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Abstract

A distributed system is said to be probabilistic self-stabilizing, if it eventually converges to
a legitimate computation with probability 1, starting from any global configuration. Like a
self-stabilizing system, a probabilistic self-stabilizing system tolerates any number of transient
failures and recovers a legitimate computation, but only probabilistically, unlike a self-stabilizing
system, which recovers it deterministically even in the worst case. However, a self-stabilizing
algorithm is in general difficult to design and even impossible for some problems. A probabilistic
self-stabilizing, on the other hand, is easier to design. To see this, we discuss how a probabilistic
self-stabilizing system is constructible from a given weak stabilizing system, which can recover
a legitimate computation only in the best case.

An execution of a probabilistic self-stabilizing system can be modeled by a random walk on
a graph, and its performance can be evaluated in terms of some quantities, e.g., the hitting and
the cover times, of the corresponding random walk. The hitting and the cover times of random
walks have been studied extensively, but most of them consider standard (i.e., unbiased) random
walks on static graphs. We discuss how to design biased random walks whose hitting and cover
times are faster than standard random walks, to improve the performance of probabilistic self-
stabilizing system. We also discuss random walks on dynamic graphs to analyze a probabilistic
self-stabilizing system such that its communication network topology frequently changes.

Keywords: self-stabilization, probabilistic self-stabilization, weak stabilization, Markov chain,
random walk, hitting time, cover time, biased walk, dynamic graph

1 Introduction

The aim of this paper is to discuss how to construct efficient probabilistic self-stabilizing systems.
A distributed system is said to be self-stabilizing, if it eventually converges to legitimate com-

putation starting from an arbitrary initial (global) configuration [12]. An obvious advantage of a
self-stabilizing system is that initialization is unnecessary. However, a more important one is that it
can tolerate any finite number of transient failures, each of which can arbitrarily modify the current

1This work was supported in part by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion
Science.
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configuration, since it will eventually start legitimate computation, regarding the current illegiti-
mate configuration reached as the result of a transient error as an initial configuration. In order to
formally discuss stabilization, let us start with introducing the model of distributed system.

1.1 Distributed Systems

A distributed system consists of n communicating processes. As usual, we model its communication
network by a digraph N = (P, L), where P and L respectively represent the sets of the processes
and the uni-directional communication links, i.e., an edge (p, q) is in L if and only if process q
can directly obtain information from process p. Communication is carried out by means of shared
variables. Each process p holds a set of shared variables and can access them to read and to write.
It can also access the variables of its predecessors to read their values.

A variable in a process takes a value from a pre-determined domain. The state of a process is a
function that assigns, to each of the variables in the process, a value in its domain. Let Sp be the set
of all states of a process p ∈ P . Then the Cartesian product C = Πp∈V Sp of Sp for all p ∈ P forms
the set of (global) configurations. We assume that the read and write operations are atomic and
finish at a time even when the read operation is initiated by a neighbor. A process p can change its
state by executing its algorithm A, which is described by a sequence of guarded actions, where the
guard of an action in p is a boolean expression that involves some variables of p and its predecessors
(of N). An action of some process p is enabled in a configuration γ when its guard is satisfied. We
say that p is enabled in γ if one of its actions is enabled in γ. Simultaneous executions of actions by
a set of processes induce a transition between two configurations. If a configuration γ′ yields from a
configuration γ, we denote this transition by γ 7→ γ′. For any configuration γ, γ 7→ γ holds, which
corresponds to the result of “simultaneous executions” by an empty set of processes.

All potential behaviors of a distributed system executing A on N is described by a digraph
S = (C, 7→), which models a distributed system. An execution of S is a possibly infinite (directed)
path γ0, γ1, . . . of S, starting from a configuration in C. We say that a configuration γ′ is reachable
from a configuration γ, if there is a path from γ to γ′ in S.

There are in general more than one execution E = γ0, γ1, . . . in S for some initial configu-
ration γ0 ∈ C. A scheduler determines which executions among them are executable by non-
deterministically choosing some processes to activate, i.e., to have them execute the corresponding
actions, from the processes enabled in γt, at each time instant t. We denote by E(S, σ) the set of all
executions that can occur as an execution of S under a scheduler σ. The scheduler of a distributed
system is an abstraction of the given environment in which the distributed system is executed, and
thus we cannot choose (or control) it.

A scheduler is proper, if it always activates at least one process as long as there are enabled
processes. A scheduler is weakly fair if every continuously enabled process is eventually activated.
A scheduler is strongly fair if every process that is enabled infinitely often is eventually activated. A
strongly fair scheduler is thus weakly fair by definition. Note that we do not request a weakly fair
(and hence a strongly fair) scheduler to be proper. The synchronous scheduler always activates every
enabled process. The synchronous scheduler is proper and strongly fair. Unlike the synchronous
scheduler, there are many different weakly (resp. strongly) fair schedulers. In the following, when we
say the scheduler is weakly (resp. strongly) fair, we mean the weakly (resp. strongly) fair scheduler
which can produce every weakly (resp. strongly) fair execution.

A distributed system is constructed to solve some problem. Let SP be the set of ”correct”
executions in S, which specifies the problem it solves. For example, the purpose of a token ring
system is to circulate a single token in a ring. When the system works correctly, its execution
circulates the token in the ring, and SP of the system is the set of such correct executions.

1.2 Self-Stabilization and Weak Stabilization

Let S, σ and SP be a distributed system, a scheduler and a specification, respectively.

Definition 1 (Self-Stabilization [12]). S is self-stabiliz- ing for SP under σ, if there is a non-empty
subset L of C satisfying:
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• Strong Closure Property: Every execution in E(S, σ) with an initial configuration in L
belongs to SP.

• Certain Convergence Property: Every execution in E(S, σ) eventually reaches a configu-
ration in L.

Definition 2 (Weak Stabilization [15]). S is weak stabilizing for SP under σ, if there exists a
non-empty subset L of C satisfying:

• Strong Closure Property: Every execution in E(S, σ) with an initial configuration in L
belongs to SP.

• Possible Convergence Property: For any configuration γ ∈ C, there is an execution in
E(S, σ) that starts at γ and eventually reaches a configuration in L.

A configuration is said to be legitimate if it is in L. Let σWF (resp. σSF ) denote the weakly
(resp. strongly) fair scheduler. Some simple properties are:

Property 1. 1. For any distributed system S and specification SP, if S is self-stabilizing for
SP under σWF , then it is self-stabilizing for SP under σSF .

2. For any distributed system S and specification SP, if S is weak stabilizing for SP under σSF ,
then it is weak stabilizing for SP under σWF .

3. For any distributed system S, specification SP and scheduler σ, if S is self-stabilizing for SP
under σ, then it is weak stabilizing for SP under σ.

In fact, weak stabilization is strictly weaker than self-stabilization, since there is a problem that
has a weak stabilizing algorithm but has no self-stabilizing algorithm [10]. The next theorem relates
the weak and the self-stabilization.

Theorem 1 ([15]). Let S, SP and σ be a distributed system, a specification for S, and a scheduler,
respectively. If S is weak stabilizing for SP under σ, then S is self-stabilizing for SP under σ,
provided that

1. S has a finite number of configurations, and

2. σ satisfies the Gouda’s strong fairness condition: For any transition γ 7→ γ′, if γ occurs
infinitely often in an execution E, then γ 7→ γ′ also appears infinitely often in E.

Since the weak stabilization is a strictly weaker concept than the self-stabilization, we can expect
that the Gouda’s strong fairness is strictly stronger than the strong fairness. Indeed, we have:

Theorem 2 ([10]). Suppose that the system has a finite number of configurations. The Gouda’s
strong fairness is strictly stronger than the strong fairness.

Based on Theorem 1, Gouda suggested to design a self-stabilizing system as a weak stabilizing
system, to relax the difficulty of designing a self-stabilizing system, which method however leaves
a formidable problem of forcing the given environment that the scheduler abstracts to observe the
Gouda’s strong fairness (besides the strongly fairness).

We will define the concept of probabilistic self-stabilization [17, 20] in Section II and argue that
this notion may close the gap between the weak and the self-stabilization. Then we discuss how to
design and analyze probabilistic self-stabilizing systems in Section III. We will discuss biased random
walks on dynamic graphs as a possible tool to this end, despite that most of the studies on random
walks have considered unbiased random walks on static graphs.
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2 Probabilistic Self-Stabilization

We now introduce the concept of probabilistic self-stabilization [17, 20, 10]. A probabilistic scheduler
chooses and activates some of the enabled processes probabilistically.

Definition 3 (Probabilistic Self-Stabilization [17, 20]). A (possibly randomized) distributed system
S is probabilistically self-stabilizing for a specification SP under (possibly probabilistic) scheduler
σ, if there is a non-empty subset L of C satisfying:

• Strong Closure Property: Every execution in E(S, σ) with an initial configuration in L
belongs to SP.

• Probabilistic Convergence Property: Every execution in E(S, σ) eventually reaches a
configuration in L with probability 1.

The concept of probabilistic self-stabilization was first introduced in [17, 20], in which the authors
proposed randomized algorithms that work as a probabilistic self-stabilizing system under a non-
deterministic scheduler. Later in [10], the authors introduced a randomized scheduler, modeling the
environment as a stochastic process, and discuss deterministic distributed systems that work as a
probabilistic self-stabilizing system under the randomized scheduler. Note again that a scheduler
is an abstraction of the environment, so we cannot design a favorable probability distribution that
the scheduler uses to select processes from enabled ones to activate them, like the case of non-
deterministic scheduler.2 We discuss this latter case in Subsection A, and leave the former case
in Subsection B. These two subsections make the differences of the two cases clear. We then give
examples of probabilistic self-stabilizing systems in Subsection C, and in Subsection D, we relate
analyses of probabilistic self-stabilizing systems with random walks.

2.1 Probabilistic Self-Stabilization under Randomized Scheduler

We consider a randomized scheduler that always chooses each of the enabled processes at random
with probability 1/2. We denote the randomized scheduler by σR. We however can modify the
definition of randomized scheduler so that it always chooses each of the enabled processes at random
with any probability in (εL, εH), where 0 < εL ≤ εH < 1 are arbitrarily chosen positive constants,
and essentially the same results can be obtained. Note that the randomized scheduler is not proper,
since it may not activate any process even if there are enabled ones.

Let S be a weak stabilizing system for SP under σSF , and consider S under σR. Since S is weak
stabilizing under σSF , for any γ ∈ C there is a legitimate configuration γ′ ∈ L reachable from γ in
S. On the other hand, if there is a (finite) path from γ to γ′ in S, then the path can occur as a
prefix of an execution in σSF , since a finite path never violate the strongly fairness.

Property 2. S is weak stabilizing for SP under σSF , if and only if for any γ ∈ C, there is a
legitimate configuration γ′ ∈ L reachable from γ in S.

Suppose that S under σR is in a configuration γ and let U ⊆ V be the set of enabled processes
in γ. Then a subset W ⊆ U is selected uniformly at random from 2U , and the next configuration is
determined from W . We model S under σR as a (possibly infinite state) Markov chain M defined
over set C of “states” associated with the transition probability matrix P = (pγγ′)γ,γ′∈C , where the
transition probability pγγ′ from γ to γ′ is 2−|U | by the definition of σR. We call M the Markov
chain corresponding to S under σR.

Recall that a (finite or infinite) Markov chain is called irreducible if its state transition graph is
strongly connected. A state γ is called recurrent if every evolution x0(= γ), x1, . . . that starts at γ
returns γ with probability 1, and otherwise it is called transient.

2We in this paper assume that the probability distribution of a randomized algorithm is a part of design issue, but
the probability distribution of a randomized scheduler is a constraint for the design of a probabilistic self-stabilizing
system. However, depending on applications, the environment may be adjustable, in which case the probability
distribution of a randomized scheduler also becomes a variable to be optimized.
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Consider first the case in which the algorithm A is finite state, i.e., the domain of each of the
variables is finite. Then the number of configurations is finite and the corresponding Markov chain
M is also finite, since a distributed system consists of a finite number of processes.

Theorem 3 ([10]). Let S be the distributed system executing a finite state algorithm A on a com-
munication network N , and let SP be any specification for S. Then S is weak stabilizing for SP
under σSF if and only if it is probabilistically self-stabilizing for SP under σR.

Proof. If part is obvious. An outline of Only-If part: Consider the strongly connected component
graph H = ({C1, C2, . . . , Ck}, A) of S. H is a finite DAG. If Ci is a sink of H, Ci contains a legitimate
configuration γi. It is easy to observe that any evolution x0, x1, . . . of M eventually enters a sink Ci

and then reaches γi with probability 1, since a configuration is recurrent if and only if it belongs to
a sink. The proof completes by Property 2.

Next consider the case in which A is infinite state. Like the finite state case, S holds the strong
closure property for a specification SP under σSF , if and only if it holds the same property for SP
under σR. Also, S holds the possible convergence property holds for SP under σSF , if it holds the
probabilistic convergence property for SP under σR. However, its converse does not hold in general,
unlike the case of finite state algorithms.

Consider a distributed system consisting of three processes X, Y and Z, on which an algorithm
A is executed. The processes provide a variable v, whose domain is the set of non-negative integers,
and A consists of a single guarded action to increment v, where its guard is true. All processes
are thus always enabled. We call a configuration legitimate if vX + vY = vZ , where vp denotes the
variable v in process p, and let SP be the set of executions E that contains a legitimate configuration.
Then this distributed system holds the possible convergence property for SP under σSF , but does
not hold the probabilistic convergence SP under σR, since the corresponding Markov chain M is an
asymmetric unrestricted random walk on the line, which is known to be irreducible and transient
[7, Example 8.9].

Theorem 4 ([11]). There is an infinite state algorithm A that is weak stabilizing for a specification
SP under σSF , such that A is not probabilistically self-stabilizing for SP under σR.

Thus we cannot fully generalize Theorem 3 to the case of infinite state algorithms. Ref. [11]
shows some sufficient conditions; the following is one of them.

Theorem 5 ([11]). Let S and M be an infinite state distributed system and the infinite Markov
chain corresponding to S, respectively. Assume that M is (irreducible and) recurrent. Let SP be any
specification for S. Then S is weak stabilizing for SP under σSF , if and only if it is probabilistically
self-stabilizing for SP under σR.

Note that we can replace the scheduler from σSF to σWF in the results of this subsection by
Property 1(2).

2.2 Probabilistic Self-Stabilization with Randomized Algorithm

As explained at the top of this section, the randomized scheduler is not the only way to introduce the
randomness to the behavior of a distributed system. We in this subsection consider a randomization
of algorithm. Let A be a deterministic algorithm and consider a simple transformer that transforms
A into a randomized algorithm A∗ as follows: Whenever an enabled process is activated, it first
tosses a coin and then executes the action, if and only if it gets the “head”. Formally, in A∗, in
addition to the variables used in A, we provide a new boolean variable B. We then replace each
action “guard −→ statement” of A into

guard −→ B := Rand(); if B then statement,

where Rand is a random bit generator, which returns one of the boolean values with the same
probability. You might expect a similar result to Theorem 3. Suppose that there is a distributed
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system S that executes a finite state algorithm A on a communication network N , and let SP be
a specification for S. Let us compare S with the randomized distributed system S∗ that executes
randomized algorithm A∗ on N , which we expect to solve the “same” problem as S. To this end,
we need to prepare a specification SP∗ for S∗, which must be different from SP, since A∗ uses
variables B that are not used in A and the configuration space C∗ of S∗ is different from C of S.
We define SP∗ in such the way that E∗ ∈ SP∗ if and only if the execution E of S constructed from
E∗ by removing all value information on these variables B from every configuration in E∗ is in SP;
intuitively, SP∗ is the same as SP when ignoring these variables.

Theorem 6. There is a distributed system S that executes a finite state algorithm A on a commu-
nication network N and a specification SP such that S is weak stabilizing for SP under σSF , but
the distributed system S∗ that executes A∗ on N is not probabilistic self-stabilizing for SP∗ under
σSF .

Proof. An outline: Consider a network N of two processes X and Y such that there is a bidirectional
link between them. Algorithm A uses a variable v whose domain is {0, 1}, and consists of a single
guarded action. Its guard is true and the action is: If (vX , vY ) = (0, 0) or (1, 1) then v := 1, else
if (vX , vY ) = (0, 1) or (1, 0) then v := 0. Call (1, 1) legitimate, and define SP by the set of all
executions containing the legitimate configuration. Obviously it is weak stabilizing under σSF (since
there is an execution that leads to the legitimate configuration (1, 1)).

Observe that the legitimate configuration cannot be reached unless more than one process is
activated simultaneously at (0, 0). Since σSF can always activate at most one process, S∗ is not
probabilistic self-stabilizing under σSF .

However we can show the following theorem.

Theorem 7 ([10]). Suppose that S is finite state. S is probabilistically self-stabilizing for SP under
σR, if and only if S∗ is probabilistically self-stabilizing for SP∗ under the synchronous scheduler.

Corollary 1 ([10]). Let S be the distributed system executing a finite state algorithm A on a commu-
nication network N , and let SP be any specification for S. Then S is weak stabilizing for SP under
σSF if and only if S∗ is probabilistically self-stabilizing for SP∗ under the synchronous scheduler.

So far we introduced two types of probabilistic self-stabilizing systems. In the case of determin-
istic systems under a randomized scheduler, although Theorem 3 holds for a variety of randomized
schedulers (not only σR), we cannot take advantage of tuning the probability distribution of sched-
uler to improve the performance of the system. On the other hand, in the case of randomized
systems under the synchronous scheduler, optimizing the probability distribution of the algorithm is
an important design issue to improve the performance of the system (provided that the environment
can be modeled by the synchronous scheduler). These two randomnesses thus have different nature.

2.3 Examples of Probabilistic Self-Stabilization

(1) Probabilistic Self-Stabilization under Probabilistic Scheduler:
The token circulation problem for a uni-directional ring is known as the first problem for which

a self-stabilizing algorithm is given [12]. His solution is not uniform; it has turned out that there is
a uniform (deterministic) solution (or more formally solution for anonymous ring), if and only if the
size of a ring is prime [6, 17].

Consider an anonymous uni-directional ring Rn = (P, L), where P = {0 ≤ i ≤ n − 1} and
L = {(i, i + 1) : i = 0, 1, . . . , n − 1}, provided that the process name i is calculated modulo n. We
design a probabilistic self-stabilizing token circulation algorithm for Rn, where n ≥ 3 is an arbitrary
number, by introducing the randomness in the scheduler.

A basic trick used in [6] for designing their algorithm is as follows: It uses a register v whose
domain is D = {0, 1, . . . , n − 2}. We define that a process i has a token if vi 6= vi−1 + 1, and i is
enabled whenever it has a token, where vi denotes the register v of process i. There is at least one
token at any configuration since |D| = n − 1. A process i, which is enabled, executes vi := vi−1 + 1
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when it is activated, and then loses the token by definition. Confirm that the algorithm is uniform
and i can execute it without knowing i.

The activation of i does not increase the number of tokens; the token of i disappears and a new
token is created in i + 1 only when there was no token in i + 1 before vi is updated. Informally,
the activation of i transfers the token from i to i + 1 if there is no token in i + 1; otherwise if there
is a token in i + 1, then one of them disappears. It is thus obvious to find an activation sequence
that decrements the number of tokens in Rn when at least two tokens exist, which shows that
this trick alone works as a weak stabilizing algorithm under σSF , or equivalently as a probabilistic
self-stabilizing algorithm under σR, for all n (not only for prime numbers).

(2) Randomized Algorithms for Probabilistic Self-Stabilization:
We next give randomized algorithms for probabilistic self-stabilization.
For any uni-directional ring of an odd size, Herman [17] presented a randomized algorithm to

realize a probabilistic self-stabilizing token circulation system under the synchronous scheduler.
Using the notations above, let {0, 1} be the domain of register v, and define that i has a token if
and only if vi = vi−1. His algorithm updates vi to vi−1 if vi 6= vi−1, and vi is set to a random bit,
otherwise.

An outline of Israeli and Jalfon’s algorithm [20] that works on any communication network
N = (P, L) (not only a uni-directional ring) is as follows: Each process i ∈ P provides a register vi

whose domain is the set of integers. When vi ≥ maxj∈N(i) vj , i is enabled and has a token, where
N(i) is the set of neighbors of i in N . Then there is at least one token in any configuration. A
process i, which is enabled, select a process j in N(i) uniformly at random, and have j sufficiently
increase vj so that vj ≥ maxk∈N(j) vk is satisfied, i.e., to transfer the token to j. Then tokens make
random walks on the graph and they coalesce when they meet at a vertex.

A random walk which selects each of the neighbors with the same probability as the next vertex
like in this algorithm is called the standard random walk. Since two standard random walks eventual
meet with probability 1, the system converges to a legitimate configuration with probability 1, and
the standard random walk eventually visits all the vertices (e.g., [1]). It is worth emphasizing that
their algorithm is probabilistic self-stabilizing even under an unfair scheduler.

2.4 Probabilistic Self-Stabilization and Random Walks

In Section II, we have introduced two types of probabilistic self-stabilizing systems and discussed
how to design them via weak stabilizing systems. We view the scheduler as the environment so
that we cannot choose (or design) it, but we of course can design a randomized algorithm so that
the probabilistic self-stabilizing system can show the best performance. Taking the Israeli and
Jalfon’s algorithm [20] in Subsection C as an example, we discuss random walks as a tool to analyze
probabilistic self-stabilizing systems.

The Israeli and Jalfon’s algorithm makes use of the standard random walk on a finite graph
G = (V, E) (i.e., communication network). Some of the performance measures that we are interested
in are (1) the convergence time - how long before only one token remains, (2) the waiting time - how
long before receiving a token, (3) the cover time - how long before a token visiting all vertices, and
(4) the fairness - how fair the token circulation is.

The hitting time HG(u, v) from u to v is the expected number of steps necessary to reach v from
u, and the (maximum) hitting time HG of G is defined as HG = maxu,v∈V HG(u, v). The cover
time CG(u) from u is the expected number of steps necessary to visit all vertices from u, and the
(maximum) cover time CG of G is defined as CG = maxu∈V CG(u). Then the convergence, the
waiting and the cover times of the Israeli and Jalfon’s algorithm on a communication graph G are
evaluated by the hitting and the cover times of the standard random walk on G.

The standard random walk has been extensively studied (see e.g., [1]). Since the hitting and the
cover times of standard random walk on any graph of order n is O(n3), and there is a graph called a
Lollipop graph, for which the hitting and the cover times of standard random walk is Ω(n3) [13, 14],
rough bounds on the convergence, the waiting and the cover times are all Θ(n3).

You might think that this bound Θ(n3) is by no means good enough. It is thus natural to
consider a “biased” random walk, in which a vertex u can select a one from its neighbors v with
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different probabilities. Indeed, this idea works in an extremal case in which G is used to define the
transition probability from u to v. But obviously such an algorithm is not practical, since knowing
G is in general a very expensive task, and even impossible frequently. Thus the real question here
is to understand the impact of local information to reduce the hitting and the cover times.

The fairness is analyzed by using the stationary distribution of the standard random walk. Since
the stationary distribution of a vertex u whose degree is d(u) is d(u)/2|E|, the token circulation
realized by the standard random walk is unfair. The frequencies of a vertex u enjoying the token
is proportional to d(u), and hence on a Lollipop graph for example, a vertex enjoys receiving the
token n times as many as another vertex. This is another motivation of introducing a biased random
walk. Ikeda et al.[18] proposed the following random walk. As in above, let v be any vertex in N(u).
Then u selects v with the probability min{d−1(u), d−1(v)}. Note that u selects u itself with the
probability 1−

∑
v∈N(u) min{d−1(u), d−1(v)}. Then the transition probability matrix is now doubly

stochastic, and the corresponding stationary distribution becomes uniform – the corresponding token
circulation becomes fair.

That all processes enjoy the fair token circulation is a good news. However, this random walk
introduces self-loops, which may cause longer hitting and/or cover times. It is a good question to
ask if there is a biased random walk such that it achieves a given probability distribution as its
stationary distribution and also achieves faster hitting and cover times. We answer this question in
the next section.

The Israeli and Jalfon’s algorithm assumes that the communication network does not change, but
the communication networks dynamically change in many distributed systems. Hence random walks
on dynamic graphs are worth discussing, although such random walks had not been investigated until
recently even for the standard random walks. In the next section, we also discuss random walks on
dynamic graphs. Obviously we are interested in biased random walks (not only stationary ones) on
dynamic graphs, but we can only find results about biased random walks on static graphs or about
standard random walks on dynamic graphs, except one.

Performance of a probabilistic self-stabilizing system under the randomized scheduler can also
be analyzed using random walks. In Subsection A, we modeled the distributed system S under the
randomized scheduler as a Markov chain M with a transition probability matrix P = (pγγ′)γ,γ′∈C .
Without loss of generality, we may assume that any action in an algorithm must update a local
variable, which implies that an activation of different set of processes must yield a different con-
figuration. Since pγγ′ = 2−|U |, where U is the set of enabled processes at γ, we assign the same
probability pγγ′ = 2−|U | to each of the neighbors γ′.

An evolution x0, x1, . . . of M is identified with a random walk on (di)graph S that obeys P,
when we regard the current state as the token. By definition the random walk obeying P is the
standard random walk.3 Provided that S is finite state, HS (and hence CS) bounds the convergence
time of probabilistic self-stabilizing system S, where the convergence time is the average number
of steps necessary for S to reach a legitimate configuration (starting from the worst configuration).
Besides the hitting and cover times, [9, 18] observed that many other properties of random walks like
coalescence time, mixing time and blanket time4 may also affect the performance of a probabilistic
self-stabilizing system.

3 Biased Random Walks on Dynamic Graphs

3.1 Biased Random Walks on Static Graphs

We consider random walks on undirected graphs G = (V,E). The standard random walk is unbiased,
since it always selects one of the neighbors uniformly at random. The other random walks are biased.
The standard random walk is very popular since its implementation in a distributed system is easy;

3Strictly speaking, a standard random walk does not contain a self-loop, i.e., γ 6= γ′. A random walk including
a self-loop is sometimes called a lazy chain, which is frequently used to modify a periodic Markov chain to make it
aperiodic, without changing its fundamental (asymptotic) properties.

4For their definitions, see a standard textbook, e.g., [1].
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a vertex (i.e., process) u only needs its degree d(u) in G. However, it is also obvious that we can
improve the performance of a random walk by using more information.

As touched in Section II, we can design a biased random walk whose hitting and cover times are
better than the standard random walk, when G = (V,E) is available for a process u to calculate the
transition probability puv from u to each neighbor v. Let T = (V, ET ) be a spanning tree of G. For
any u, v ∈ V , let

puv =
{ 1

dT (u) if (u, v) ∈ ET

0 otherwise,

where dT (u) is the degree of u in T . Then the token circulates in T . Since both the cover and
the hitting times of the standard random walk on a tree are O(n2) [2], both the cover and the
hitting times are O(n2) for any graph G with order n, which improve the matching bound Θ(n3)
on the cover and the hitting times of standard random walk by a factor of n. Since both the cover
and the hitting times of a path are Ω(n2) for any transition probability matrix P [19], this biased
random walk is indeed best possible. The hitting and the cover times do not match in general. The
Mattheus’s lemma [23] relates them: For any G = (V, E) with order n and transition probability
matrix P,

hn−1 min
u,v∈V,u 6=v

HG(u, v) ≤ CG ≤ hn−1 max
u,v∈V,u 6=v

HG(u, v),

where hn denotes the n-th harmonic number. From the view of the design of a good distributed
algorithm, however, a global information like G is usually not available for a process.

We therefore focus on biased random walks that use only local information. Ref. [19] proposes
the β-random walk, whose transition probability is defined by

puv =

{
d−β(v)∑

w∈N(u)
d−β(w)

if v ∈ N(u)

0 otherwise,

where β is a constant, and shows that it exhibits a good performance when β = 1/2.

Theorem 8 ([19]). For any graph of order n, the hitting time of 1/2-random walk is O(n2), which
is best possible as observed, and its cover time is O(n2 log n), for which there is still a gap from the
Ω(n2) bound.

Given a finite graph G = (V,E) and a probability distribution π = (πv)v∈V on V , the Metropolis
walk is defined as a random walk whose transition probability is defined by

puv =


1

d(u) min{d(u)πv

d(v)πu
, 1} if v ∈ N(u)

1 −
∑

w 6=u puw if u = v

0 otherwise,

and guarantees to have π as its stationary distribution [16, 24]. The Metropolis walk has been
used frequently in the context of random sampling named Markov chain Monte Carlo (MCMC). Let
f = maxu,v∈V πu/πv.

Theorem 9 ([27]). The hitting time of the Metropolis walk is Θ(fn2), and its cover time is
Θ(fn2 log n).

As an application, if we take π to be uniform and use the Metropolis walk in the Israeli and
Jalfon’s algorithm, instead of the standard random walk, a uniform token circulation algorithm with
a smaller hitting and cover times is derived, whereas the stationary distribution of standard random
walk at u is d(u)/2|E|, which is proportional to its degree and is not uniform.

Confirm that both the β-random walk and the Metropolis walk make use of local information,
the degrees of the neighbors and itself.

Since information on a different process is expensive to obtain in any case, it is interesting to
estimate the goodness of standard random walk, compared with any biased random walk. In general,
the ratio between the hitting (and cover) time of standard random walk to the fastest one is Θ(n2),
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since there is a Hamiltonian graph G such that the hitting and the cover times of standard random
walk on G are Ω(n3), and that there is a random walk designed for G that deterministically circulates
the token along the Hamiltonian circuit of G (and thus its hitting and the cover times are n). The
next theorem shows that the standard random walk is considerably good as long as we use it on a
tree.

Theorem 10 ([28]). On any tree T , the ratio between the hitting time (resp. the cover time) of
standard random walk on T to the fastest one (designed for T ) is O(

√
n) (resp. O(

√
n log n)).

3.2 Standard Random Walks on Dynamic Graphs

In this subsection, we discuss random walks on dynamic graphs G = {Gt = (V, Et) : t ∈ N}, where
Gt is the graph at time t. Thus during the token circulation, the vertex set does not change and only
the edge set changes. Although dynamic graphs are difficult to handle in general, some cases are
easy to analyze. Suppose that for any t, we can construct Gt by taking each pair {u, v} of distinct
vertices in V at random with the fixed probability p(0 < p < 1). Then the standard random walk
works very well and the hitting time is O(n) and the cover time is O(n log n), i.e., they are the same
as those on the complete graph. Let G = (V, E) be a connected graph. If we restrict the above
graph construction procedure so that an edge is selected from a set E, the hitting and the cover
times of standard random walk on G are O(HG) and O(CG). In [21], the authors extended these
observations to estimate the hitting and the cover times of β−random walks on dynamic graphs, for
two models; choosing destination before knowing the new incident edges and choosing destination
after knowing them.

Let G is the set of all connected graphs on the vertex set V . G is Markovian evolving, if G is
a Markov chain whose state set is G. Avin et al. [5] discussed the case in which G is Markovian
evolving. As you might expect, there are Markovian evolving graphs on which the standard random
walk does not perform well.

Theorem 11 ([5]). There is a Markovian evolving graph G such that the hitting time of the standard
walk is Ω(2n). Also there is a Markovian evolving graph G such that the cover time of the standard
walk is O(2Ω(nε)), for any 0 < ε < 1 and n ≥ 21/(1−ε).

However, if we restrict G to be Bernoulli in the sense that G1 and Gi are taken at random
according to a fixed probability distribution from G, then we can obtain polynomial time results:

Theorem 12 ([5]). The hitting time (resp. the cover time) of the standard random walk on any
Bernoulli evolving graph is O(n3) (resp. O(n3 log n)).

4 Discussions and Conclusions

In this paper, we have introduced the concept of probabilistic self-stabilization, in the context of
reducing the difficulty of designing a self-stabilizing algorithm. Since a weak stabilizing algorithm
is self-stabilizing when the scheduler satisfies the Goulda’s strong fairness, and a weak stabilizing
system is substantially easier to design than a self-stabilizing system, designing a weak stabilizing
algorithm and running it under a scheduler that observes the Goulda’s strong fairness are a system-
atic approach to design a self-stabilizing system. An drawback of the approach however is that the
Goulda’s strongly fairness is substantially stronger than the strong fairness (which we may naturally
expect to the environment), and it may be difficult for us to control the scheduler so that it observes
the Goulda’s strongly fairness, since the scheduler is an abstraction of the environment.

The environment in general contains much uncertainty and one may wish to model it as a
stochastic process. The results in Section II verified an advantage of the model; roughly a weak
stabilizing algorithm is always probabilistic self-stabilizing under a randomized scheduler, as long as
its state space is finite.

Another advantage of introducing a randomized scheduler is that many problems become solvable
in a probabilistic self-stabilizing manner on anonymous networks, on which many problems are

156



International Journal of Networking and Computing

unsolvable by deterministic systems. As discussed in Subsection C of Section II, we could design
probabilistic self-stabilizing algorithms to solve some problems on anonymous networks, for which
there are no self-stabilizing algorithms. Indeed, many of the probabilistic self-stabilizing algorithms
proposed so far are designed to work on anonymous networks.

The probabilistic self-stabilization is also considered under other distributed computing models
that are proposed to investigate other classes of distributed systems than traditional distributed
computer networks. A probabilistic self-stabilizing algorithm for solving the leader election problem
on population protocol is proposed in [4]. The population protocol assumes the global fairness, which
is a synonym of the Gouda’s strong fairness.5 The protocol can be non-deterministic. By definition
the population protocol uses a constant memory, independently of the size of the system. However,
to solve the self-stabilizing leader election problem, n states are necessary and sufficient, where n is
the number of agents. Thus the problem is unsolvable unless we generalize the population protocol
model [8] (see also [25] for a similar result on mediated population protocol).

In [4], the problem is solved when the graph is a ring of an odd size. Since the protocol is finite
and the scheduler satisfies the global fairness, they needed to design a weak stabilizing protocol, and
indeed they did.

The rendezvous problem for mobile agents on a graph is also unsolvable in general when both
mobile agents and ring are anonymous, as observed in [22]. However, there is a simple probabilistic
self-stabilizing algorithm; let each agent make the standard random walk. Like the algorithm in
Subsection C, one can improve the coalescence time by adopting a biased random walk such as the
β-random walk if the graph is not regular.

As a related problem, the geometric pattern formation problem by anonymous mobile robots on
a plane has also been discussed (see e.g., [29]). It is shown that any memory-less pattern formation
algorithm is self-stabilizing. However, not all patterns are formable by the robots, and even two
robots cannot meet in the worst case, under the deterministic setting, mainly because of the impos-
sibility of breaking the symmetry. If we are allowed to use a probabilistic algorithm, it is not hard
to construct a probabilistic self-stabilizing algorithm for forming any pattern. Note that the mobile
agents and robots model assume the strongly fair scheduler.

Researchers are fascinated by the autonomy (i.e., self-* ness, such as self-organization, self-
healing, and self-stabilization) that many natural distributed systems exhibit, despite of their anonymity,
and ask why? Since the notion of probabilistic self-stabilization works very well in anonymous set-
ting as we have observed in this section, it is a natural guess that the probabilistic self-stabilization
plays the central role in natural autonomous systems, particularly when the environment can be
modeled as a randomized scheduler. Thus it may be interesting to view the natural computation
from the view of probabilistic self-stabilization.

In Section II, we introduced the randomness in two ways. Although the behavior of a randomized
algorithm under a randomized scheduler can be analyzed by using a Markov chain, the roles of the
two randomness may be different; we cannot control a given randomized scheduler, but we can
design a randomized algorithm. It may be interesting to consider how to design a good randomized
algorithm for a given randomized scheduler.

In Section III we explained some techniques to improve the performance of random walks, after
explaining the relation between the probabilistic self-stabilization and the Markov chain. Although
some researchers observed this relation and analyzed a probabilistic self-stabilizing algorithm using
the Markov chain corresponding to it (e.g., [26]), designing a good random walk for a distributed
algorithm is still left open. Ref. [9] surveys a variety of issues. For example, multiple random walks
that simultaneously circulating multiple tokens to reduce the cover time [3].
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