
International Journal of Networking and Computing – www.ijnc.org
ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 2, Number 2, pages 160–187, July 2012

Virtualized Development and Testing for Embedded Cluster Computing

Ian Vince McLoughlin
School of Computer Engineering
Nanyang Technological University

Block N4, Nanyang Avenue, Singapore 639798

Timo Rolf Bretschneider
EADS Innovation Works

110 Seletar Aerospace View
Singapore 797562

Chen Zheming1

School of Computer Engineering
Nanyang Technological University

Block N4, Nanyang Avenue, Singapore 639798

Received: May 2, 2012
Revised: June 6, 2012

Accepted: June 29, 2012
Communicated by Koji Nakano

Abstract

Embedded cluster processing solutions can be difficult to design if quantity and type of
processors, interconnectivity technology and code partitioning are not specified in advance,
and yet it may not be possible to determine these without qualitative and quantitative testing
which can not be performed until hardware is available. Similar issues are faced in conventional
development projects for generic embedded systems, or for generic distributed systems, but the
issues are exacerbated when both attributes are combined. This paper considers issues relating
to custom embedded cluster processing system development in general, before focussing on a
specific example of a space-borne cluster computer using ARM processors running embedded
Linux. This early example, which will be shown performing distributed synthetic aperture
radar image processing, is representative of a growing number of systems in the pervasive and
ambient computing fields. It illustrates many difficulties in co-developing hardware and software
for specific tasks. We present one potential solution – the use of distributed virtualization to
simulate the final design. An ARM cluster simulator is presented, constructed using QEMU and
virtual networking, and shown used for the development and validation of distributed embedded
processing tasks on a cluster-type architecture. As clusters of embedded processors, pervasive
embedded networks, and the “embedded cloud” become more popular in the near future, such
virtualized systems can prove useful for development and testing.

Keywords: Embedded cluster; virtualization; hardware-software codesign; distributed embedded
computing
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1 Introduction

Embedded cluster computers extend and combine the two advancing research areas of distributed
processing and embedded systems. As embedded systems become more pervasive and more powerful
and distributed processing increases in usefulness and popularity, it was inevitable that the domains
would eventually meet. Pervasive computing, ambient intelligence and ubiquitous computing de-
scribe post-desktop computing paradigms that often utilise wireless communications infrastructure
to supply distributed computational resource wherever and whenever it is required. Although the
computer infrastructure in such systems need not be either embedded or low power, the practical
requirements of computing everywhere tend to mandate that low power embedded solutions will be
key in this maturing technology field.

A second feature of these post-desktop computing schemes is that they are naturally asyn-
chronous. This is first due to their adoption of high level operating systems and languages (e.g.
Android or Java), but also through the use of asynchronous, packetised wireless links.

This paper focuses on the use of virtualization technology for development, testing and modelling
of such systems. Although it is feasible that virtualization technology will itself be part of the run-
time of ambient intelligence solutions (such as in the Oxygen project [18]), the processing and
latency overheads are currently significant detractors. This paper considers virtualization at design-
time rather than run-time. We demonstrate the need for a software-only development solution by
discussing a real world example; we propose a solution based upon the popular QEMU dynamic
translation emulator [2], present the operation of this tool, and evaluate its ability to assist in the
software design and testing phases of an embedded cluster processing solution [12].

Section 2 presents the PPU (parallel processing unit) target architecture, while Section 3 con-
siders the distributed processing architecture and protocols for this system. Section 4 discusses
virtualized emulations for modelling the example system, presenting a system solution which is eval-
uated in general in Section 5. Section 6 applies this to a real-world distributed ARM example for
the processing of polarimetric synthetic aperture radar (POLSAR) data, before Section 7 presents
final results and Section 8 concludes the paper.

2 The Parallel Processing Unit (PPU)

The PPU [13] was designed as a high speed but low power/cost/weight dedicated image processing
unit for Singapore’s X-Sat satellite, launched on 20 April 2011 [17]. It was designed to handle
the processing of high rate multispectral imagery using low power ARM processors arranged in
a cluster-like fault-tolerant configuration. For reasons of fault tolerance, the PPU employs loose
indirect coupling between asynchronous processing nodes with each processor running embedded
Linux. From a software perspective, this closely resembles a Beowulf cluster [20].

One of the main aims of the PPU is reliability. Although the cluster’s processing nodes (PNs),
which are standard ARM CPUs, have no radiation hardening, the concept of reliability-through-
redundancy, and the application of single-point-failure mitigation techniques, allow the original
system to match the reliability figures of a fully radiation-hardened design operating in low-earth
orbit [13]. It means that any node can fail at any time, but the overall system must continue to
operate (potentially with some delay). It is thus a fault-tolerant and asynchronous system (i.e. an
embedded Beowulf cluster [10]).

Since the initial design of the PPU (seen in Fig. 1, and described in more detail below in
Subsection 2.1), this architecture has been extended and applied to the ground-based processing of
earth observation data, including multispectral images as well as synthetic aperture radar (SAR)
and POLSAR data. Other embedded cluster architectures have also been designed [4], and the
rising popularity of low-power embedded processors such as the ARM is likely to result in many
more systems of this type, both in space and on the ground.
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Figure 1: A block diagram of the PPU architecture showing twenty processing nodes (PNs) connected
across four FPGA blocks. Inside are status registers (SR) and processing modules (PM), while a
controller area network (CAN) bus conveys control messages, while fast low voltage differential
signalling (LVDS) links interconnect FPGAs and link the PPU to a solid state recorder (SSR) RAM
storage module.

162



International Journal of Networking and Computing

2.1 Design Rationale

When a system such as the PPU is included in a satellite, it contributes to cost primarily in terms
of lift-off mass, but also design cost, component cost, as well as having electrical power and volume
requirements. Thus, it is important for it to provide sufficient value in terms of raw processing power,
but also in flexibility and reliability. For X-Sat, this was the motivation for using a general-purpose
operating system (Linux) running on an ARM processor. This combination supports a variety of
software payloads, including image compression [25] or in-orbit disaster monitoring software [26].

However, this architecture (originally designed by the first author in 1999), has also been used
for various ground-based applications. In fact it represents an early example of an emerging class of
computing systems: embedded clusters. Embedded clusters can be either a single centralised unit or
distributed across a cloud, in car-area network or in-home network. Systems of this type are finding
use in an increasing number of niche applications [4]. High reliability or fault tolerance is often cited
as being important reasons for their adoption.

2.2 Distributed Structure

The PPU’s interconnection backbone consists of four one-time-programmable interconnected FPGAs
(anti-fuse Actel AX1000). These enable real-time data streaming capability through a time-slotted
serial network topology interconnecting 20 processing nodes (PN). In the PPU, each PN consists of
one Intel SA1110 (206 MHz) processor and 64 MB of Samsung SDRAM (Samsung K42561632D)
[11].

If we assume the FPGAs in Fig. 1 do nothing more than provide an interconnection, then the
PPU resembles a Beowulf cluster [10] (although a packet processing service is implemented in the
PMs for simple unsupervised radiometric correction in the space-borne FPGA design, we will not
consider it further here). The generic PPU is therefore a cluster2 as we can see more clearly in Fig.
2.

Every PN connects to the hosting FPGA using a dedicated 17-bit parallel bus (the 17 bits are
for efficiency [13]). Dedicated power switching circuitry isolates each PN and FPGA from power
faults occurring in other PNs or FPGAs. Direct memory access (DMA) is enabled over this link to
connect into the central routing network, and both data and command messages share the network
[13]. A photograph of the flight-ready PPU hardware as deployed on X-Sat is given in Fig. 3

Within Fig. 1, two methods of interconnection to the outside world are shown, each with a
redundant backup. One is through CAN (controller area network), and the other through a high
speed low voltage differential signalling (LVDS) link to a solid state RAM (SSR) block. These
interfaces nominally relate to control messages and data streams respectively, but both map to
packetised message transfers along the timeslotted global backplane (TGB) – a Token ring-like
networking protocol developed for this system. Redundant flash memory provides for OS, ramdisc
and program storage, accessed at boot time. Status registers (SR) maintain system state – a local
copy of the knowledge maintained by the external PPU controller.

After reset, PNs are booted from program images that reside in redundant flash memory, con-
trolled by the FPGAs. These flash images contain the Linux OS, plus common applications and the
processing code library. PNs can voluntarily reboot, or be power-cycled by the FPGAs in which
case, new code is loaded on demand. As we will see, in the virtualized solution, individual instances
act identically to this, and can even be virtually ‘power-cycled’ or rebooted by the control process.

2.3 Operating System and Monitoring

Each PN runs embedded Linux with real-time extensions. Using Linux on this type of system is
trivial since it is already commonly used this way on the ground in Beowulf networks. Extensive
support is available within the OS to handle higher-level protocols, including message passing and
networking stacks.

2Note that earlier publications describing the PPU [13] presented a two-FPGA alternative structure. Whether
two, four or more FPGAs are used, this is still a cluster since FPGAs are largely only operating as network switches.
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Figure 2: PPU-style architectural drawing comprising multiple PNs connected to a network cloud.
Two failure modes are shown apart from node failure; the island effect where several nodes operate
separately to the main network (PN17 to PN20), and an erroneous communication link (PN1).

Figure 3: A photograph of the PPU and power supply (along the back edge) installed in a mounting
tray for use in the X-Sat microsatellite. A row of 10 PNs is clearly visible along the front edge of
the circuit board.
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Figure 4: The graph of development risk with hardware and software novelty divided into four
quadrants. Note that the consequence of ‘risk’ to hardware is costly and time consuming hardware
re-spins, whereas the consequence to software is usually confined to delayed software release.

PN software is divided into four modules: identical boot code runs on each PN as soon as the
corresponding FPGA commands it to turn on. Above this, drivers handle communication with the
FPGA. These respond to control events from the FPGA (such as heartbeat signals), and manage
buffers and queues used by the third level of software, which defines the parallel processing topology.
Finally, the fourth level is application code, selected from a library of possible run-time executables.

As a parallel processing machine, this is therefore a loosely asynchronous arrangement similar to
a cloud or a Beowulf cluster. This both improves reliability by maintaining greater independence
between units, and significantly simplifies code development and testing.

Also, the loosely asynchronous PPU is unlike a tightly coupled hard real-time signal processing
computer, and this implies that there is no shared memory maintained at run-time. Whilst this
can be disadvantageous in terms of gross computational speed, it has advantages in terms of fault
tolerance (for example, at the simplest extreme, processing jobs allocated to failed nodes can simply
be restarted without affecting the remainder of the system), and in maintaining memory coherence.
It also has great advantages in allowing the use of standard development tools (as noted above), and
enabling the extensive use of simulation built upon virtualization technology – the primary focus of
this paper.

2.4 System Development

We assume the existence of a cooperative multi-person project to develop a high speed fault tolerant
signal processing solution. This could result in a single standalone unit like the PPU (which contains
a cluster of processors), or it could result in a distributed solution of embedded processors. While
many development paradigms are possible for such systems, eventually they all partition the design
into hardware, firmware and software requirements. The latter includes an operating system (if
used), libraries, high level languages, scripting and so on. The hardware design may be reasonably
fixed when the software is being developed (i.e. the number, type and connectivity of processing
elements is likely to be known before software development begins in earnest). However, it is unlikely
that fully working prototype hardware is ready for the software development team to use. Generally
speaking, the hardware would only be available if it is being reused, or if the software development
effort has deliberately been delayed until the hardware is fixed. In a space mission where fully
working hardware may only be available immediately prior to launch, the time reserved for the
software development process to port code on to the final hardware may be unduly limited.

Usually a software development team requires access to hardware for prototyping and developing
their code. However, often the team is provided be provided with hardware that is deficient in some
aspect (see below). We can understand this by classifying a project in terms of novelty in both
hardware and software as in Fig. 4. Designs where both the hardware and software are novel would
encompass a higher risk than designs in which either software or hardware remains fairly constant.
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As mentioned, software developers usually require access to hardware for prototyping and de-
velopment purposes, especially where the hardware and the software are bespoke. If both are being
developed simultaneously, then definitely no hardware can be available for the software developers
until very near the end of the overall development process. Any hardware that is provided to the
software team will be deficient in one or more aspects such as the following:

• CPU type/family/device, CPU speed, memory map changes.

• System-on-chip differences in capabilities or structure/addresses.

• Connectivity differs in type or packet structure.

• Different operating system [version], libraries, APIs.

• Different toolchain and development environment.

However, if common OS code and communication processes are adopted, then industry standard
authoring and prototyping tools can be employed for software development. Most deficiencies are
then confined to the upper few items on the list, and useful tools such as lint, gprof, electric
fence, strip, objdump, gdb etc. are used to improve software reliability and accelerate development
time.

Returning to the example of embedded clusters such as the PPU, and the large and intricate
algorithms that these can support: Firstly, the embedded nature of the systems, and secondly
their inherent distributed and loosely coupled asynchronous natures, conspire to make prototyping
difficult. We can consider them to be unfriendly and rare custom hardware clusters in development
terms. In fact, several of the development options for the PPU are shown in Fig. 5. Assuming that
the software developers do not have access to the PPU system itself (which is likely when it is still
under development, is too expensive or rare, or extremely difficult to use), then another system must
be used by developers for writing, testing and validating code. In the case of the PPU, apart from all
reasons mentioned, the individual PNs did not have separate debug interfaces or serial ports. Only
a single serial port and a single JTAG debug interface were provided, multiplexed via the FPGAs.
Firmware within the FPGA allowed the ports to be remapped to individual PNs as required. There
was thus never any possibility of two PN processors being debugged simultaneously, or for their
console (serial port) status messages to be accessible simultaneously. These issues seriously reduced
the development friendliness of the system.

In order to improve the friendliness toward developers, the PPU was deliberately constructed to
be Beowulf-like in nature. In fact it was one of the first embedded Beowulf clusters, and certainly
the first to use an ARM processor. Adopting Linux opened up the possibility of having standard
development tools, and allowing some prototyping to occur on a Linux PC. However, for more
realistic testing, including issues of hardware dependencies, data types, memory access and so on,
either a separate ARM board (i.e. similar CPU but completely different architecture), or a virtualized
ARM processor solution (could be same CPU, same architecture) would suffice. In fact, precisely
this aspect is explored further in Section 4.

3 Distributed Computing

Scalability and reliability are essential characteristics of a distributed computing system. So in the
case of the PPU, a general purpose task allocation and messaging system was designed with these
attributes in mind. The physical transport is called the timeslotted global backplane [13], a bit-serial
parity-checked ring architecture allowing node-to-node or broadcast communications. Although this
is a custom architecture designed by one of the authors, to the higher layers it provides a packet
transfer service that mimics UDP.
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Figure 5: Several options for software development for PPU without access to final PPU hardware,
in terms of hardware and software similarity.

3.1 Asynchronous Event Management

Messages within the PPU are essentially asynchronous. Therefore, computing nodes have to maintain
independent processing schedules, but be sensitive to responding to messages in a timely fashion.
Within Linux programs, signals can be used to convey synchronisation messages, while data transfers
to the higher layers are considered to be by UDP. The actual content of messages is application-
specific, as illustrated for the POLSAR edge detection application in Section 6.

4 Virtualization

The PPU built for Singapore’s X-Sat low-earth orbit microsatellite, is a mission-specific and delicate
unit. Only mission specialists have access to flight model hardware, or the engineering model, and
very few fully working prototypes exist. Even when one of these is available, it is not easy to use:
having multiple flash memory devices, several need to be reprogrammed manually to enable new code
(they use triple redundancy with a binary majority voter, so at least two of the three connected
to each FPGA need to be reprogrammed manually each time), and sometimes either messaging
changes or boot code alterations will require reprogramming the four host FPGAs (which again is
done manually, and sequentially). In summary, this platform is fragile, extremely expensive and
rare. It is also difficult and time-consuming to use for prototyping: it was built originally for space,
definitely not for the convenience of software developers.

As already discussed in Section 2.4, thought was needed to allow developers to write and test
software for the system without requiring physical access. In fact, this was one of the main motiva-
tions behind the adoption of Linux as the PPU OS, and the adoption of a Beowulf-like architecture.
Of course, the PPU is not a cluster of x86 machines, but rather a cluster of ARM processors. It
would be possible to construct a cluster using commercial off the shelf (COTS) ARM hardware, but
such a network would be costly, relatively large, and would still require a method to reprogram each
of the 20 separate nodes individually. Thus a simulation approach was considered.

4.1 Emulation or Simulation

Cycle-accurate ARM emulators are available, such as in the famous ARM Realview suite, but these
are extremely slow - simply running the ARM-Linux operating system without any processing code,
could take days of execution time. However, note that when simulating or emulating a Beowulf-
style cluster computer, being cycle-accurate is not necessary. Similarly, the entire PPU operates
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asynchronously. Thus the use of accelerated emulation or even simulation systems, especially those
which can support Linux, becomes possible.

At present, several ARM architecture emulators/simulators exist, including QEMU [2], Sky-
Eye [19], ARMware [21] and so on, with a good overview available from [5]. To simulate the system
on inexpensive and convenient PC hardware requires emulation or virtualization of the multiple
ARM processors, plus the interconnection network.

Several researchers have also noted the disparity in speeds between cycle-accurate emulators and
simulators or emulators such as those mentioned. This has led them to perfect methods of estimating
or calculating cycle-accurate timings, generally from QEMU. Hsu et al. [6] developed and evaluated
several methods of extracting virtual timing information by various extensions to the QEMU source
code. Nakamoto and others have gone further by using simulated processors for timing-critical
control applications [14][15] for vehicle subsystems, with some success.

Yeh and Chiang [24] used QEMU, implemented in System-C, for cycle-accurate timing of ARM
processors, expanding on the interface to the QEMU code [23]. Meanwhile Chylek had been collecting
program statistics through monitoring QEMU [3]. At the same time, the first author of this paper
had modified QEMU source code to handle GPIO (general purpose I/O) ports on ARM system-on-
chip processors, something of particular importance where GPIO pins are used for simple messaging
between processors in multi-processor systems.

Considering the large amount of research work in this area based around QEMU, its relatively
fast speed of simulation, and the flexibility of its open source implementation, QEMU-ARM is a
good choice for a cluster computer emulation target.

4.2 QEMU

QEMU is an open source emulator that uses the technique of dynamic code translation to achieve
high emulation speeds [2]. It currently supports many processor architectures, including ARM,
x86, PowerPC and so on. An ARM instance running on a Linux host can be emulated using a
simple single-line command specifying the kernel and initrd (initial ramdisc) images3. It is simple to
use, and has been found by many authors to work reliably and accurately. QEMU also can simulate
standard peripherals including network interface cards, and use virtual local area networks (VLANs)
to connect separate instances of QEMU virtually. With this, the simulation of large networks or
clusters becomes possible.

The standard way to connect QEMU to a real network is via the network tap interface (TAP),
although several alternative methods exist. QEMU adds a virtual network device to the host com-
puter, which can then be configured as if it were a real Ethernet card. A non-privileged (user mode)
network stack can also be used to replace the TAP device, and form a basic network connection.
This ability of QEMU to choose either user-mode or kernel networking options matches the two
possibilities for a cluster computer, irrespective of the physical medium over which the messages
actually pass.

4.3 Other Emulators/Simulators

SkyEye, like QEMU, is open source software, providing an integrated simulation environment for
both Linux and Windows hosts. The SkyEye environment simulates/emulates typical embedded
computer systems, including a series of ARM architecture based microprocessors and Blackfin DSPs;
RAM, ROM and Flash memory; peripherals such as timer, UART, NIC chip, LCD, touch screen;
and supports operating systems including ucLinux, ARM Linux, Nucleus, Rtems, eCos etc. [19].
Although SkyEye is reportedly a fast simulator, it lacks the networking flexibility of QEMU, and is
less well documented.

ARMware is another ARM emulator, supporting most ARM architecture features including all
types of memory management. It uses a built-in dynamic re-compiler to translate ARM machine

3A typical processor instantiation command would be;
qemu-system-arm -kernel zImage.integrator -initrd MTinitrd.img -append "console=ttyAMA0" -m 128

-icount 0
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Figure 6: Several virtualized networked ARM processors emulated on several networked PC servers.
Both the virtualized machines and the hosts run optimised versions of the Linux operating system.

code to x86 machine code. The whole emulated environment which ARMware provides is based
upon the HP iPaq H3600. Besides emulating the CPU core, it provides various peripheral devices,
including flash ROMs and touch screen. ARMware does not currently support ARM Thumb code
(which would not be required here anyway), but also lacks network support [21] which is, of course,
essential for cluster computation.

4.4 Virtualization Arrangement

The proposed virtual distributed computing platform to model the PPU is composed of one or more
PCs connected by fast Ethernet, hosting many virtual ARMs with virtual LANs interconnecting
them (see Fig. 6). One host PC task operates as the server, which is responsible for assigning
computing tasks to PNs, providing corresponding input data to its clients, collecting output data
from all the clients, tracking progress, and generating the final processing result. In the evaluations of
this system, it is the host PC task that measures the overall system timing figures. The virtual ARMs
are considered to be clients, which apply for tasks and fetch input data from the server, complete
the assigned task and submit the output data back to the server. The number of virtual ARMs is
adjustable, both at configuration-time, and at run-time due to the nature of the communication and
distribution system used. Thus new nodes can join, and existing nodes can drop out at any time.

Since connection is through IEEE802.3 network (which may or may not traverse an Ethernet
link), virtual ARMs can run across multiple host PCs if necessary, although in practice several
200MHz ARM processors can be operated at near real speed on a single fast PC. Fig. 7 shows a
screen capture from four ARM virtal machines (VMs), each a separate instance of QEMU, running
on a single x86 computer. In this figure, each ARM has booted up into a standard Busybox shell and
is waiting for input. In the experimental system, the client software would normally be automatically
launched immediately after boot, and we may not run in ‘graphical’ mode.

The use of virtual networking means that each VM (i.e. each QEMU ARM instance) simply
needs to join the virtual network switch, irrespective of whether they are resident on a single host,
or across multiple hosts. A server program, running on an x86 PC, also joins the same network (but
is omitted during QEMU benchmarking tests), to coordinate and control the software running on
each VM. In this system, the server also provides an NFS (network file system) shared directory to
distribute shared data to the QEMU ARM instances. In PPU terminology, each QEMU VM maps
to a single ARM PN.

4.5 The Server/Controller

In the simulated PPU (based upon the situation in the real one), the server maintains a circular
linked task list indexing the sub-tasks that need to be processed. Sub-tasks are allocated one after
another from the top to the bottom of the list, and then back to the top again. Once a sub-task has
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Figure 7: Four virtualized ARM processors executing embedded ARM Linux on a single host PC.

completed, the corresponding index is deleted from the list. Clients are able to apply to the server
for tasks whenever they become idle.

During the entire processing period, the server is only responsible for handling two kinds of
received message: task application and request for processing of result submission, and sends four
kinds of messages: task assign, submission permission, submission rejection, and shut down comput-
ing node. Apart from these messages, the server is also responsible for handling errors and events
such as node failure. Due to the flexible and asynchronous nature of the cluster, client and server
software, nodes can potentially join and exit the work group at any time – with different degrees of
consequence on overall processing time. For the particular test cases and results presented in this
paper, no errors or node failure were modelled.

5 Evaluation

The system has been evaluated in a number of ways. Functionally, it is identical to the emulated
ARM processors, it can run the same version of Linux, and in fact uses exactly the same kernel and
initial ramdisc files. The same compiler, libraries, and executables can be run on both the real and
the virtualized emulated system without alteration.

Two methods of performance evaluation are presented here. Firstly, pure processor execution
speed, and secondly networking and interconnection speed.

5.1 Processor Performance

The Byte magazine standardised benchmarking suite [22] was used to determine the performance
of the virtualized processors for computation of a number of real tasks which exercise the CPU in
different ways. This test suite, called n-bench, is a well thought-out attempt at measuring processor
performance. Tasks are dynamic, scale well with processor speed, are repetitive and assessed for
statistical relevance as part of the run-time testing. It is also cross-platform and relatively easy to
port to other architectures.
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Figure 8: Byte magazine n-bench scores for several ARM-based, QEMU emulated ARM and x86
systems (the x86 results have been divided by 10 to display within the same scale, and plotted as
horizontal bars), as multiples of K6/233 performance.

Release 2 of n-bench in Linux source code form, used here (nbench byte version 2.2.3)4, compares
tested systems to a benchmark of an AMD K6/233MHz machine with 512 MHz of SDRAM and
32MB of L2 pipeline-burst cache. Results from such comparison obviously depend upon more
than pure hardware: the operating system, compiler type, version and settings are factors, as are
memory and bus speeds. However, for the comparisons presented within this section, these items
are invariant.

n-bench figures were obtained for the default QEMU emulated ARM system, an integrator/CP
board with the following virtual hardware:

• ARM926E processor

• PL011 UART (x2)

• SMC 91c111 Ethernet adapter

• PL110 LCD controller

• PL050 KMI with PS/2 keyboard and mouse

• PL181 multimedia card interface with SD card

• 128MB SDRAM

Each ARM instance was running Linux 2.6.17 (compiled with GCC version 4.1.0). A custom initial
ramdisc was set up to launch the n-bench test suite five seconds after boot, with results automatically
collected and collated.

Fig. 8 shows scores for seven of the ten available n-bench test metrics, for a number of machines.
The graph also compares results from a desktop class x86 PC (an Intel Core 2 Quad Q9550, clocked
at 2.83 GHz, running Linux 2.6.27, with score divided by 10 to fit on the same scale), from 400MHz
and 600MHz ARM-powered systems (Intel PXA255 and PXA270 respectively), from a standalone
QEMU-emulated PXA255 processor (qemu-arm), and an ARM926 system with graphics and pe-
ripheral emulation (qemu-system-arm). The QEMU emulations were run alone and individually on
the Core 2 machine mentioned above. Fourier and Neural Network results (not plotted in the graph)
were very low; the highest results were for qemu-arm at 0.05 and 0.08 respectively. For many of
the conditions in this section, the Fourier/NN results were invariant for all systems at around 0.01
or 0.00. This is because the ARM devices used and emulated do not have hardware floating point
capabilities. We therefore restricted the performance comparison to fixed point operations only. LU
decomposition for qemu-arm was 0.16, and lower for other tests.

At this point, it should be noted that QEMU provides an icount parameter that is an instruction
cycle timer (but for various reasons is not entirely cycle-accurate). It allows the emulated machine

4Source code from http://www.tux.org/˜mayer/linux/bmark.html
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Table 1: n-bench performance figures for a single instance of QEMU virtualized ARM with various
icount parameter settings, related to K6/233 performance.

Test -icount 2 auto -icount 1 -icount 0
Numeric sort 1.10 1.37 2.20 4.39
String sort 0.50 0.74 1.00 2.01
Bitfield 0.99 1.94 1.99 3.98
FP emulation 1.02 1.74 2.04 4.08
Assignment 1.23 2.72 2.45 4.91
IDEA 1.35 3.03 2.70 5.40
Huffman 0.40 0.12 0.79 1.58
LU decomposition 0.02 0.01 0.04 0.09
Memory index 0.85 1.58 1.70 3.40
Integer index 0.88 1.02 1.76 3.51
Floating point 0.28 0.18 0.35 0.44

instruction cycle to be set to a given number of nanoseconds: in the results presented so far, and
in the networking tests below, icount was unspecified, leading QEMU to automatically estimate the
correct cycle timing of the original processor. However, it is possible to override this by specifying
a time value. The effect of overriding icount is explored in Table 1, where the n-bench results for
a single invocation of QEMU-ARM are presented for automatic timing, plus values of 2, 1, and 0
(relating to target instruction cycle timings of 4, 2 and 1 ns). The tests were run on a Xeon X3220
2.4GHz quad-core 64-bit machine with 4 GB of RAM and a 1.033 GHz bus, running Linux 2.6.32.
Clearly, the icount setting significantly effects the speed of the emulated processor: Integer index
results vary from 0.88 to 3.51 times the benchmark AMD K6/233 machine, reaching the approximate
real-world speed of a 1.2 GHz ARMv7 architecture processor.

The speed-up indicated in Table 1 provides the very nice possibility that the virtualized system
may exceed the speed of the real-world system that is being emulated. However due to the interaction
between real-time (including real-time clock ticks and network latency) and actual cycle timing, it is
preferable to maintain approximately realistic performance if possible. Hence the remaining tests use
the automatic icount setting. Note that QEMU also supports debugging of loaded images, single-
step operation and dumping of trace information, which could also assist in determining real-time
characteristics.

Since it is clear that a desktop x86 class machine can easily emulate a single ARM processor
at greater than real-time speed, for the purpose of the system explored in this paper, the question
now becomes how many ARMs can a single PC emulate comfortably. Again, this obviously depends
upon the power and specific capabilities of the PC hosting the emulations, and the system being
emulated, as well as operating system, compiler speed, other tasks and so on. However, although the
specific figures will vary from machine to machine, it is useful to explore the relationship between
the two.

Thus Table 2 presents n-bench scores for between two and twelve simultaneous virtualized ma-
chines on the Intel Core 2 machine mentioned. The results show relatively flat performance up to
four, and then a gradual decline beyond that. Therefore, we can see that the Core 2 host is capable
of supporting four virtual ARM integrator systems without appreciably affecting performance. It
should be remembered that the host was a quad-core machine with four hardware threads. The sum
of multipliers (i.e. multiples of the base AMD K6/233 machine) is plotted as a stacked graph in Fig.
9. The Xeon machine (also advertised as a quad-core machine with four hardware threads), could
support 16 simultaneous QEMU virtualized ARM systems at the same performance given in Table
1.

It is also interesting to see that free physical memory on the host, shown at the bottom of Table
2, reduced gracefully through the tests (which reserved 128 MB of RAM for each emulated ARM
processor). Clearly, physical memory is not a limitation in this case, and virtual memory swapping
is similarly unlikely to be a significant factor in test performance.
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Table 2: n-bench performance figures for 1 to 12 simultaneous QEMU virtualized ARMs, related to
K6/233 performances.

Test 1 2 3 4 6 8 12
Numeric sort 1.70 1.64 1.65 1.64 1.38 1.14 0.98
String sort 0.96 0.95 0.95 0.94 0.78 0.67 0.57
Bitfield 2.78 2.78 2.77 2.73 2.37 2.00 1.73
FP emulation 1.70 1.68 1.63 1.64 1.35 1.15 1.05
Assignment 3.44 3.43 3.35 3.35 2.70 2.48 2.15
IDEA 4.17 4.16 4.13 4.10 3.39 3.14 2.60
Huffman 0.13 0.13 0.13 0.12 0.12 0.11 0.08
LU decomposition 0.01 0.01 0.01 0.01 0.01 0.01 0.00
Memory index 2.09 2.07 2.07 2.05 1.72 1.49 1.28
Integer index 1.10 1.10 1.10 1.08 0.93 0.81 0.68
Floating point 0.18 0.18 0.18 0.18 0.18 0.17 0.15
Free mem, MiB >495 495 455 436 360 312 162

Figure 9: Overall speedup multipliers reduce monotonically beyond four instances.
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Table 3: iperf UDP throughput and jitter figures for three arrangements of virtualized client-server
network links.

Server Client
Number Pair Mb/s Jitter, µs Mb/s Jitter, µs
One pair 1 1.06 13 1.06 12

1 1.05 11 1.05 10
1 1.05 16 1.05 11
1 1.05 11 1.05 11

one pair (of 2) 1 1.05 16 1.05 15
one pair (of 2) 1 1.05 11 1.05 11
Two pairs 1 1.05 12 1.05 11

1 1.05 17 1.05 13
1 1.05 13 1.05 12
2 1.05 22 1.05 22
2 1.05 51 1.05 50
2 1.05 17 1.05 13

Three pairs 1 1.05 20 1.05 20
1 1.05 17 1.05 17
2 1.05 8 1.05 8
2 1.05 12 1.05 12
3 1.06 25 1.06 25
3 1.06 27 1.06 27

A further point to note is that while virtualized performance decreased relatively smoothly for
more than four emulated ARMs, the real world time taken to perform the tests obviously scaled
significantly with the number of emulated systems – meaning that the elapsed time required to test
twelve virtualized processors was approximately twice as long as it was to emulate six. A 32-way
test was extremely time consuming. However the important fact is that the speed reduction – at
least up to 12 way – is linear with the number of emulated ARMs.

Finally, the n-bench test results require a disclaimer; they are meant to expose the theoretical
upper limit of the CPU, FPU, and memory architecture of a test system, but are presented as single-
threaded tests. Many modern operating systems are capable of multitasking, and may have hardware
support for multithreading, including some of the more recent ARM processors. QEMU itself can
very simply emulate up to 255-way symmetrical multi-processing through a single command line
argument, not explored further here.

5.2 Network Performance

Virtualized network performance was determined through the iperf2.055 suite. This measures either
UDP or TCP performance in terms of throughput and jitter (UDP only).

For the tests presented in this section, QEMU ARM processors were connected by virtual Eth-
ernet6. All tests were conducted on the Xeon machine mentioned earlier. Since the tests measured
point-to-point networking capabilities, emulated systems were invoked with SMC91C111 network
devices having different MAC addresses, operating on separate virtual networks (i.e. none of the
virtualized machines shared a subnet with the host). First a single pair of ARM systems were emu-
lated and tests run between them. Next, another pair of ARMs were invoked but remained passive
while a further set of tests were run. Next, both pairs ran tests simultaneously, and finally three
pairs (i.e. a virtualized network of six separate ARM machines) ran tests simultaneously.

5Source code from http://sourceforge.net/projects/iperf
6Using the following command switches;

-net socket,connect=localhost:1234 and
-net socket,listen=localhost:1234
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Figure 10: 3 × 3 edge templates of different orientations.

Results shown in Table 3 indicate that, while actual throughput was fairly constant, jitter – which
was well constrained for a single pair, increased substantially as more devices were virtualized,
between certain pairs of devices. TCP performance (not shown in the table) yielded consistent
throughputs of around 2.5 Mb/s for a single pair. In the other cases, always one pair of ARM
devices communicated faster than the other pairs, reaching around 2.2 Mb/s, while the other pairs
dropped as low as 1.3 Mb/s. This variability in results when more than a single pair are emulated
is similar to the jitter situation shown in Table 3 for UDP between two and three pairs. Since more
than two pairs of ARM devices emulated per x86 CPU exhibit performance degradation, seen in
the n-bench scores, it is likely that emulating four ARM devices per modern x86 server is optimal:
they can compute at real-time speeds and communicate with constant throughput and relatively
constrained jitter (no more than 51µs in the tests above). Tests between machines on different
subnets, each hosting one or more virtualized ARM processors, exhibited greater network delays,
jitter, and reduced throughput, all of which were heavily dependent upon the characteristics of the
network infrastructure tested (and much less so than upon the QEMU performance).

6 Polarimetric SAR Data Processing Example

The example given in this paper to demonstrate the practical usefulness of the distributed QEMU-
ARM emulation approach is an implementation of the Roy’s largest eigenvalue based edge detector
[8]. The purpose of the algorithm is to detect edges in order to produce a filtered image while
preserving the image features. The polarimetric synthetic aperture radar (POLSAR) image data
handled by this system represents each pixel with a 3×3 Hermitian matrix, containing nine complex
floating point elements, stored band interleaved by pixel (bip).

This algorithm and data set is a good choice for illustrating embedded cluster processing for a
number of reasons, including (i) it matches the original satellite-based processing domain of the PPU
(i.e. for remote sensing satellite or unmanned aerial vehicle processing), (ii) POLSAR image sizes
tend to be extremely large in terms of number of pixels and naturally lead to a tiling approach for
processing, (iii) data size is even larger given that each pixel represents nine complex floating point
numbers so that an entire image may not easily be handled by a single processor system, (iv) the
edge detection task often needs to be performed in near-real-time, (v) the task involves asynchronous
communications between neighbouring nodes.

The edge magnitude output module employs Roy’s largest eigenvalue based detector to compute
an edge magnitude from the POLSAR data using four basic edge templates of 3× 3 pixels in which
two different regions R1 and R2 are denoted by different colours/shades, as shown in Fig. 10 [7].
The output from this initial edge-template matching module may feed a subsequent speckle noise
filter [9].

6.1 Roy’s Largest Eigenvalue Edge Detector

Let pij denote a pixel in the image and eijk denote a single element of the 3 × 3 Hermitian matrix
that is this pixel. i and j are the row and column of the pixel respectively, and k indicates the band
of this element. The steps used to detect edges in multi-look POLSAR data are as follows:

1. Overlay all edge templates over pixel under test, and its adjacent eight pixels.
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2. Calculate Zr1 and Zr2 for each edge template as follows:

Zr1 =
1
3

 ∑
eij1

∑
eij2

∑
eij3∑

eij4

∑
eij5

∑
eij6∑

eij7

∑
eij8

∑
eij9

 , for each [i, j] pair that makes pij ∈ R1 (1)

Zr2 is defined likewise for each [i, j] pair that makes pij ∈ R2.

3. Determine the Roy’s largest eigenvalue for all edge templates using Eqn. 1, Note that ch1(X)
denotes the maximum eigenvalue of matrix X.

λRoy = max
{
ch1(Zr1Z

−1
r2 ), ch1(Zr2Z

−1
r1 )

}
(2)

4. Record the maximum of all the computed Roy’s largest eigenvalues from the previous step.

5. Repeat steps 1–4 by moving the edge templates to the next (adjacent) pixel. Continue testing
pixels one-by-one until the end of the image.

Following this process, a threshold can be estimated from the maximum Roy’s largest eigenvalue
outputs that have been found, in order to determine a pixel as being either “edge” or “non-edge”
[9].

6.2 Initial Segmentation by Watershed Transform

If the input edge magnitude image is considered a topographic surface, then the value of each pixel
becomes its altitude. When flooded, this ‘landscape’ becomes immersed up to a particular depth.
In order to do this, the watershed transform consists of two steps: sorting and flooding. Firstly,
pixels are sorted according to their edge magnitude value. Flooding is then carried out based on an
immersion simulation, following two rules:

1. Random access to any pixels in the image

2. Direct access to the neighbours of a given pixel.

Water begins rising from the level of the minimum magnitude pixels (local minima), and these
are initially labelled as ‘flooded’. Flooding then continues for each magnitude step increase k until
the maximum is reached. At any time, each k-magnitude pixel, which happens to be adjacent to
an already-labelled watershed region, is added into that region. A new region is constructed for any
k-magnitude pixel which is not connected to existing regions.

In order to avoid over-segmentation from the watershed transform, edge magnitudes are first
thresholded according to:

I(x, y) =
{

g(x, y), if g(x, y) > T
T, otherwise

}
(3)

where g(x, y) denotes the edge magnitude value of a pixel located at coordinate (x, y), and T is a
user-defined threshold. This thresholding replaces all lower gradient values by the uniform threshold
T and small regions can then be eliminated by removing insignificant local minima.

6.3 Region Merging

Over-segmentation may still occur, despite the thresholding above, and therefore a modified HSWO
[1] (hierarchical stepwise optimization) algorithm is adopted to adjust the initial region mapping as
described below:

1. The segmented output from the watershed transform is used as an initial image partition.
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2. For each adjacent pair of regions i and j, a stepwise criterion is computed as in:

SC =
{

1
Ni

+
1

Nj

}
× 1

max
{
ch1(CiC

−1
j ), ch1(CjC

−1
i )

} (4)

3. Perform the global best merging. To achieve this, spatially adjacent region pairs are found
and merged, having the maximum stepwise criterion value over the entire image as per [9].

4. The process is terminated if no further merging is needed; otherwise, it iterates back to step
(2). Termination depends on having reached a pre-set desired number of regions.

6.4 Software Structure

For a single CPU implementation, an entire image can be loaded to the local RAM of the processor,
and each step proceeds in turn. However, as mentioned, POLSAR images can be extremely large
in size with each pixel containing a nine-element matrix of complex floating point values. Thus
any processing of such images tends to require a large amount of computational resource. Even on
powerful servers equipped with large amounts of memory, it is often desirable to subdivide into a
number of strips or tiles for individual processing. In fact, real-time processing of large POLSAR
images is currently only possible using a multi-core or many-core implementation, or an FPGA-based
processing system [16].

6.5 Distributed Processing

Assuming that an image has been divided into equal-sized sub-images to be processed using different
processing cores or nodes, these nodes cannot process their own sub-images in isolation – they
probably need to exchange information with neighbouring nodes.

Although the amount of incursion of regions into neighbouring images is limited only by the
boundaries of the original super-image in theory, in practice a sufficient number of distinct regions
is allowed such that only minimal incursion to neighbours is considered in many cases. Fig. 11
illustrates the extent of neighbouring region incursion that is typically allowed.

For ordinary sub-images, which are not located on any edge of the whole radar image, Fig. 12
identifies and enumerates the actual edge regions that any node may need to share with a neighbour.
As can be seen, there are eight adjacent sub-images, indexed as [0...8]. These indices will be referred
to later when describing message passing in the system.

6.6 Task Allocation

In the benchmark implementation and experiments described in this paper, multiple 128×128 pixel
sub-images are processed individually from an original 512 × 512 pixel POLSAR image (as was
shown in Fig. 11 which comprises nine-look NASA/JPL POLSAR C-and L-band images covering
the region of Muda Merbok, West Malaysia). The 128 × 128 pixel sub-images are sized to fit easily
within the local memory of individual nodes, and to complete processing in a timely fashion, and can
in principle be any size, trading off processing time for communications message overhead (described
later).

For the reference implementation, then, the entire processing task is to divide the original image
area into 16 identically-sized sub-tasks indexed as [i, j] (i, j = 0, 1, 2, 3). The indices of all sub-tasks
to be processed are maintained by a centralized controller (a control application running on the
host PC for the virtualized simulation, or on-board flight computer for the PPU), communicating
through network messages. The control application is responsible to allocate sub-tasks to client
nodes, and update internal sub-task lists according to the feedback from the nodes. The controller
must also take corrective action to re-launch tasks in the case of node failure (identified through loss
of heartbeat response).

If there are more client nodes than sub-tasks to be processed, some of the clients can process
identical sub-tasks to enhance the reliability of this platform in the face of radiation-induced single
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Figure 11: A POLSAR image shown divided into nine regions with the central region augmented
with edge information that may be needed from neighbouring blocks for the processing of that
particular central sub-image. The underlying POLSAR image is from NASA/JPL, covering the
region of Muda Merbok, West Malaysia.

Figure 12: The eight possible edge segments of a sub-image.
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Figure 13: Flowchart for the process of image partitioning.

event bit errors. If there are fewer client nodes, then after the initial round of allocations, nodes
may be issued with subsequent sub-tasks, until all outstanding sub-tasks have been allocated. Since
nodes run a multitasking OS (Linux), sub-tasks can run time-shared on single nodes.

In this way, the control and partitioning algorithm is easily able to scale to larger original images,
and manage different numbers of client nodes, subject to PN memory constraints. It should be noted
that the main time-critical constraint to be managed is for the controller to ensure that, for each
sub-image currently being processed, edge information can be made available from the neighbouring
sub-images (i.e. that at least one PN is processing those sub-images).

The client workflow, shown in Fig. 13, indicates that nodes are responsible for requesting work
from the controller, and for requesting edge information from neighbouring nodes. The computing
nodes provide edge pixels to each other, rather than downloading from the central server in order to
reduce the overall communication burden, and reduce the likelihood of communications bottlenecks
with the server from causing processing delays.
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Table 4: Multi-byte task-task and task-server message datagrams and meanings.
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Bytes 6,7,8...
From client to server for task application (APP)
‘A’ ‘P’ ‘P’
From the server to a client for allocating sub-tasks (TSK)
‘T’ ‘S’ ‘K’ Sub-task ID
Broadcast from a client for requesting edge information (REQ)
‘R’ ‘E’ ‘Q’ Sub-image ID Edge ID
From one client to another for providing edge information (EDG)
‘E’ ‘D’ ‘G’ Sub-image ID Edge ID information
From a client to the server to apply for uploading processing result (UPL)
‘U’ ‘P’ ‘L’ Sub-task ID
From the server to a client for accepting submission (CPY)
‘C’ ‘P’ ‘Y’
From the server to a client for rejecting submission (ERR)
‘E’ ‘R’ ‘R’
Broadcast from a client to stop other clients processing the same sub-image
and applying for a new sub-task from the server (STP)
‘S’ ‘T’ ‘P’ Sub-task ID
Broadcast from the server to shut down all the computing nodes (END)
‘E’ ‘N’ ‘D’

6.7 Node Communications

When processing a sub-image, each computing node stores its segmented edges, and broadcasts
requests to the cluster with the index pairs of sub-image ID and edge segment ID for needed edge
information of those adjacent sub-images. When a node receives an edge information request, it
checks all the edges it has stored, and replies with matching edge information, if any. Either a
negative or a positive reply must be made.

In case some adjacent sub-images have not yet been processed by any computing nodes in the
cluster and the edge information is therefore currently not available, the requesting computing node
must then continually re-broadcast its request until it has received all of the needed edge informa-
tion, and then start to perform the image segmentation algorithm. Although such an arrangement
could potentially lead to a deadlock situation, and thus require mitigative control structures, such
situations did not occur during our tests.

After finishing processing a sub-task, the corresponding edge information stored in the node
should not be simply deleted, it needs to be maintained until notified by the central server. Other-
wise, such information is lost forever and all the adjacent sub-tasks carried out later may never be
able to complete (this is important in the event that a neighbouring node fails after receiving edge
information, but before completing its processing, in which case, another node will be allocated as
a replacement – and that new node will need to request the same edge information a second time).

Table 4 identifies the set of message datagrams that have been defined to handle the intercom-
munications between tasks and between task and server to allocate and control tasks, track progress,
exchange information, and terminate processing.

6.8 Asynchronous Event Management

Apart from a few items of request/acknowledge information (such as new task allocation), all mes-
sages are asynchronous. Therefore, computing nodes should maintain independent processing sched-
ules, but be sensitive to responding to messages. In the current implementation, Linux signals are
used to convey messages and the distributed QEMU virtualization naturally supports this.

While some message from other computing nodes, which are irrelevant to the processing of the
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current sub-image, such as edge information request, can be simply handled by a SIGIO handler
alone, others need attention from the main processing routine. The signal handler implemented here
thus filters out irrelevant messages according to the current stage of the main processing routine.
Consequently, cooperation between the main routine and the signal handler becomes an important
issue, requiring clear task partitioning within a node, and information exchange between processing
routines and SIGIO signal handlers.

When configured to perform task processing, a computing node needs to go through all the
following steps:

1. Apply for a sub-task.

2. Download a sub-image.

3. Store the edge information of the sub-image.

4. Request & receive edge information of adjacent sub-images from other nodes.

5. Provide edge information to other nodes processing adjacent sub-images.

6. Process the sub-image.

7. Apply for submitting the processing result.

8. Submit the processing result.

9. Exit

It can be seen that some steps can be directly managed by the signal handler routine, but some
need the involvement of the processing routine(s). In fact, the following steps are handled entirely
within the signal handler:

1. Provide edge information to other nodes,

2. Receive edge information from another node,

3. Submit the processing result,

4. Exit.

The remaining steps are handled by the main processing routine(s), and these can be categorised
into three distinct stages determined by the current processing action. To proceed from one stage
to the next will require certain messages from other nodes:

• Stage 1: Apply for a sub-task.

• Stage 2:

1. Download a sub-image
2. Store the edge information of the sub-image
3. Request edge information of adjacent sub-images from other nodes

• Stage 3:

1. Process the sub-image;
2. Apply for submitting the processing result.
3. Go back to Stage 1

The information needed to proceed from Stage 1 to Stage 2 is to receive a new sub-task id, and
from Stage 2 to Stage 3 is to receive all of the necessary edge information from nodes processing
adjacent sub-images.

To allow each step to be completed, the main processing routine(s) and signal handler need infor-
mation from each other. Moreover, to enhance reliability, the signal handler filters out unexpected
messages according to the current stage of the main routine using the rules specified in Table 5.
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Table 5: Rules for filtering messages.
Message Stage 1 Stage 2 Stage 3
REQ A A A
EDG F A F
TSK A F F
CPY F F A
ERR F F A
STP F A A
END A A A
A means ‘accept’, F means ‘filter out’

Figure 14: Comparison of reference implementation (left) and distributed QEMU-emulated ARM
coded output (right).

7 Results

The virtualized platform was configured to run the Roy’s largest eigenvalue based image segmen-
tation software, operating on real POLSAR images, using 16 virtualized QEMU-ARM processors.
The output from one run of the system, is shown in Fig. 14 alongside a reference implementation
[9], using a single non-distributed x86 program. As can be seen, there is little or no discernible
difference in output, although slight numerical differences exist due to differences in floating point
accuracy between the two systems.

To estimate the computational performance of this virtual distributed computing platform, the
execution duration in different scales of processing different size of images was tracked. In the test
scenario, all the computing nodes boot up and launch their client programs before the host PC
launches the server program, and no node failure or message loss is experienced.

One sub-task is pre-allocated for each computing node to prevent initial network congestion.
Once a computing node receives a start command from the host PC, it initiates its processing; when
that sub-task is done, it notifies the host PC again and stops the client program. The host PC
broadcasts a start command across the virtual LAN at the beginning of the test, and terminates the
server program once all the computing nodes have finished their individual sub-tasks. Therefore,
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some overhead time is eliminated: the measured client program execution duration is primarily the
time required for a virtual ARM instance to process one sub-image by its own clock. The server
program execution duration measures the time needed to process the whole image for the platform
by the clock of the host PC, which also indicates the real world time. In fact, ARM processing time
for each node, PC server time, and actual CPU time on all computers, were all recorded.

To characterise the performance of this virtualized platform, there are several factors to consider:

1. Image size: P , which is the number of pixels in the whole image. The time spent on processing
each pixel is likely to be roughly similar.

2. Number of CPU cores, C, where we limit a C core x86 CPU to running at most C QEMU
instances concurrently (although in practice, we have seen in Section 5 that one x86 CPU can
comfortably emulate several ARMs). The host CPUs are Intel Pentium IV 2.80GHz machines
running Ubuntu Linux. Since these are single core CPUs, we set C = 1.

3. Number of virtual ARM instances, N . On the one hand, each ARM has a fixed overhead for
communications, control and operating system time which is independent of the size of the
image being processed. On the other hand, more instances of virtual ARMs lead to a heavier
network communication burden. In this platform, each computing node processes a 128× 128
sub-image. Thus the time spent on fetching edge pixels for each ARM can be regarded as
roughly equivalent.

4. Processing time, T , in seconds, which can be expressed in the form of Eqn. 5, in which a × P
represents the time cost for processing all the pixels, b × N represents the time cost for edge
pixels fetching and pre-ARM overhead, c represents the platform overhead and d represents
the overhead within each ARM. The coefficients a, b, c and d are to be determined empirically
according to the test results.

T (P, N) =
{

a × P + b × N + c, for N > 1 and P = N × 1282

a × P + d, for N = 1

}
(5)

For scaling purposes, the first experiment was to determine the processing time required of a
single ARM operating on a single tile of POLSAR imagery. The results are shown in Table 6, where
it can be seen that around 640 s is required to process a 128 × 128 pixel image.

Further experiments were then constructed, in which each ARM node processes sub-images of
size 128× 128 pixels, and between 1 and 8 ARM processors are allocated for the overall processing.
In this way, when two ARM processors are employed, the overall processed image size is 128 × 256
pixels; four ARMs process a 256×256 pixel image, and eight ARMs process a 512×256 pixel image.
Therefore, the amount of data processed increases linearly with the number of ARM processor
instances being run.

When analysing the experimental results, the empirical formula of Eqn.5, yields values of a =
0.0377, and d = 22.98 (from the test run on a single ARM processor), b = 65.065 and c = 78.64
(from the multi-processor experiments). Thus the platform performance can be characterised as:

T (P, N) =
{

0.0377P + 65.065N + 78.64, for N > 1 and P = N × 1282

0.0377P + 22.98, for N = 1

}
(6)

The 128 × 128 pixel experimental results are plotted, in Fig. 15. The ‘linear’ plot indicates the
processing time that would be expected if actual measured time for a single node (including all real
measured overheads) is extrapolated upward for more nodes, while the ‘model’ plot shows the results
from the empirically derived timing model of Eqn. 6, noting that P changes for each experiment.

8 Conclusion

This paper has discussed the issues involved in the development of embedded cluster computers which
resemble a Beowulf structure, especially those involving architectures other than x86-class machines.
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Table 6: Processing duration for a single ARM to perform edge detection on POLSAR images of
64 × 64 and 128 × 128 pixels, for three test runs (timed within the QEMU ARM simulation, and
timed on the host PC respectively).

Test No. 64 × 64 128 × 128
ARM PC ARM PC

real 2m 58.03s 2m 57.168s 10m 42.00s 10m 40.483s
1 user 0m 7.53s 0m 0.000s 0m 29.71s 0m 0.000s

sys 2m 49.62s 0m 0.000s 10m 10.63s 0m 0.004s
real 2m 58.02s 2m 57.593s 10m 42.50s 10m 42.475s

2 user 0m 7.24s 0m 0.000s 0m 27.90s 0m 0.000s
sys 2m 50.11s 0m 0.000s 10m 14.05s 0m 0.000s
real 2m 58.00s 2m 57.670s 10m 41.11s 10m 39.966s

3 user 0m 8.01s 0m 0.000s 0m 28.33s 0m 0.000s
sys 2m 49.41s 0m 0.004s 10m 11.62s 0m 0.000s

average of real - 2m 57.477s - 10m 40.975s

Figure 15: Measured processing speeds for N between 1 and 8 for three test runs, also showing a
linear extrapolation of processing time from N = 1 and the results of the derived empirical timing
mode.
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The PPU was presented; a system developed originally for satellite-based image processing, consist-
ing of twenty low-power ARM processing nodes in a custom interconnect network. Methods were
discussed for the emulation or simulation of the PPU hardware and software environment for the
purposes of code development, testing and verification.

The dynamic code translation QEMU emulator is presented and then arranged as a cluster
of virtualized ARM processors running on a loose cluster of x86 machines. This is shown useful
for testing and validation of code for the emulated system. The benefits of this QEMU-based
system for embedded clusters include the low cost of hardware and software, the ease of prototyping,
development and testing on such a system, the simple access to the system and the ability to infer
or estimate timing information. Disadvantages include possible mismatch of actual system-on-chip
peripherals to those required, and the fact that the virtualized system is not cycle-accurate.

Although the virtualized emulation is not cycle-by-cycle: given that the PPU is a twenty-PN
custom parallel processing hardware device using a custom bus interconnect, and arbitrated by four
relatively unusual FPGAs, with all processors running a high level OS (Linux), such a simulation
would be extremely difficult to construct, and undoubtedly hugely time consuming in operation.
However since the architecture is that of a loosely-coupled asynchronous Beowulf cluster, cycle-
by-cycle simulation is likely to be unnecessary in most cases, particularly where fault-tolerance is
concerned. The system has been characterised in terms of CPU performance, TCP throughput and
UDP throughput/jitter for a variety of cluster sizes, as an aid to others in building and operating
such systems.

The cluster is demonstrated in use modelling an image processing task designed for the PPU –
the edge detection of polarimetric synthetic aperture radar images using Roy’s largest eigenvector
image. An empirical model is developed using measured timing data for a number of nodes over
different test runs and compared to actual measured timing for between 1 and 8 PNs running on
the QEMU virtualized cluster computer.
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