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Abstract

In the present paper, we consider the asynchronous parallelism in membrane computing, and
propose asynchronous P systems that perform two basic arithmetic operations and factorization.
Since there is no restrictive assumption for application of rules, sequential and maximal parallel
executions are allowed on the asynchronous P system.

We first propose a P system that computes addition of two binary numbers of m bits. The
P system works in O(m) sequential and parallel steps using O(m) types of objects. We next
propose a P system for multiplication of the two binary numbers of m bits, and show that the
P system works in O(m log m) parallel steps or O(m3) sequential steps using O(m2) types of
objects. Finally, we propose a P system for factorization of a positive integer of m bits using
the above P system as a sub-system. The P system computes the factorization in O(m log m)
parallel steps or O(4m × m2 log m) sequential steps using O(m2) types of objects.
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1 Introduction

Membrane computing, which is a representative example of natural computing, is a computational
model inspired by the structures and behaviors of living cells. In the initial study on membrane
computing, a basic feature of the membrane computing was introduced by Păun et al. [13] as P
system. Each P system consists of hierarchically embedded cell membranes, and each membrane
may contain objects. Each object evolves according to evolution rules associated with a membrane
in which the object is contained. Several P systems have been proposed for numerical NP problems
[9, 14, 15, 16] using the maximal parallelism, which is a main feature of the P system.

However, the P systems for primitive operations, such as logic or arithmetic operations, are
needed to apply the membrane computing on a wide range of problems. A number of P systems [8,
10, 11, 12, 18] have been proposed for basic arithmetic operations in membrane computing. Leporati
et al. [12] proposed three P systems for arithmetic operations. The first P system computes addition
of two binary numbers of m bits in O(m) steps, and the second P system computes multiplication
of two binary numbers of m bits in O(m log m) steps. The two P systems are used in the third P
system, which computes factorization of a natural number of m bits in O(m log m) steps, as sub-
systems. For another example, Fujiwara et al. [8] proposed a P system that computes addition
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of two binary numbers of m bits in a constant number of steps. In these P systems, synchronous
application of evolution rules is assumed with the maximal parallelism.

However, there is obvious asynchronous parallelism in the cell biochemistry. The asynchronous
parallelism means that all objects may react on rules with different speed, and evolution rules are
applied to objects independently. Since all objects in a living cell basically works in asynchronous
manner, the asynchronous parallelism must be considered to make the P system a more realistic
model.

For considering the asynchronous parallelism, a number of P systems [1, 2, 3, 5, 6, 7] have
been proposed. For example, some sequential P systems [5, 7], which assume sequential application
of applicable evolution rules, have been proposed. In the papers, the computational powers of the
sequential P systems are considered, and the P systems has been proved to be universal. For another
example, P systems with minimal parallelism are considered in [3] The P system is proved to be
universal, and a P system has been proposed for solving SAT in O(n) steps. However, on the P
system with minimal parallelism, at least one rule is applied in each membrane if there exists a
rule that can be applied for the membrane. In other words, applicable rules in another membranes
are applied synchronously, and some kind of synchronicity is assumed in the model. In addition,
time-free P systems are considered in [1, 2]. Although the time-free P systems has also been proved
to be universal, no P system has been proposed for solving a hard problem.

Recently, two P systems for NP problems are proposed with asynchronous parallelism in [17].
The first and second P systems solve SAT and Hamiltonian problems in polynomial numbers of steps,
respectively. However, no known asynchronous P systems have been proposed for the basic arith-
metic operations, and we propose P systems for computing the operations using the asynchronous
parallelism.

In the present paper, we consider fully asynchronous parallelism such that any number of appli-
cable rules may be applied in one step on the asynchronous P system. Since there is no restrictive
assumption for application of rules, sequential and fully parallel executions are allowed on the asyn-
chronous P system. As complexity of the asynchronous P system, we consider two kinds of numbers,
which are the number of sequential steps and the number of parallel steps. The numbers of sequen-
tial steps is the number of executed steps in case that rules are applied sequentially, and the number
of parallel steps is the number of executed steps with maximal parallelism.

Using the asynchronous parallelism and the objects with the addressing feature, we propose three
P systems that perform two basic arithmetic operations and factorization. In the three P systems,
each number is denoted as a binary number.

We first propose an asynchronous P system that computes addition of two binary number of m
bits. The P system works in O(m) steps using O(m) types of objects in both of maximally parallel
and sequential manners. We next propose an asynchronous P system for multiplication of two binary
numbers of m bits using the above P system as a sub-system. The P system works in O(m log m)
parallel steps or O(m3) sequential steps using O(m2) types of objects.

Finally, we propose an asynchronous P system for factorization. The input of the P system
is a positive integer of m bits, which has two prime factors, and the output of the P system is a
pair of the two prime factors. The P system for multiplication is used as a sub-system in the P
system, and the number of the sub-systems is exponentially increased using division of membranes
in a polynomial number of steps. The proposed P system computes the factorization in O(m log m)
parallel steps or O(4m × m2 log m) sequential steps using O(m2) types of objects.

Although the numbers of parallel steps of the proposed P systems are not smaller than syn-
chronous P systems [8, 12] for the same operations, the proposed P systems work under any kinds of
assumptions for synchronicity. In other words, the proposed P systems work on all of synchronous,
sequential and fully asynchronous P systems.

The paper is organized as follows. In Section 2, we give a brief description of the model for
membrane computing and show representation of binary numbers. In Section 3 and Section 4, we
propose P systems for addition and multiplication, respectively. We also propose a P system for
factorization in Section 5. Finally, we conclude the paper in Section 6.
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Figure 1: An example of membrane structure

2 Preliminaries

2.1 Computational model for membrane computing

Several models [4] have been proposed for membrane computing. We briefly introduce a basic model
of the P system in this subsection.

The P system consists of membranes and objects. Membranes are labeled using distinct symbols
and form nested structures. In the present paper, each membrane is denoted using a pair of square
brackets, and the number on the right-hand side of each right-hand bracket denotes the label of the
corresponding membrane.

An object in the P system is a memory cell, in which each data is stored, and can divide, dissolve,
and pass through membranes. In the present paper, each object is denoted by finite strings over a
given alphabet, and is contained in one of the membranes.

For example, [ [ a ]2 [ b ]3 ]1 and Figure 1 denote the same membrane structure that consists of
three membranes. The membrane labeled 1 contains two membranes labeled 2 and 3, and the two
membranes contain objects a and b, respectively. In addition, each membrane can be polarized with
+, − or 0.

Computation of P systems is executed by evolution rules, which are defined as rewriting rules
for membranes and objects. All objects and membranes can be transformed according to applicable
evolution rules. If no evolution rule is applicable for objects, the system ceases computation.

Now, we define a P system and sets used in the system as follows.

Π = (O, H, µ, ω1, ω2, · · · , ωm, R1, R2, · · · , Rm)

O: O is the set of all objects used in the system.

H: H is a set of labels for membranes. We assume that a membrane labeled skin, which is called
the skin membrane, is the outermost membrane, i.e., the skin membrane contains all of the
other membranes.

µ: µ is membrane structure that consists of m membranes. Each membrane in the structure is
labeled with an element in H. (For example, µ in the above example is [ [ ]2 [ ]3 ]1.)

ω1, ω2, · · · , ωm: Each ωi is a set of objects initially contained only in the membrane labeled i. (In
the above example, ω1 = φ, ω2 = {a}, and ω3 = {b}.)

R1, R2, · · · , Rm: Each Ri is a set of evolution rules that are applicable to objects in the i-th mem-
brane.

In membrane computing, several types of rules are proposed. In the present paper, we consider
five basic rules of the following forms.

(1) Object evolution rule:

[ α ]e1
h → [ β ]e2

h

In the rule, h ∈ H, e1, e2 ∈ {+,−, 0}, and α, β ∈ O. Using the rule, an object α evolves into
another object, β. In addition, the membrane can be polarized with +, −, or 0. (For the case
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in which the value of the polarization is 0, the label is omitted.)

(2) Send-in communication rule:

α [ ]e1
h → [ β ]e2

h

In the rule, h ∈ H, e1, e2 ∈ {+,−, 0}, and α, β ∈ O. Using the rule, an object α is sent in the
membrane, and can evolve into another object β. The membrane can also be polarized.

(3) Send-out communication rule:

[ α ]e1
h → [ ]e2

h β

In the rule, h ∈ H, e1, e2 ∈ {+,−, 0}, and α, β ∈ O. Using the rule, an object α is sent out of
the membrane, and can evolve into another object β. The membrane can also be polarized.

(4) Dissolution rule:

[ α ]e1
h → β

In the rule, h ∈ H, e1 ∈ {+,−, 0}, and α, β ∈ O. Using the rule, the membrane, which contains
object α, is dissolved, and the object can evolve into another object β. (The skin membrane
cannot be dissolved.)

(5) Division rule:

[ α ]e1
h → [ β ]e2

h [ γ ]e3
h

In the rule, h ∈ H, e1, e2, e3 ∈ {+,−, 0}, and α, β, γ ∈ O. Using the rule, the membrane, which
contains object α, is divided into two membranes that contain objects β and γ, respectively.
The membranes can also be polarized.

We omit the brackets in each evolution rule for cases in which the membrane, to which the
evolution rule is applied, is obvious in the following description.

We also assume that each of the above rules is applied in a constant number of biological steps,
and consider the number of steps executed in P systems as the complexity of the P systems.

2.2 Maximal parallelism and asynchronous parallelism

All of the above evolution rules are applied in a non-deterministic maximally parallel manner on
the standard P system. In one step of the standard P system, each object is evolved according to
one of applicable rules. (In case there are several possibilities, one of the applicable rules is non-
deterministically chosen.) All objects, for which no rules applicable, remain unchanged to the next
step. In other words, all applicable rules are applied in parallel in each step of computation.

On the other hand, we assume that evolution rules are applied in fully asynchronous manner as
in [8]. On the asynchronous P system, at least one of applicable evolution rules must be applied in
each step of computation. In other words, the asynchronous P system can be executed sequentially,
and can also be executed in maximally parallel manner. We call the number of steps executed on
the asynchronous P system in maximally parallel manner the number of parallel steps. On the other
hand, various sequential executions can be considered on the asynchronous P system. We call the
worst number of sequentially executed steps the number of sequential steps.

For the asynchronous P system, the number of parallel and sequential steps means the best and
worst case complexities, respectively. In addition, the proposed asynchronous P system must be
guaranteed to output a correct solution in any asynchronous execution.

We now show an example for difference between the P system with maximal parallelism and the
asynchronous P system. The following Π1 is a simple P system that computes AND function for
any number of Boolean values.

Π1 = (O, H, µ, ω1, R1),
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Figure 2: An example of executions of the P system Π1 with maximal parallelism: (a) an execution
in case that there exists 〈0〉 in the input, (b) an execution in cast that all input objects are 〈1〉.

• O = {〈0〉, 〈1〉, 〈C0〉, 〈C1〉}

• H = {1}

• µ = [ ]1

• ω1 = {〈C0〉}

• R1 = R1,1 ∪ R1,2

– R1,1 = {[〈0〉〈C0〉] → [ ]〈0〉, 〈1〉 → 〈C1〉}
– R1,2 = {〈C0〉〈C1〉 → [ ]〈1〉}

In the above P system, two objects, 〈0〉 and 〈1〉, denote Boolean values 0 and 1, respectively.
Figure 2 (a) illustrates an execution in case that there exists object 〈0〉 in the input set, and

Figure 2 (b) illustrates an execution in case that there exists no 〈0〉 in the input set, i.e. all input
objects are 〈1〉. In both cases, the P system Π1 computes AND function for any number of Boolean
values in a constant number of steps with maximal parallelism.

However, P system Π1 may output wrong value 〈1〉 in case that both objects, 〈0〉 and 〈1〉, are in
the input set on any kinds of asynchronous P systems.

In fact, computation of AND function for any number of Boolean values is a hard problem
on asynchronous P systems. The following Π2 is a P system that asynchronously computes AND
function for n Boolean values for a given n.

Π2 = (O, H, µ, ω1, R1),

• O = {〈0〉, 〈1〉, 〈C0〉, 〈C1〉, · · · 〈Cn〉}

• H = {1}

• µ = [ ]1

• ω1 = {〈C0〉}

• R1 = R1,1 ∪ R1,2 ∪ R1,3
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Figure 3: An example of executions of the P system Π2: (a) an execution with maximal parallelism,
(b) a sequential execution.

– R1,1 = {[〈0〉〈C0〉] → [ ]〈0〉, 〈1〉 → 〈C1〉}
– R1,2 = {〈Ci〉〈Cj〉 → 〈Ci+j〉 | 1 ≤ i ≤ j ≤ n − 1}
– R1,3 = {〈Cn〉 → [ ]〈1〉}

We now describe complexity of asynchronous P systems using the above example. We first
introduce complexity of an asynchronous P system in maximal parallel manner. Since P system Π2

can be obviously executed in one step if 〈0〉 is in the input set, we consider the case that P system
Π2 is executed for an input set that includes no 〈0〉.

Figure 3 (a) illustrates an execution in case that P system Π2 is executed in maximal parallel
manner for the input set. In the execution, object Cn is created in O(log n) steps since the number of
objects Ci is reduced by half in each step of the execution. We call the number of steps executed on
the asynchronous P system in maximal parallel manner the number of parallel steps. For example,
P system Π2 computes the AND function in O(log n) parallel steps.

We next introduce complexity of an asynchronous P system in case that the P system is executed
sequentially. Figure 3 (b) illustrates an example of execution in case that P system Π2 is executed
sequentially for the same input set. The computation is executed in O(n) steps if one evolution rule
is applied in each step of the execution. Since various sequential executions can be considered on
the asynchronous P system, we call the worst number of sequentially executed steps the number of
sequential steps. For example, P system Π2 computes the AND function in O(n) sequential steps.

For the asynchronous P system, the number of parallel and sequential steps means the best and
worst case complexities, respectively. In addition to this, the proposed asynchronous P system must
be guaranteed to output a correct solution in any asynchronous execution.

2.3 Representation of binary numbers with objects

In this subsection, we describe a unified representation of a binary number with objects. The
representation is the same as in [8], and one object corresponds to one bit of a binary number.
Therefore, we use O(mn) objects to denote n binary numbers of m bits.

Let Vi,m−1, Vi,m−2, · · · , Vi,0 be m Boolean values stored in address i. In case the values denote a
non-negative integer Vi, the following expression holds.

Vi =
m−1∑
j=0

Vi,j × 2j
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We use the following m objects to denote the above value. In the objects, Ai and Bj denote the
address and the bit position, respectively, in which each value is stored.

〈Ai, Bm−1, Vi,m−1〉, 〈Ai, Bm−2, Vi,m−2〉, · · · , 〈Ai, B0, Vi,0〉

The above objects are referred to as memory objects.

3 Addition

3.1 Input and output

We assume that Vx and Vy are two input numbers, such that Vx =
∑m−1

j=0 Vx,j × 2j and Vy =∑m−1
j=0 Vy,j × 2j . The two numbers Vx and Vy are stored in the following two sets, Ox and Oy.

Ox = {〈Ax, Bj , Vx,j〉 | 0 ≤ j ≤ m − 1}
Oy = {〈Ay, Bj , Vy,j〉 | 0 ≤ j ≤ m − 1}

We assume that the above two sets of memory objects are given from the outside region into the
skin membrane.

The output of the addition is stored in the following set Os, i.e., Vs = Vx + Vy such that
Vs =

∑m
j=0 Vs,j × 2j .

Os = {〈As, Bj , Vs,j〉 | 0 ≤ j ≤ m}

We also assume that the above set of objects is sent from the skin membrane to the outside
region.

For example, the following two sets, Ox and Oy, denote two input binary numbers, Vx = (1011)2
and Vy = (1101)2.

Ox = {〈Ax, B0, 1〉, 〈Ax, B1, 1〉, 〈Ax, B2, 0〉, 〈Ax, B3, 1〉}
Oy = {〈Ay, B0, 1〉, 〈Ay, B1, 0〉, 〈Ay, B2, 1〉, 〈Ay, B3, 1〉}

In addition, the following set Os denotes an output Vs = (11000)2, which is the result of addition of
the above two numbers.

Os = {〈As, B0, 0〉, 〈As, B1, 0〉, 〈As, B2, 0〉, 〈As, B3, 1〉, 〈As, B4, 1〉}

3.2 An asynchronous P system for addition

We first explain an overview of the asynchronous P system for computing addition. In [8], a standard
P system, which computes addition for the same input, has been proposed. Since values of all bits
can be synchronously computed on the standard P system, the P system computes the addition in
a constant number of steps. However, we cannot compute addition for all bits in parallel on the
asynchronous P system, and the addition is sequentially computed from the lowest bit to higher
bits.

The computation of the asynchronous P system is executed in 3 steps given below.

Step 1: Compute Vs,0 = Vx,0 ⊕ Vy,0 and Vc,1 = Vx,0 ∧ Vy,0.
(In the computation, Vs,0 denotes a value of addition in the lowest bit, and Vc,0 denotes a
value of a carry to the next bit.)

Step 2: Compute Vs,j and Vc,j+1 from j = 1 to m − 1 as follows.

• Vs,j = Vx,j ⊕ Vy,j ⊕ Vc,j .

• Vc,j+1 is 1 if at least two bits of Vx,j , Vy,j and Vc,j are 1. Otherwise Vc,j+1 = 0.

Then, Vs,m = Vc,m.
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Table 1: A truth table for R2.

Vx,j Vy,j Vc,j Vs,j Vc,j+1

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Step 3: Output memory objects that denote Vs to the environment.

We now explain each set of evolution rules that realize the above 3 steps. The membrane structure
used in the computation is skin membrane only. Step 1 is executed applying the following set R1

for input objects.

R1 = {〈Ax, B0, 0〉〈Ay, B0, 0〉 → 〈As, B0, 0〉〈Ac, B1, 0〉,
〈Ax, B0, 0〉〈Ay, B0, 1〉 → 〈As, B0, 1〉〈Ac, B1, 0〉,
〈Ax, B0, 1〉〈Ay, B0, 0〉 → 〈As, B0, 1〉〈Ac, B1, 0〉,
〈Ax, B0, 1〉〈Ay, B0, 1〉 → 〈As, B0, 0〉〈Ac, B1, 1〉}

In Step 2, addition of each bit is executed applying the following set of evolution rules, R2.
(Boolean values in R2 are defined in a truth table in Table 1.)

R2 = {〈Ax, Bj , Vx,j〉〈Ay, Bj , Vy,j〉〈Ac, Bj , Vc,j〉 → 〈As, Bj , Vs,j〉〈Ac, Bj+1, Vc,j+1〉
| 1 ≤ j ≤ m − 1}

∪{〈Ac, Bm, V 〉 → 〈As, Bm, V 〉 | V ∈ {0, 1}}

In Step 3, output memory objects are sent out from the skin membrane applying the following
set of send-out communication rules, R3.

R3 = {[〈As, Bj , V 〉] → [ ]〈As, Bj , V 〉 | 0 ≤ j ≤ m, V ∈ {0, 1}}

We now summarize P system ΠADD that asynchronously computes addition of two binary num-
bers of m bits.

ΠADD = (O,µ, ω,R),

• O = Ox ∪ Oy ∪ Os ∪ {〈Ac, Bj , V 〉 | 0 ≤ j ≤ m,V ∈ {0, 1}}

• µ = [ ]1

• ω = Ox ∪ Oy

• R = R1 ∪ R2 ∪ R3

Figure 4 illustrates an execution of the P system ΠADD. In this example, two input numbers are
1011 and 1101. Two set of objects that denote the input numbers are given from the outside region
into the skin membrane. Then, sets of evolution rules, R1 and R2, are applied, and the addition is
computed. Finally the result is sent out from the membrane using R3.

It is worth while noticing that there are various executions for ΠADD since the P system is
fully asynchronous. For example, an output object 〈As, B0, 0〉 may be sent out from the membrane
before the other output object 〈As, B3, 1〉 is created. In any asynchronous execution, the proposed
P system ΠADD outputs a correct result for addition of two binary numbers.
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Figure 4: An example of execution of ΠADD.

3.3 Complexity

We consider complexity of the proposed P system ΠADD. Both of sequential and parallel steps are
O(m), and the number of objects and the number of evolution rules used in the system are O(m2).
Therefore, we obtain the following theorem for ΠADD.

Theorem 1 The P system ΠADD, which computes addition of two binary numbers of m bits, works
in O(m) parallel steps or O(m) sequential steps using O(m2) types of objects, a constant number of
membranes, and evolution rules of size O(m2). �

4 Multiplication

4.1 Input and Output

Input of the multiplication is a pair of two m-bit binary numbers, Vx and Vy, and the two numbers
are stored Ox and Oy, which are the same set of memory objects as input for the addition.

We also assume that a result of the multiplication is a 2m-bit binary number Vp, i.e., Vp = Vx×Vy,
and Vp is stored in the following set of memory objects such that Vp =

∑2m−1
j=0 Vp,j × 2j .

{〈Ap, Bj , Vp,j〉 | 0 ≤ j ≤ 2m − 1}

4.2 An asynchronous P system for multiplication

We describe an overview of the asynchronous P system ΠMUL that computes the multiplication. We
first explain m binary numbers of 2m bits, Vz, Vz+1, · · ·Vz+(m−1), which are used in the computation.
In the first step of the computation, memory objects that denote each Vz+k are created so that
Vz+k = 0. Then, each Vz+k is set to a value that denotes a product of Vx and k-th bit of Vy in the
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Table 2: An example of Vz+k.

Vx 1011
Vy 1101
Vz 00001011

Vz+1 00000000
Vz+2 00101100
Vz+3 01011000
Vp 10001111

next step. More precisely, Vz+k is set as follows.

Vz+k =
{

0 (Vy,k = 0)
Vx × 2k (Vy,k = 1)

Table 2 shows an example of Vz+k in case of Vx = (1011)2 and Vy = (1101)2. As shown in Table
2, the product Vp is given as the sum of Vz, Vz+1, · · ·Vz+(m−1), i.e., Vp =

∑m−1
k=0 Vz+k.

Using the above idea, the computation of the asynchronous P system is executed in 4 steps given
below.

Step 1 : Create memory objects that denote Vz, Vz+1, · · · , Vz+(m−1). (All values of the memory
objects are set to 0.)

Step 2 : Compute Vz+k for each k (0 ≤ k ≤ m − 1).

Step 3 : Compute the sum of Vz, Vz+1, · · · , Vz+(m−1), and store the sum in Vp.

Step 4 : Output memory objects that denote Vp to the environment.

We now explain each set of evolution rules that realize the above 4 steps. The membrane structure
used in the computation is skin membrane only.

In Step 1, the following sets of objects are asynchronously created from input memory objects.
Oz is a set of memory objects that denote the binary numbers, Vz, Vz+1, · · · , Vz+(m−1), and OH is a
set of objects such that each 〈Hk,0〉 starts computation of Vz+k.

Oz = {〈Az+k, Bj , 0〉 | 0 ≤ k ≤ m − 1, 0 ≤ j ≤ 2m − 1}
OH = {〈Hk,0〉 | 0 ≤ k ≤ m − 1}

The following set of evolution rules is applied to create the above two sets of objects for input
memory objects.

R1 = R1,1 ∪ R1,2

R1,1 = {〈Ax, B0, Vx,0〉 → 〈Ax′ , B0, Vx,0〉〈Z0,0〉 | Vx,0 ∈ {0, 1}}
R1,2 = {〈Zk,l〉 → 〈Az+k, Bl, 0〉〈Zk,l+1〉 | 0 ≤ k ≤ m − 1, 0 ≤ l ≤ 2m − 1}

∪{〈Zk,2m〉 → 〈Zk+1,0〉〈Hk,0〉 | 0 ≤ k ≤ m − 2}
∪{〈Zm−1,2m〉 → 〈Hm−1,0〉}

(Since object 〈Ax, B0, Vx,0〉 triggers the computation, the object is transformed into the other
object, 〈Ax′ , B0, Vx,0〉, after start of the computation. )

In Step 2, each Vz+k is computed applying the following set of evolution rules. In each evolution
rule, an object 〈Hk,j〉 triggers the computation of an 1-bit product of Vx,j and Vy,k, and the product
is stored in Vz+k,j+k.
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R2 = R2,1 ∪ R2,2 ∪ R2,3

R2,1 = {〈Ax, Bj , Vx,j〉〈Ay, Bk, Vy,k〉〈Az+k, Bj+k, 0〉〈Hk,j〉
→ 〈Ax, Bj , Vx,j〉〈Ay, Bk, Vy,k〉〈Az+k, Bj+k, Vx,j ∧ Vy,k〉〈Hk,j+1〉
| 0 ≤ k ≤ m − 1, 1 ≤ j ≤ m − 1, Vx,j ∈ {0, 1}, Vy,k ∈ {0, 1}}

∪{〈Ax′ , B0, Vx,0〉〈Ay, Bk, Vy,k〉〈Az+k, Bk, 0〉〈Hk,0〉
→ 〈Ax′ , B0, Vx,0〉〈Ay, Bk, Vy,k〉〈Az+k, Bk, Vx,0 ∧ Vy,k〉〈Hk,1〉
| 0 ≤ k ≤ m − 1, Vx,0 ∈ {0, 1}, Vy,k ∈ {0, 1}}

R2,2 = {〈H0,m〉 → 〈F0〉〈C0, B0, 0〉} ∪ {〈Fk−1〉〈Hk,m〉 → 〈Fk〉〈Ck, B0, 0〉 | 1 ≤ k ≤ m − 1}
R2,3 = {[〈Fm−1〉] → [ ]+}

Since our P system is asynchronous, the above computation may be executed in parallel for
k, or may be executed sequentially. We detect the end of the computation using objects 〈Hk,m〉,
which is created at the end of the computation for k. The detection is executed applying a set of
evolution rules, R2,2. Two objects, 〈Fk〉 and 〈Ck, B0, 0〉, are created when the computation for Vz+k

is finished. (The object 〈Ck, B0, 0〉 is used in the next step as a carry bit for k-th addition.) Then,
object 〈Fm−1〉, which is created at the end of Step 2, triggers Step 3 applying a set of evolution rules,
R2,3. The membrane is polarized +, and the polarization enables application of evolution rules for
Step 3.

In Step 3, the sum of Vz, Vz+1, · · · , Vz+(m−1) is computed as follows. We first compute addition
of each consecutive pair of the values, Vz+2k and Vz+2k+1 (0 ≤ k ≤ m

2 ), and store the result of
the addition in Vz+m+k. The addition is repeated using a traditional binary tree method. Then,
the sum of Vz, Vz+1, · · · , Vz+(m−1) is obtained after the repetition, and the sum is stored in memory
objects that denote Vz+2m−2.

The addition is executed applying the following set of evolution rules1. An object 〈C2m−1, B0, 0〉
is created at the end of Step 3, and triggers Step 4.

R3 = R3,1 ∪ R3,2

R3,1 = { [〈C2i+1, B0, 0〉]+ → [ ]+ | 0 ≤ i ≤ m − 2}
∪ { [〈C2i, B2m, 0〉]+ → 〈Ci+m, B0, 0〉]+ | 0 ≤ i ≤ m − 1}

R3,2 = {[〈Az+2i, Bj , 0〉〈Az+2i+1, Bj , 0〉〈C2i, Bj , 0〉]+ → [〈Az+i+m, Bj , 0〉〈C2i, Bj+1, 0〉]+,

[〈Az+2i, Bj , 0〉〈Az+2i+1, Bj , 1〉〈C2i, Bj , 0〉]+ → [〈Az+i+m, Bj , 1〉〈C2i, Bj+1, 0〉]+,

[〈Az+2i, Bj , 1〉〈Az+2i+1, Bj , 0〉〈C2i, Bj , 0〉]+ → [〈Az+i+m, Bj , 1〉〈C2i, Bj+1, 0〉]+,

[〈Az+2i, Bj , 1〉〈Az+2i+1, Bj , 1〉〈C2i, Bj , 0〉]+ → [〈Az+i+m, Bj , 0〉〈C2i, Bj+1, 1〉]+,

[〈Az+2i, Bj , 0〉〈Az+2i+1, Bj , 0〉〈C2i, Bj , 1〉]+ → [〈Az+i+m, Bj , 1〉〈C2i, Bj+1, 0〉]+,

[〈Az+2i, Bj , 0〉〈Az+2i+1, Bj , 1〉〈C2i, Bj , 1〉]+ → [〈Az+i+m, Bj , 0〉〈C2i, Bj+1, 1〉]+,

[〈Az+2i, Bj , 1〉〈Az+2i+1, Bj , 0〉〈C2i, Bj , 1〉]+ → [〈Az+i+m, Bj , 0〉〈C2i, Bj+1, 1〉]+,

[〈Az+2i, Bj , 1〉〈Az+2i+1, Bj , 1〉〈C2i, Bj , 1〉]+ → [〈Az+i+m, Bj , 1〉〈C2i, Bj+1, 1〉]+

| 0 ≤ i, j ≤ m − 1}

Since the addition can be executed in parallel for all pairs, we can execute the above addition
for all pairs in O(m) parallel steps, and can also execute the addition in O(m2) sequential steps.

Finally, the memory objects, which denote the sum, are sent out from the skin membrane applying
the following set of rules in Step 4.

R4 = R4,1 ∪ R4,2

R4,1 = {[〈Az+2m−2, B0, Vz+2m−2,0〉〈C2m−1, B0, 0〉]+ → [〈Ap, B0, Vz+2m−2,0〉〈G1〉]}
1Although the evolution rule is a little complicated, a basic idea of the rule is the same as the rule for addition in

Section 3.
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∪{〈Az+2m−2, Bj , Vz+2m−2,j〉〈Gj〉 → 〈Ap, Bj , Vz+2m−2,j〉〈Gj+1〉 | 1 ≤ j ≤ 2m − 1}
R4,2 = {[〈Ap, Bj , Vp,j〉] → [ ]〈Ap, Bj , Vp,j〉 | 0 ≤ j ≤ m − 1, Vp,j ∈ {0, 1}}

We now summarize P system ΠMUL that asynchronously computes multiplication of two binary
numbers of m bits.

ΠMUL = (O, µ, ω,R),

• O is a set of objects used in the evolution rule R.

• µ = [ ]1

• ω = Ox ∪ Oy

• R = R1 ∪ R2 ∪ R3 ∪ R4

Figure 5 illustrates an execution of the P system ΠMUL. In this example, two input numbers
are 1011 and 1101. Two set of objects that denote the input numbers are given from the outside
region into the skin membrane. Then, a set of evolution rule, R1 is applied, and memory objects
are created for the next step.

In the next step, products of 1011 and each bit of 1101 are computed using a set of evolution
rule R2, and the results are stored in memory objects created in the first step.

In the third step, sum of four results, which are obtained in the second step, is computed using
a set of evolution rule R3. The third step is executed in two sub-steps. In the first sub-step, two
sums of two pairs of values stored in (Az, Az+1) and (Az+2, Az+3) are computed in parallel, and the
sums are stored in A4 and A5. Then, the sum of sums obtained in the first sub-step is computed in
the second sub-step, and the result is stored in A6 at the end of the step.

Finally the result is sent out from the membrane using a set of evolution rule R4.

4.3 Complexity

We now consider complexity of the P system ΠMUL. Step 1 and Step 2 can be executed in O(m)
parallel steps or O(m2) sequential steps. Step 3 can be executed in O(m log m) parallel steps or
O(m3) steps because the addition for all pairs in Step 3 is executed in O(m) parallel steps or O(m2)
sequential steps, and the addition is repeated O(log m) times in parallel or O(m) times sequentially.
Therefore, we obtain the following theorem for ΠMUL.

Theorem 2 The P system ΠMUL, which computes multiplication of two binary numbers of m bits,
works in O(m log m) parallel steps or O(m3) sequential steps using O(m2) types of objects, a constant
number of membranes, and evolution rules of size O(m2). �

5 Factorization

We finally propose a P system that computes a factorization of a positive integer of m bits. Although
two standard P systems [10, 12] have been proposed for computing the same factorization in a
polynomial number of steps, their P system cannot work in asynchronous manner. Our P system
works in both of maximally parallel and asynchronous manners, and computes the factorization in
O(m log m) steps in maximally parallel manner.

We assume that input of the P system is a positive integer Vn, which is a product of two prime
factors. We also assume that output of the P system is a two primes Vp and Vq such that Vn = Vp×Vq.
The input and output are given in the same sets of memory objects as input and output for the
addition.

Since a basic idea of the P system is the same as [10, 12], we describe an outline of P system
ΠFACT , which computes factorization of a positive integer. The P system mainly consists of three
nested membranes. The outermost membrane is the skin membrane, and the second membrane,
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R1

1
<Ax,B0,1><Ax,B1,1><Ax,B2,0><Ax,B3,1>

<Ay,B0,1><Ay,B1,0><Ay,B2,1><Ay,B3,1>

R2

<Az,B4,0><Az,B5,0><Az,B6,0><Az,B7,0> <Az,B0,0><Az,B1,0><Az,B2,0><Az,B3,0>

<Az+1,B0,0><Az+1,B1,0><Az+1,B2,0><Az+1,B3,0><Az+1,B4,0><Az+1,B5,0><Az+1,B6,0><Az+1,B7,0>

<Az+3,B0,0><Az+3,B1,0><Az+3,B2,0><Az+3,B3,0><Az+2,B4,0><Az+2,B5,0><Az+3,B6,0><Az+3,B7,0>

<Az+2,B0,0><Az+2,B1,0><Az+2,B2,0><Az+2,B3,0><Az+2,B4,0><Az+2,B5,0><Az+2,B6,0><Az+2,B7,0>

1 <Ax’,B0,1><Ax,B1,1><Ax,B2,0><Ax,B3,1>

<Ay,B0,1><Ay,B1,0><Ay,B2,1><Ay,B3,1> <H3,0>

<Az,B4,0><Az,B5,0><Az,B6,0><Az,B7,0> <Az,B0,1><Az,B1,1><Az,B2,0><Az,B3,1>

<Az+1,B0,0><Az+1,B1,0><Az+1,B2,0><Az+1,B3,0><Az+1,B4,0><Az+1,B5,0><Az+1,B6,0><Az+1,B7,0>

<Az+3,B0,0><Az+3,B1,0><Az+3,B2,0><Az+3,B3,1><Az+3,B4,1><Az+3,B5,0><Az+3,B6,1><Az+3,B7,0>

<Az+2,B0,0><Az+2,B1,0><Az+2,B2,1><Az+2,B3,1><Az+2,B4,0><Az+2,B5,1><Az+2,B6,0><Az+2,B7,0>

1 <Ax’,B0,1><Ax,B1,1><Ax,B2,0><Ax,B3,1>

<Ay,B0,1><Ay,B1,0><Ay,B2,1><Ay,B3,1>

+

R3

<Az+6,B0,1><Az+6,B1,1><Az+6,B2,1><Az+6,B6,1><Az+6,B4,0><Az+6,B5,0><Az+6,B6,0><Az+6,B7,1>

1 <Ax’,B0,1><Ax,B1,1><Ax,B2,0><Ax,B3,1>

<Ay,B0,1><Ay,B1,0><Ay,B2,1><Ay,B3,1>

+

<C7,B0,0>

<Ap,B0,1><Ap,B1,1><Ap,B2,1><Ap,B6,1><Ap,B4,0><Ap,B5,0><Ap,B6,0><Ap,B7,1>

1 <Ax’,B0,1><Ax,B1,1><Ax,B2,0><Ax,B3,1>

<Ay,B0,1><Ay,B1,0><Ay,B2,1><Ay,B3,1>

R4,1

<G8>

R4,2

<H1,0><H0,0>

<H2,0>

Figure 5: An example of execution of ΠMUL.
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<An,B0,1>

<An,B1,1>

<An,B2,1>

<An,B3,1>

<C(0)>
1

∏MUL

2

On

1

<Ax,B2,1>
<Ay,B2,1>

<C(1)>

∏MUL

2

On

<Ax,B2,1>
<Ay,B2,0>

<C(1)>

∏MUL

2

On

<Ax,B2,0>
<Ay,B2,0>

<C(1)>

∏MUL

2

On

1

<Ax,B2,1>

<Ay,B2,1>

<C(2)>

∏MUL

2

On

<Ay,B1,1>

<Ax,B1,1>
<Ax,B2,1>

<Ay,B2,1>

<C(2)>

∏MUL

2

On

<Ay,B1,0>

<Ax,B1,1>
<Ax,B2,1>

<Ay,B2,1>

<C(2)>

∏MUL

2

On

<Ay,B1,0>

<Ax,B1,0>

<Ax,B2,1>

<Ay,B2,0>

<C(2)>

∏MUL

2

On

<Ay,B1,1>

<Ax,B1,0>

1

<Ax,B2,1>

<Ay,B2,1>

<C(3)>

∏MUL

2

On

<Ay,B1,1>

<Ax,B1,1>

<Ay,B0,1>

<Ax,B0,1>

<Ax,B2,1>

<Ay,B2,1>

<C(3)>

∏MUL

2

On

<Ay,B1,1>

<Ax,B1,1>

<Ay,B0,0>

<Ax,B0,1>

<Ax,B2,1>

<Ay,B2,1>

<C(3)>

∏MUL

2

On

<Ay,B1,1>

<Ax,B1,1>

<Ay,B0,0>

<Ax,B0,0>

<Ax,B2,1>

<Ay,B2,0>

<C(3)>

∏MUL

2

On

<Ay,B1,1>

<Ax,B1,0>

<Ay,B0,1>

<Ax,B0,1>

Figure 6: An outline of a generation phase of ΠFACT .

which is called a candidate membrane, is contained in the skin membrane. The candidate membrane
also contains a multiplication membrane, which is P system ΠMUL described in Section 4.

The computation is executed in the following two phases.

(i) Generation phase: Using division rules, copies of candidate membrane are generated in the
skin membrane. Each candidate membrane contains memory objects that denote a pair of
integers, which are candidates for two factors. The division is executed so that all membranes
contains distinct pairs of integers.

(ii) Verification and output phase: In each candidate membrane, a product of the pairs of
integers is computed in multiplication membrane. Then, if the product is the same as the
input integer, the candidate membrane is dissolved, and the memory objects are sent out from
the skin membrane as output of the P system.

Figures 6 and 7 illustrate outlines of a generation phase and a verification and output phase,
respectively. In Figure 6, a set of objects On, which denotes input binary number 1111, is given
from the outside of a skin membrane. Then, the objects are sent in the inner candidate membrane,
and the inner membrane is repeatedly divided so that each membrane contains memory objects that
denote a pair of integers x, y such that x > y.
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1

<C(3)>

∏MUL

2

On

<Ap,B3,0>

<Ap,B2,0>

<Ap,B1,0>

<Ap,B0,1>

<Ap,B5,1>

<Ap,B4,1>

1

<Ax,B2,1>

<Ay,B2,1>

<C(3)>

∏MUL

2

On

<Ay,B1,1>

<Ax,B1,1>

<Ay,B0,1>

<Ax,B0,1>

<Ax,B2,1>

<Ay,B2,1>

<C(3)>

∏MUL

2

On

<Ay,B1,1>

<Ax,B1,1>

<Ay,B0,0>

<Ax,B0,1>

<Ax,B2,1>

<Ay,B2,1>

<C(3)>

∏MUL

2

On

<Ay,B1,1>

<Ax,B1,1>

<Ay,B0,0>

<Ax,B0,0>

<C(3)>

∏MUL

2

On

<Ap,B3,1>

<Ap,B2,0>

<Ap,B1,1>

<Ap,B0,0>

<Ap,B5,1>

<Ap,B4,0>

<C(3)>

∏MUL

2

On

<Ap,B3,0>

<Ap,B2,1>

<Ap,B1,0>

<Ap,B0,0>

<Ap,B5,1>

<Ap,B4,0>

<Ax,B2,1>

<Ay,B2,0>

<C(3)>

∏MUL

2

On

<Ay,B1,1>

<Ax,B1,0>

<Ay,B0,1>

<Ax,B0,1>

<C(3)>

∏MUL

2

On

<Ap,B3,1>

<Ap,B2,1>

<Ap,B1,1>

<Ap,B0,1>

<Ap,B5,0>

<Ap,B4,0>

a membrane is dissolved, #

and the output objects are sent 

out from the membrane

Figure 7: An outline of a verification phase of ΠFACT .

In Figure 7, each pair of the integers is sent into the inner membrane, which is a P system
ΠMUL, and then, a product of the two integers is sent out from the inner membrane. The candidate
membrane is dissolved if the product is equal to the input integer, and output objects are sent out
from the skin membrane.

In the computation based on the above idea, O(4m) candidate membranes are generated in O(m)
parallel steps or O(m2) sequential steps in the first phase. Since a product of the two candidates is
computed in each candidate membrane in O(m log m) parallel steps or O(m2 log m) sequential steps,
the total number of steps executed in ΠFACT is O(m log m) parallel steps or O(4m × m2 log m)
sequential steps. Since the number of objects and evolution rules used in the system are O(m2), we
obtain the following theorem for ΠFACT .

Theorem 3 The P system ΠFACT , which computes factorization of a positive number of m bits,
works in O(m log m) parallel steps or O(4m×m2 log m) sequential steps using O(m2) types of objects,
O(4m) membranes, and evolution rules of size O(m2). �

6 Conclusions

In the present paper, we have proposed asynchronous P systems that compute two basic arithmetic
operations and factorization. The first and second asynchronous P systems compute addition and
multiplication in a polynomial number of steps. We have also proposed the P system for factorization,
and showed the P system works in a polynomial number of steps in maximally parallel manner, and
also works in asynchronous manner.

In the future research, we will examine the application of the proposed asynchronous P systems
for another numerical problems.
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