 illustrates the diagram of the Virtex-6 FPGA developed by Xilinx. The CLB (Config-
urable Logic Blocks) in Virtex-6 consists of 2 sub-logic blocks called slice. Using LUTs (Look Up
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Figure 1: Internal Configuration of Virtex-6 FPGA���
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Figure 2: Architecture of DSP48E1

Tables) and Flip-Flops in the slices, various combinatorial circuits and sequential circuits can be
implemented. The Virtex-6 FPGAs also have DSP48E1 slices equipped with a multiplier, adders,
logic operators, etc. More specifically, as illustrated in Figure 2, the DSP48E1 slice has a two-
input multiplier followed by multiplexers and a three-input adder/subtractor/accumulator. The
DSP48E1 multiplier can perform multiplication of a 18-bit and a 25-bit two’s complement numbers
and produces one 48-bit two’s complement production. Programmable pipelining of input operands,
intermediate products, and accumulator outputs enhances throughput and improves the frequency.
The DSP48E1 also has pipeline registers between operators to reduce the delay. The block RAM
in the Virtex-6 FPGA is an embedded memory supporting synchronized read and write operations.
In Virtex-6 FPGA, it can be configured as a 36k-bit dual-port block RAMs, FIFOs, or two 18k-bit
dual-port RAMs. In our architecture, it is used as a 2k×18-bit dual-port RAM.

RSA [17] is one of the most well known algorithms for public-key cryptography, which is suitable
for encryption as well as digital signature. RSA is widely used in electronic commerce protocols, and
is believed to be secure given sufficiently long keys such as 1024 bits or more. The RSA algorithm
involves three steps: key generation, encryption and decryption. RSA involves a public key and a
private key. Messages encrypted with the public key can only be decrypted using the private key.
Let p and q be distinct prime numbers chosen uniformly at random with the same bit-length. Their
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product M = p × q is used as the modulus for both the public and private keys. We also select
another prime number E, and compute the value D = E−1 mod [(p − 1)(q − 1)], where E−1 is the
modular multiplicative inverse of E. We use a pair (E, M) as a public key to be known everybody
and to be use for encryption, and (D, M) as a private key to be secret.

Given a plain text P expressed as a bit sequence corresponding to an integer smaller than M , the
RSA encryption can be done by computing the cypher text C using a public key (E, M) as follows:

C = PE mod M (1)

The original plain text P can be recovered using a private key (D,M) as follows:

P = CD mod M (2)

Note that E can be usually short in bit-length, say 16 bits for efficient encryption. On the other
hand, D becomes as long as the modulus M resulting in huge computing consumption. Thus, the
computation of decryption defined by Equation 2 is much larger than that of encryption defined by
Equation 1. The main contribution of this paper is to accelerate the decryption using CRT-based
decryption algorithm and implement it in the FPGA.

The main contribution of this paper is to present a new approach that we call the FDFM (Few
DSP slices and Few block RAMs) approach. The key idea of the FDFM approach is to use few DSP
slices and few block RAMs to perform routine computation. Let us explain the FDFM approach
using a simple example. Figure 3 (1) illustrates a hardware algorithm to compute the output of
FIR (Finite Impulse Response) yi = a0 · xi + a1 · xi−1 + a2 · xi−2 + a3 · xi−3. A conventional
approach implementing the FIR is to use four DSP slices as illustrated in Figure 3 (2)[20]. In this
conventional approach the number of DPS blocks must be the same as that of multipliers in the
hardware algorithm. On the other hand, as shown in Figure 3 (3), our FDFM approach uses one
or few DSP slices and one or few block RAMs to implement the FIR. The coefficients a0, a1, . . . are
stored in the block RAM.

× × × ×

+ + +

(1) FIR

DSP DSP DSP DSP

DSP

(2) Conventional approach
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Figure 3: Our FDFM approach

Our FDFM approach has two advantages. First, even if the large main circuit occupies the
most of hardware resources in the FPGA, we can implement a necessary hardware algorithm in
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the FPGA using remaining few hardware resources as illustrated in Figure 4 (1). Also, if enough
hardware resources are available, we can implement multiple FDFM processor cores that work in
parallel(Figure 4 (2)). The resulting hardware implementation has maximum throughput by parallel
computation. We can use the FPGA effectively by implementing FDFM cores in all the remaining
hardware resources in the FPGA to obtain best possible performance. The conventional approach
needs DSP slices proportional to the size of hardware algorithm (Figure 3 (1)). Actually, hardware
algorithms for RSA encryption/decryption and exhaustive verification of the Collatz conjecture have
been implemented in the FPGA using the FDFM approach [4, 10]. Their implementation results
are better than the conventional approach [15, 9].

DSP

RAM

DSP

RAM

DSP

RAM

DSP

RAM

DSP

RAM

DSP

RAM

Main Circuit

(1) Minimum implementation

(2) Parallel implementation

Figure 4: Two advantage of our FDFM approach

In this paper, we propose an efficient hardware algorithm for Chinese Remainder Theorem (CRT)
based RSA decryption with Montgomery multiplication algorithm using the FDFM approach to
improve our previous work [4]. A single core for RSA decryption uses 1 DSP slice, 1 36k-bit block
RAM, and a small quantity of logic blocks in an FPGA. It is noteworthy that this algorithm dose
not only need few hardware resources, but also holds the scalability that from 64 bits to 2048 bits
RSA decryption can be processed by the same circuit without any modification.

The CRT based RSA decryption algorithm is implemented in Xilinx Virtex-6 FPGA using only
one DSP48E1 slice, one block RAM, and few of logic blocks (slices). The implementation results
show that our RSA module for 1024-bit RSA decryption runs in 336.700MHz using 4625348 clock
cycles, namely 13.737ms. Using our decryption method is based on the CRT, we have achieved
approximately 3 times speedup comparing with direct decryption without CRT in our previous
work [4].

Our algorithm repeatedly uses a 17-bit multiplier in the DSP48E1 slice. Since the multiplier is
used in more than 95% clock cycles over all clock cycles, our implementation is close to optimal in
the sense that it has only less than 5% overhead and no further improvement is possible as long as
Montgomery modular multiplication based algorithm is applied. We have also succeeded in imple-
menting 320 RSA cores in one Xilinx Virtex-6 FPGA XC6VLX240T-1 which work in parallel. The
implemented parallel 320 RSA cores achieve 23.03 Mbits/s throughput for 1024-bit RSA decryption.

This paper is organized as follows: Section 2 shows related works that present RSA encryp-
tion/decryption methods. Section 3 presents Modular exponentiation algorithm that is a primary
operation in RSA. In Section 4, we show an RSA decryption algorithm using Chinese Remainder
Theorem. Section 5 presents a Montgomery modular multiplication circuit and a CRT based RSA
decryption circuit with it. Also, we show an implementation of its multicore processor system.
In Section 6, we evaluate the performance of our implementation of CRT based RSA decryption.
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Finally, Section 7 is a brief conclusion.

2 Related Works

This section shows related works that present RSA encryption/decryption methods.
Recently, many applications have employed GPUs (Graphics Processing Units) as real platforms

to achieve an efficient acceleration. To accelerate the RSA encryption/decryption, several research
used a GPU support [6, 8]. However, since the iteration of exponentiation in modular exponentiation
is not suitable for GPU, the GPU implementations cannot compute RSA encryption/decryption
efficiently. Also, Itoh et al. implemented RSA decryption on a DSP and achieved a performance
of 11.7 ms for 1024-bit RSA decryption [11]. The DSP is an LSI chip for digital signal processing
and it consists of 2 multipliers and 6 ALUs. Note that in this paper, we use a DSP as an embedded
circuit in the FPGA. It is different from the DSP chip.

On the other hand, numerous methods with hardware have been developed. Großschädl pro-
posed an algorithm for RSA decryption by Chinese Remainder Theorem which can half the length
of operands and be implemented in a hardware core [7]. Our work carries forward with his algo-
rithm a further step by implementing CRT-based RSA decryption on the FPGA. Also, there are
several researches reported to implement modular exponentiation by Montgomery multiplication
algorithm [14]. In [5], the number of multiplications and additions, the times of memory access,
and the size of memory necessary to compute Montgomery modular multiplication are evaluated by
software implementation. McIvor et al. implemented and evaluated three algorithms shown in [5]
on FPGAs [13]. Blum and Paar proposed a modular exponentiation hardware algorithm with a
radix-2 Montgomery multiplication using systolic array [2]. Also, a radix-24 modular exponentia-
tion circuit that is an extended method of the radix-2 circuit is proposed [3]. The circuits above are
fixed for the length of operands. However, the following methods that are independent of the length
of operands were proposed. Tenca et al. presented a radix-2 scalable Montgomery multiplication
architecture [19]. This architecture uses fixed processing elements to deal with variable bit length
of operands. Nakano et al. presented a radix-216 Montgomery multiplier and RSA encryption hard-
ware algorithm using embedded block RAMs of an FPGA efficiently [16]. In the algorithm, they
use a method to prevent a long carry delay in huge integer addition with redundant number system.
Mazzeo et al. proposed a small RSA encryption circuit [12]. They compute Montgomery multiplica-
tion in Digit-Serial way using Radix-2. Suzuki proposed a high speed modular exponentiation circuit
featuring a Xilinx FPGA which contains DSP slices with radix-217 [18]. Several DSP slices are used
to achieve a high operation frequency. Alho et al. implemented the modular exponentiation using
Altera FPGA with a single DSP slices in radix-218 [1]. In our previous work [4], we have presented
an RSA encryption hardware using one DSP slice and one block RAM. The implementation result
shows that this hardware performs 1024-bit RSA encryption in 36.37ms in XC6VLX240T-1. The
performance issues of above works will be discussed in Section 6.

Above literatures introduce methods to implement modular exponentiation in FPGAs using
Montgomery multiplication featuring radix, device and scalability. In general, the computing time
of RSA decryption is longer than that of RSA encryption because the size of decryption key is
usually much larger than that of RSA encryption. To compute RSA encryption and decryption, all
of them compute modular exponentiation directly. In this work, introducing CRT to our previous
work [4], we further accelerate RSA decryption. We have also implemented 320 cores in the single
Xilinx Virtex-6 FPGA for parallel computation.

3 Modular Exponentiation

Modular exponentiation is a type of exponentiation performed over a modulus and is the primary
operation in RSA. RSA encryption and decryption is given by Equation 1 and Equation 2 which
are the typical modular exponentiation. In RSA, (E,M) and (D,M) are encryption and decryption
keys. During the processing, modular exponentiation is repeated by modular multiplication with
fixed E, D and M . Usually, the bit-length of P , C, D and M is at least 1024 which leads to a huge
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cost in terms of time and hardware resources. In the most of literatures, Montgomery multiplication
algorithm [14] is used as the most efficient algorithm for this problem, which replaces trial division
by a series of additions and shift operations that modulo operation is not necessary any more.

3.1 Montgomery Multiplication Algorithm

Montgomery multiplication algorithm [14], introduced in 1985 by Peter Montgomery, allows mod-
ular arithmetic to be performed efficiently when the modulus is large. Suppose X × Y mod M is
required. This formula implies modular reduction which is very expensive computationally equiva-
lent to dividing two numbers. The Montgomery algorithm is used to compute this formula in much
more efficient way than the classical method of taking a product over the integers and reducing the
result modulus M .

In the Montgomery algorithm, three R-bit numbers X, Y , and M are given, and (X · Y + q ·
M) · 2−R mod M is computed, where an integer q is selected such that the least significant R bits of
X · Y + q ·M can become zero. The value of q can be computed as follows. Let (−M−1) denote the
minimum non-negative number such that (−M−1) ·M ≡ −1( or 2R−1) (mod 2R). Since M is odd,
the situation (−M−1) < 2R always holds. We can select q such that q = ((X ·Y ) · (−M−1))[r−1, 0].
For this q, (X ·Y +q ·M)[r−1, 0] will become zero. For reader’s benefit, we will confirm this fact using
an example. Suppose X = 10010011(147), Y = 01011100(92), M = 11111011(251), and R = 8. We
have the product X ·Y = 011010011010100(13524). Next, we need to select an integer q such that the
least significant R bits of X ·Y +q ·M becomes zero. In this case, (−M−1) = 11001101(205), because
(−M−1) ·M ≡ 1100100011111111(51455) ≡ −1 (mod 2R). Thus q = (X · Y )[R − 1, 0] · (−M−1) =
11000100(196) is selected. Then the product q·M = 1100000000101100(49196) and the sum X ·Y +q·
M = 1111010100000000(62720) could be obtained. Now, we have (X ·Y +q ·M)[R−1, 0] = 00000000
and (X · Y + q ·M) · 2−R = (X · Y + q ·M)[2R− 1, R] = 11110101(245). Since 0 ≤ X,Y < M < 2R

and 0 ≤ q < 2R, it is guaranteed that (X · Y + q ·M) · 2−R < 2M . Therefore, by subtracting M
from (X · Y + q ·M) · 2−R, we can obtain (X · Y + q ·M) · 2−R mod M if it is no less than M .

- Algorithm 1: radix-2r Montgomery Multiplication -
radix-2r, d = dR/re, X, Y,M ∈ {0, 1, ..., 2R − 1},
Y =

∑d−1
i=0 2ir · Yi, Yi ∈ {0, 1, ..., 2r − 1}

(−M−1) ·M ≡ −1 mod 2r, −M−1 ∈ {0, 1, ..., 2r − 1}
Input: X, Y,M,−M−1

Output: Sd = X · Y · 2−dr mod M
1. S0 ← 0
2. for i = 0 to d− 1 do
3. qi ← ((Si + X · Yi) · (−M−1)) mod 2r

4. Si+1 ← (X · Yi + qi ·M + Si) / 2r

5. end for
6. if (M ≤ Sd) then Sd ← Sd −M

Algorithm 1 shows radix-2r Montgomery multiplication, where d = dR/re presents the number
of digits in radix-2r operands. The multiplier Y is partitioned by each r-bit and Yi represents the
i-th digit of Y . Therefore, Y could be given by Y =

∑d−1
i=0 2ir ·Yi. After d loops, R-bit Montgomery

multiplication can be obtained. As far as now, Montgomery multiplication could be computed by
multiplication, addition and shift operations without modulo operations. The result of Montgomery
multiplication just needs an amendment by inputting it with 1 into the Montgomery multiplier.

Since X ·Y +q ·M ≡ X ·Y (mod M), we write (X ·Y +q ·M) ·2−R mod M = X ·Y ·2−R mod M .
Let us see how Montgomery modular multiplication is used to compute C = PE mod M . Assume
that E is a power of two. Since R and M are fixed, we again assume that 22R mod M is computed
beforehand. We first compute P · (22R mod M) · 2R mod M = P · 2R mod M using the Montgomery
modular multiplication. We then compute the square (P ·2R mod M)·(P ·2R mod M)·2−R mod M =
P 2 ·2R mod M . It should be clear that, by repeating the square computation using the Montgomery
modular multiplication, we have PE · 2R mod M . At last, we input 1 and the previous result, that
is (PE · 2R mod M) · 1 · 2−R mod M = PE mod M . Finally, cypher text C is obtained.
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- Algorithm 2: Modular Exponentiation -
0 ≤ E ≤ 2|E| − 1, E =

∑|E|−1
i=0 2i · Ei, Ei ∈ {0, 1}

Input: P, E,M,−M−1, 22dr mod M
Output: C = PE mod M
1. C ←(22dr mod M) · 1 · 2−dr mod M ;
2. P ← (22dr mod M) · P · 2−dr mod M ;
3. for i = |E| − 1 downto 0 do
4. C ← C · C · 2−dr mod M ;
5. if Ei = 1 then C ← C · P · 2−dr mod M ;
6 end for
7. C ← C · 1 · 2−dr mod M ;

Algorithm 2 shows the modular exponentiation using Algorithm 1, where |E| represents the
bit length of E. Inputs 22dr mod M and −M−1 are given beforehand. To use Montgomery modular
multiplication, C and P are converted from 1 and P in the 1st line and the 2nd line, respectively. The
portion underlined in Algorithm 2 can be computed by Montgomery multiplication of Algorithm 1.

4 CRT-based RSA decryption

The complexity of the RSA decryption defined in Equation 2 directly depends on the size of D and
M . The decryption exponent D specifies the numbers of repeated modular multiplications and the
modulus M determines the size of the intermediate results. Chinese Remainder Theorem (CRT)
provides a method to reduce the size of both D and M so that the complexity of the RSA decryption
can be reduced.

Theorem 1 (Chinese Remainder Theorem) Let n1, n2, ..., nk be k positive integers which are
pairwise coprime. For any given set of integers x1, x2, ..., xk, there exists an integer x solving the
system of simultaneous congruences:

x ≡ x1 (mod n1)
x ≡ x2 (mod n2)

...
x ≡ xk (mod nk)

has a simultaneous solution which is unique modulo n1n2 . . . nk and any two solutions are congruent
to one another. Furthermore there exists exactly one solution x between 0 and n− 1.

Note that the theorem implies that there is a unique solution. However, it does not say how we
obtain the value of x. The solution can be obtained by a method known as Gauss’s algorithm as
follows. Let N = n1n2 · · ·nk, Ni = N/ni and di = Ni

−1 (mod ni) (1 ≤ i ≤ k). We have,

x = x1N1d1 + · · ·+ xkNkdk (mod N). (3)

From the Fermat’s Little Theorem, we have Nni−1
i (mod ni) = 1. Thus, di can be easily computed

by the following formula: di = Ni
−1 (mod ni) = Nni−2

i (mod ni).
We use Equation 3 for k = 2 to perform RSA decryption defined in Equation 2. Since M = pq and

the Chinese Remainder Theorem, the value of P can be computed by the following two equations:

Pp = CD mod p = CDp
p mod p (4)

Pq = CD mod q = CDq
q mod q, (5)
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where Cp = C mod p, Cq = C mod q, Dp = D mod (p − 1), and Dq = D mod (q − 1). Let Zp =
qp−1 mod M and Zp = pq−1 mod M . Once we have the values of Pq and Dq, we can compute the
value of P by Equation 3 by the following formula:

P = (Ppq(q−1 mod p) + Pqp(p−1 mod q)) mod M

= (Ppq(qp−2 mod p) + Pqp(pq−2 mod q)) mod M

= (Pp(qp−1 mod M) + Pq(pq−1 mod M)) mod M

= (PpZp + PqZq) mod M (6)

Note that Dp, Dq, Zp and Zq can be precomputed, because their values are independent of the value
of P . In summary, the following steps can perform the RSA decryption, that is, can compute the
plain text P from the cypher text C.

CRT-based RSA decryption

Step 1: Compute Cp = C mod p and Cq = C mod q.

Step 2: Compute Pp = C
Dp
p mod p and Pq = C

Dq
q mod p.

Step 3: Compute Sp = PpZp mod M and Sq = PqZq mod M .

Step 4: Compute the sum P = Sp + Sq. If P ≥M then let P = P −M .

Let us briefly compare the computational costs of the direct RSA decryption by Equation 2 and the
CRT-based RSA decryption. Suppose that both p and q has R/2 bits, and thus, M has R bits. Then,
the decryption key and the cypher text C can have R bits. We assume that the computational cost
of Equation 2 is R3, and roughly evaluate the computational cost of the CRT-based RSA decryption.
Since in the CRT-based RSA decryption, the cost of Step 2 is dominant, we ignore the other steps.
Since all of the p, Cp and Dp has R/2 bits, the computational cost of Pp is R3/8. Similarly, that
of Pq is also R3/8. Thus, the total cost of Step 2 is R3/4. Consequently, the CRT-based RSA
decryption can reduce the computational cost by quarter.

5 Implementation on the FPGA

This section mainly shows a Montgomery modular multiplication circuit and a CRT based RSA
decryption circuit with it. In our hardware algorithm, we use an embedded DSP slice and a block
RAM in Xilinx FPGA. Also, we introduce an implementation of its multicore processor system.

5.1 Our Montgomery Modular Multiplication Algorithm

Algorithm 3 shows our hardware algorithm of Montgomery multiplication. Let {A : B} denote a
concatenation of A and B. For example, {A : B} = (FFEC)16 for A = (FF )16 and B = (EC)16.
Algorithm 3 is an improved algorithm from Algorithm 1 introduced in Section 3.1. Our circuit
performs radix-217 based algorithm to match the size of inner multiplier in DSP48E1. Let R denote
the size of Montgomery multiplier operands X, Y , and M , then d = dR/17e is the number of digits
of the operands. If 17d ≥ R+3, the subtraction shown in the 6th line of Algorithm 1 can be ignored.
If at least 3-bit 0 is padded to the most significant bits of the highest digit as the redundancy, we
can guarantee such condition is satisfied. Due to the stringent page limitation, the proof is omitted.
Furthermore, M ≥ C is always satisfied in the modular exponentiation shown in Algorithm 2. In the
practical, the size of operands is radix-2 numbers such as 512-bit, 1024-bit, 2048-bit, and 4096-bit.
For the radix-217 system, the condition 17d ≥ R+3 is just satisfied. If the condition is not satisfied,
we can append one redundant digit at the highest digit. Thus our hardware Montgomery algorithm
does not perform the reduction at last.

Algorithm 3 is a radix-217 digit serial Montgomery algorithm from Algorithm 1. In other words,
each 17 bits, as 1 digit, is processed every clock cycle. For this reason, the operands X, Y , M ,
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and Si are split into 17-bit digits Xj , Yj , Mj , and S(i,j), respectively. The loop from the 2nd to
11th lines of Algorithm 3 corresponds to the 2nd to 5th lines of Algorithm 1. Comparing the two
algorithms, Si+1 ← (X ·Yi + qi ·M +Si) / 2r of the 4th line of Algorithm 1 corresponds to the digit
serial processing by 4th to 10th lines of Algorithm 3. While Cα, Cβ , Cγ , and CS are carries and
they are added at the next loop. In the algorithm, Cα and Cβ are 17-bit carries for 17-bit MACC,
and Cγ and CS are 1-bit carries for 17-bit addition. For example, at the 6th line a product of Xj

and Yi, and an addition of the product and Cα are computed. The resulting upper 17-bit denotes a
carry Cα which can be added at next loop. While the lower 17-bit of result is α which is used at the
8th and 9th lines. These carries in our algorithm appear in both the 17-bit MACC and the 17-bit
adder to prevent a long carry chain that causes circuit delay.

- Algorithm 3: Our Montgomery Algorithm -
radix-217, d = dR/17e, 17d ≥ R + 3,
X, Y,M, Si ∈ {0, 1, ..., 2R − 1},
−M−1, α, β, γ, Cα, Cβ ∈ {0, 1, ..., 217 − 1}, Cγ , CS ∈ {0, 1},
X =

∑d−1
i=0 217i ·Xi, Xi ∈ {0, 1, ..., 217 − 1}, Xd = 0

Y =
∑d−1

i=0 217i · Yi, Yi ∈ {0, 1, ..., 217 − 1}
M =

∑d−1
i=0 217i ·Mi,Mi ∈ {0, 1, ..., 217 − 1},Md = 0

Si =
∑d−1

j=0 217j · S(i,j), S(i,j) ∈ {0, 1, ..., 217 − 1}, Sd = 0
Input: X,Y,M,−M−1

Output: Sd = X · Y · 2−17d mod M
1. S0 ← 0
2. for i = 0 to d− 1 do
3. q ← ((X0 · Yi + S(i,0)) · (−M−1)) mod 217

4. Cα, Cβ , Cγ , CS ← 0
5. for j = 0 to d do
6. {Cα : α} ← Xj · Yi + Cα

7. {Cβ : β} ← q ·Mj + Cβ

8. {Cγ : γ} ← α + β + Cγ

9. {CS : S(i+1,j−1)} ← γ + S(i,j) + CS

10. end for
11.end for

5.1.1 Architecture of Montgomery Multiplier

Figure 5 shows the architecture of Montgomery multiplier using Algorithm 3. The inputs of Mont-
gomery multiplier are supplied from a block RAM and registers of CRT based RSA decryption
circuit. Given the inputs, the operations of Algorithm 3 are executed by the MACC composed with
one DSP48E1 and one adder composed with CLBs.

The computations of the 3rd, 6th and 7th lines are executed with the DSP48E1. In order to
obtain q in the 3rd line, X0 · Y0 + S(i,0) is obtained first. After that, (X0 · Yi + S(i,0)) · (−M−1)
is computed. The number of clock cycles necessary to compute q is 6. In the 6th line, 17-bit
multiplication Xj · Yi is computed and the carry Cα for the digit is added at the same time. The
production and the addition are computed using the DSP48E1. After that, the lower 17-bit of the
result will be added in the following adder composed by CLB. On the other hand, the upper 17-bit
of the result is stored as a carry into the pipeline register and added at the next clock. The 7th line
q ·Mj +Cβ is computed as the same as the 6th line using DSP48E1. The sums of products of the 6th
and 7th lines in Algorithm 3 are computed by alternate input of Xj , Yi and Mj , q. Since the carries
are stored to the pipeline registers in the DSP48E1, our circuit is able to be performed efficiently.

The adder, that is composed by CLBs, following the DSP48E1 computes α + β + Cγ and γ +
S(i,j) + CS of the 8th and 9th lines in the Algorithm 3. Since Cγ and CS are 1-bit carries, they can
be computed by a two-input 17-bit adder. The operands S(i,j) come from the block RAM, α and β
come from DSP48E1, and γ is a feedback of α + β + Cγ . The most significant bit of the output is
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Figure 5: Structure of our Montgomery multiplier

a feedback to the adder as carries CS and Cγ . Also, the lower 17-bit of the output is a feedback to
the adder, while at the same time S(i+1,j−1) is stored into the block RAM. These can be computed
using registers and multiplexers as shown in Figure 5.

5.1.2 Necessary Clock Cycles of Our Montgomery Algorithm

In our algorithm, based on the radix-217 number system, R-bit operands are split into d = dR/17e
blocks. Let MMmul denote the number of clock cycles to compute the Montgomery multiplication.
In [5], the number is computed by the following equation:

MMmul = 2d2 + d (7)

The equation means that d2 multiplications are necessary to compute X · Y and q · M , and d
multiplications are needed to obtain q.

On the other hand, the number of clock cycles MMclk of our Montgomery algorithm is computed
by Equation 8.

MMclk = ((d + 1) · 2 + 6) · d + 4 = 2d2 + 8d + 4 (8)

It shows that from the 5th to the 10th lines of Algorithm 3, (d+1) ·2+6 cycles are necessary for the
loop, and d cycles are needed for the loop from the 2nd to the 11th lines. Also, in order to complete
the computation of modular exponentiation, another 4 cycles are necessary.

Figure 6 shows the utilization rate of the multiplier in our proposed algorithm. From this figure,
when the size of operands R is larger than 500-bit, the utilization rate is more than 90%. Also, if the
size of operands is 1024-bit and 2048-bit, the utilization rate is more than 95% and 97%, respectively.
Since the size of operands should be large in practice, our proposed algorithm is optimal for a single
DSP48E1 slice.
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Figure 6: Embedded multiplier utilization rate of our Montgomery multiplier(MMmul/MMclk )

5.2 Our CRT based RSA decryption circuit

5.2.1 Architecture of CRT based RSA decryption circuit

Recall that there are 4 steps to compute CRT based RSA decryption. In Step 1, Step 2, and Step 3,
two independent but same computations can be performed, respectively. More specifically, in Step 1,
Cp = C mod p and Cq = C mod q, in Step 2, Pp = C

Dp
p mod p and Pq = C

Dq
q mod p, and in Step 3,

Sp = PpZp mod M and Sp = PpZp mod M can be computed in parallel, respectively. However, to
reduce the cost of the hardware resource, we process them in serial. In other words, we serially
compute Cp, Cq, Pp, Pq, Sp, and Sq in our CRT based decryption circuit. Also, in Step 4, it is easy
to obtain the final result P only by adding Sp and Sq together.

We just discuss one of the procedures in the following paragraphs and assume the modulus M
is 1024 bits. The other is totally the same. In Step 1, Cp = C mod p is computed. In the case
of 1024-bit RSA, C is 1024 bits while Cp is 512 bits on the assumption that the size of p is 512
bits. We first input C and Rp

2 mod p into Montgomery multiplier introduced in Section 5.1.1 to get
an intermediate result, where Rp represents the integer 2bitlength(p) which is computed beforehand.
Next the intermediate result and 1 (padding to 512 bits with all 0 in the significant bits) are input
to correct the result.

Step 2 is a typical modular exponentiation. We compute it by Algorithm 2. Note that in this
step, all the operands are 512 bits if the size of modulus M is 1024 bits.

Step 3 is a single Montgomery multiplication as the same as Step 1. We also first input Pp

with R2 mod M which is compute beforehand. Next we compute Sp = PpZp mod M by input
intermediate result with Zp. At last, again the intermediate result and 1(padding to 512 bit with
all 0 in the significant bits) are input to get the final result. In Step 3, we compute a reduction that
the production of a 512-bit operand and a 1024-bit operand with a 1024-bit modulus.

Note that the sizes of operands in each step are different. In our Montgomery multiplier shown in
Figure 5, if the size of input Y equals to the size of modulus, we can guarantee that the computation
is correct.

In our CRT based RSA decryption circuit, we use only one DSP slice and one block RAM. The
circuit contains two controllers. One is used for Montgomery algorithm and the other is used for
the state machine and deciding the address between DSP slice and block RAM. The block diagram
of our CRT based decryption circuit is shown in Figure 7.

The size of a single block RAM in Virtex-6 is 36k bits. In order to reduce the hardware resource
cost, only one block RAM is used in our circuit. The 36k-bit block RAM is split to 2 sub-blocks as
shown in Figure 8. The upper one is used to store the plain text, cypher text, encryption parameters
as well as intermediate results, and thus furthermore split to smaller blocks with each size in 128×18
bits. Our circuit is a decryption circuit, while we also use the circuit as encryption. Thus we have
reserved a space for encryption. The lower space of the block RAM is also split to several parts
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Figure 7: Structure of our CRT based RSA decryption circuit
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to store CRT based parameters, intermediate result and decrypted text. Since in our CRT based
circuit, the size of operands is half, the size of the lower sub-block is half compared with upper
sub-blocks, that is 64× 18 bits.

Note that our algorithm is radix-17 based data, which means that we split operands into every
17 bits. However, the width of our block RAM is 18 bits. The most significant bit of each data is
used as a flag bit to indicate the end 17 bits of the input sequence. It means if a flag bit is equal
to 1, all 17-bit blocks of the operand has been input to the Montgomery multiplier. Since every
sub-block is 64 × 18 bits, our circuit supports RSA decryption from 17 bits to 2176 (64 × 17 × 2)
bits without any modification. Therefore, our circuit can be said scalable.

5.2.2 Necessary clock cycles of CRT based RSA decryption

The number of necessary clock cycles of a single Montgomery multiplication can be computed by
Equation 8. Note that this equation is for the ordinary Montgomery multiplication whose size of 2
inputs X, Y and modulus M is the same. However, in our CRT based RSA decryption, the size of
operands is different since the number of digits d for X and Y is different. We modify Equation 8
to be fit for our algorithm as following,

MMclk = ((d1 + 1) · 2 + 6) · d2 + 4 = 2d1d2 + 8d2 + 4 (9)

where d1 and d2 denote the numbers of digits for input X and Y , respectively. Specifically, suppose
the modulus M is 1024 bits, then the sizes of these two inputs are 1024 bits and 512 bits, respectively.
That is d1 = d1024/17e = 61 and d2 = d512/17e = 31. With Equation 9, we can compute the
necessary clock cycles for our CRT based algorithm.

In our implementation, the first 3 steps are processed. In Step 1, Montgomery multiplication is
performed twice with different input size. Step 2 is a modular exponentiation. Therefore Equation 8
is available. Note that the size of operands in Step 2 is half of the size of Step 1. Thus the size of
operands is d = d2. In Step 3, three times of Montgomery multiplication are necessary with different
input size. Finally, we can obtain the necessary clock cycles as follows:

CRTclk = 2× {(2d2
2 + 8d2 + 4)(2d2 × 17 + 4)

+(2d1d2 + 8d2 + 4) + (2d2d1 + 8d1 + 4)
+(2d1d2 + 8d1 + 4)}

= 4(34d2
3 + 140d2

2 + 3d1d2 + 8d1 + 88d2 + 14)

(10)

5.3 Multicore System

We have implemented a multicore system that contains many processor cores of the FDFM approach
that works in parallel. Figure 9 shows the structure of our multicore system that has 320 cores.
Since the number of cores is large, if a common data bus is used to connect to each core, a large
and complicated multiplexer is necessary. It causes the decrease of the frequency of the circuit.
Therefore, in our system, shift registers are used instead of a data bus. Each shift register consists
of a 1-bit send/receive flag, a 9-bit core ID, an 11-bit address, and an 18-bit send/receive data. The
value stored in each shift register is moved from left to right in every clock cycle. To send an 18-bit
data d to address a of the block RAM in core p, 0(send), p, a, and d are input to the leftmost shift
register. After p clock cycles, these values are moved to core p, and d is stored to address a. On
the other hand, to receive an 18-bit data d from address a of the block RAM in core p, 1(receive),
p, a, and d are input to the leftmost shift register. After p clock cycles, these values are moved to
core p, and d stored in address a is output to the shift register. The data is moved to output port
through the shift registers. Since shift registers are used, 18-bit data can be supplied in every clock
cycle. Therefore, it takes 320× d1 clock cycles necessary to store all input data. From Equation 10,
compared with the number of clock cycles to compute RSA decryption, the number of the clock
cycles is small enough.
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Figure 9: Structure of the multicore system

Table 1: Synthesis result of our CRT based RSA decryption system

1 core 320 cores
Slices (max. 37,680) 140 34,635
36k-bit block RAMs (max. 416) 1 320
DSP48E1s (max. 768) 1 320
Maximum Frequency[MHz] 336.700 325.098

6 Experimental Result and Discussion

The proposed CRT based RSA decryption circuit is implemented and evaluated on the Xilinx Virtex-
6 FPGA XC6VLX240T-1, programmed by hardware description language Verilog HDL and synthe-
sized by Xilinx ISE Foundation 13.1.

Table 1 shows the synthesized result in the Virtex-6 and lists the resource costs for single core
and multicore systems. According the table, the size of the single core system is quite small. Also,
the frequency of the multicore system is almost same as that of the single core system. In general, if
the size of circuit is large, the frequency is decreased. However, our processing core is very compact
and each core is connected by shift registers as shown in Figure 9. Therefore, although the size of
circuit is increased, the frequency of the multicore system is not decreased.

Table 2 shows the necessary clock cycles and execution time in the worst case from 64-bit to
2048-bit CRT based RSA decryption. The execution time is computed by Equation 10 and Table 2.
Any size of operands less than 2176-bit can be executed in the same circuit without any modification.
Our CRT based RSA decryption circuit can process 1024-bit RSA decryption in 11.263 ms. Using
CRT, it achieves nearly 2.6 times speedup comparing with our previous work. Since our previous
RSA circuit [4] does not use CRT, the architecture is less complicated, the maximum frequency is
higher and up to 447.027 MHz. If our circuit works on the same frequency, in theorem, we can
achieve at most 4 times speedup by CRT based algorithm. However, our circuit works in 336.700
MHz. Thus the speedup is less than 4 times.

There are a number of literatures reported to implement RSA using FPGA as described in

Table 2: Execution time of our CRT based RSA decryption circuit for the worst-case
Bit length R 64 128 256 512 1,024 2,048
Blocks d1 4 8 16 31 61 121
Blocks d2 2 4 8 16 31 61
Clock cycles 4,312 19,768 110,392 713,048 4,625,348 33,067,148
Time with CRT[ms] 0.013 0.059 0.328 2.118 13.737 98.210
Time without CRT[ms] in [4] 0.020 0.113 0.742 4.995 36.402 277.413
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Section 2. Performances such as device, circuit size, frequency, execution time, throughput and
scalability for 1024-bit RSA decryption are compared in Table 3. Recall that in the RSA decryption,
the modular exponentiation P = CE mod M is computed, where P and C are plain text and cypher
text, respectively, and (E, M) is a decryption key. In typical 1024-bit RSA decryption, the bit
length of E and M is approximately 1024. Also, its execution time depends on the size of E and
the number of 1’s in E. In the execution time in Table 3, the worst case means that all the 1024-bit
of E are 1 and average case means that half of 1024-bit of E is 1. Blum et al. [3] implemented
a high speed modular exponentiation circuit based on radix-24 using Montgomery multiplication.
Comparing with proposed algorithm, it is not scalable and too many logic blocks are used without
memory blocks or DSP blocks. Nakano et al. [16] implemented modular exponentiation by redundant
number system and LUT. The scale of circuit is huge and scalability is not supported. However, the
authors have used the embedded block RAMs and embedded Multipliers to achieve a high speed
circuit. Suzuki used a pipeline structure whose registers are composed by logic blocks. Mazzeo et al.
have shown that radix-2 based Montgomery multiplier can run in Digit-Serial way without memory
blocks or DSP blocks [12]. Their circuit has a small scale, however nevertheless about 6 times larger
than our circuit. They evaluated the performance using E = 217 +1, which means that the size of E
is only 18 bits long, and that there are only two bits in E set to 1, that is only the most significant
bit and the least significant bit are 1. Such a small bit length is reasonable for encryption, but safe
decryption typically requires lengths around 1024 bits. Under the same E = 217 + 1, our method
outperforms Mazzeo et al.’s by a factor of 33 times. Similar to the proposed architecture, Alho et
al. implemented modular exponentiation using one DSP block in Digit Serial way [1]. However,
their DSP block requires two multipliers, while only one is necessary in our solution. If we had
used 2 multipliers, the two multiplications listed in the Algorithm 3 (lines 6 and 7) could have being
computed in parallel, thus reducing the computation time. Our method is also faster in the average
case, although a direct comparison is difficult due to the fact that Alho et al. used a different FPGA.
Itoh et al. have used a DSP chip that is an LSI chip for digital signal processing, not an FPGA [11].
It is difficult to compare the performance to that of FPGA implementations directly. However, the
DSP chip consists of two 16-bit multipliers and six ALUs. Since our implementation uses 1 DSP
and 1 block RAM in each core, the performance is better than that of our implementation for one
core. On the other hand, our multicore implementation is much better performance.

In our previous work [4], we have presented an RSA encryption hardware using one DSP slice
and one block RAM. In this work, introducing CRT to our previous work, we further accelerate
RSA decryption. Also, optimizing the design of the circuit, the size of circuit in this work is less
than that of previous one. However, since the circuit becomes complicated introducing CRT, the
frequency is reduced from 447.027MHz to 336.700MHz.

In our circuit, since DSP48E1 slices and block RAMs are efficiently used, the size of our modular
exponentiation circuit is very small. Also, the DSP48E1 works almost all the clock cycles shown
in Section 5.1.2. Therefore we have achieved a quality performance with high execution frequency
and our architecture could be said most optimal when only 1 multiplier is used. Also, since the
architecture of our single core is so compact, we can implement multiple cores in parallel system
easily. Thus, an extremely high throughput can be obtained by our system. For 1024-bit RSA
decryption, the maximum throughput is up to 23.031Mbit/s.

7 Conclusion

This paper introduced the FDFM (Few DSP slices and Few block RAMs) approach for the FPGA
design. In the FDFM approach multiple processor cores with few DSP slices and few block RAMs
are used. We have proposed a hardware algorithm for CRT based RSA decryption using minimum
logic units with maximized use of a DSP slice. Our hardware algorithm is close to optimal in
the sense that running clock cycles is close to the lower bound of the number of multiplications
involved in Montgomery multiplication. In other words, a multiplier in a DSP slice works during
almost all the processing clocks. Our algorithm is evaluated in the latest Xilinx Virtex-6 family
FPGA. Experimental result shows that our implementation performs in extremely high speed and
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Table 3: Comparison with related works for 1024-bit RSA decryption

Blum [3] Nakano [16] Suzuki [18]
Device Xilinx XC40250XV Xilinx XC2VP30-6 Xilinx XC4VFX12-10
Logic block 6,633 CLBs 11,589 Slices 3,937 Slices
Memory block — 29 BRAMs 7 BRAMs
DSP slice — 64 18× 18-bit multipliers 17 DSP48s
Frequency[MHz] 45.6 52.9 400, 200
Execution time[ms] 11.95(worst case) 2.52(worst case) 1.71(worst case)
Throughput[kbit/s] 85.690 406.349 598.830
Scalable No No Yes
CRT No No No

Mazzeo [12] Alho [1] Itoh [11]
Device Xilinx Virtex-E2000-8 Altera Stratix EP1S40 TI TMS320C6201
Logic block 1,188 Slices 341 LEs —
Memory block — 13,604-bit —
DSP slice — 1 DSP 2 multipliers, 6 ALUs
Frequency[MHz] 86.2 198 200
Execution time[ms] 3.86(E = 217 + 1) 28(average case) 11.7(worst case)
Throughput[kbit/s] 265.285 36.571 87.521
Scalable No Yes Yes
CRT No No Yes

Our previous work [4] This work (1 core) This work (320 cores)
Device Xilinx XC6VLX240T-1 XC6VLX240T-1 XC6VLX240T-1
Logic block 180 Slices 140 Slices 34,635 Slices
Memory block 1 BRAM 1 BRAM 320 BRAMs
DSP slice 1 DSP48E1 1 DSP48E1 320 DSP48E1
Frequency[MHz] 447.027 336.700 325.098
Execution time[ms] 36.401(worst case) 13.737(worst case) 14.228(worst case)
Throughput[kbit/s] 28.130 74.542 23,031.370
Scalable Yes Yes Yes
CRT No Yes Yes
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lar exponentiation accelerator for modern FPGA devices. Computers and Electrical Engineering,
33(5-6):383–391, 2007.

[2] Thomas Blum and Christof Paar. Montgomery modular exponentiation on reconfigurable hard-
ware. In Proc. of the 14th IEEE Symposium on Computer Arithmetic, pages 70–77, 1999.

[3] Thomas Blum and Christof Paar. High-radix Montgomery modular exponentiation on recon-
figurable hardware. IEEE Trans. on Computers, 50(7):759–764, 2001.

[4] Song Bo, Kensuke Kawakami, Koji Nakano, and Yasuaki Ito. An RSA encryption hardware
algorithm using a single DSPblock and a single block RAM on the FPGA. International Journal
of Networking and Computing, International Journal of Networking and Computing, 1(2):277–
289, 2011.

[5] Çetin Kaya Koç, Tolga Acar, and Burton S. Kaliski, Jr. Analyzing and comparing Montgomery
multiplication algorithms. IEEE Micro, 16(3):26–33, 1996.

[6] Wenjun Fan, Xudong Chen, and Xuefeng Li. Parallelization of RSA algorithm based on compute
unified device architecture. In Proc. of The Ninth International Conference on Grid and Cloud
Computing, pages 174–178, 2010.
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