
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 3, Number 1, pages 75–97, January 2013

Pipelined Execution of Windowed Image Computations

Ramachandran Vaidyanathan

School of Electrical Engineering and Computer Science
Louisiana State University, Baton Rouge, LA 70803, USA

Phaneendra Vinukonda

Tata Consultancy Services
Microsoft Corporation, Redmond, WA, USA

and

Alyssa C. Lessing

School of Electrical Engineering and Computer Science
Louisiana State University, Baton Rouge, LA 70803, USA

Received: July 25, 2012
Revised: October 26, 2012

Accepted: December 4, 2012
Communicated by Akihiro Fujiwara

Abstract

Many image processing operations manipulate an individual pixel using the values of other
pixels in the neighborhood. Such operations are called windowed operations. The size of the
windowed operation is a measure of the size of the given pixel’s neighborhood. A windowed
computation applies a windowed operation on all pixels of the image. An image processing appli-
cation is typically a sequence of windowed computations. While windowed computations admit
high parallelism, the cost of inputting and outputting the image often restricts the computation
to a few computational units.

In this paper we analytically study the running of a sequence of z windowed computations,
each of size w, on a z-stage pipelined computational model. For an N × N image and n × n

input/output bandwidth per stage, we show that the sequence of windowed computations can

be run in at most N
2

n2 (1 + δ) steps, where δ =
“

n

N
+ 6n

3

wN2 + zw

N
+ zn

2

N2

”

. This produces a speed-

up of z

1+δ
over a single stage; δ, the overhead is quite small. We also show that the memory

requirement per stage is O(wN +n
2). With values of N , n and w that reflect the current state-

of-the-art, over 20 pipeline stages can be sustained with less than 5% overhead for a 10M-pixel
image. Each of these stages would require less than 128 Kbytes of storage.

Keywords: image processing, pipelining, windowed computation

75

Pipelined Execution of Windowed Image Computations

1 Introduction

Image processing algorithms are used in a wide variety of applications areas ranging from meteo-
rology, military (satellite information analysis), security (face recognition, baggage scan) to gaming,
videos and photography [4]. Some of these applications, particularly security applications, also
require a real time response.

Many operations in image processing manipulate an image pixel using the values of other pixels
around it. For example, one could use the average of values around each pixel to blur the image. In
general, a rectangular window that extends to a width of w around the pixel is used to define the
neighborhood of interest and to perform an operation on the pixel. When extended to all pixels of the
image, we will call it a windowed computation of size w. Examples of such windowed computations
include filtering techniques, and morphological operations [4, 9].

Many image processing applications include a series of windowed computations, that lend them-
selves well to running on a pipelined environment. For example, the scale invariant feature transform
(SIFT) [7], one of the most widely used techniques for image feature extraction, has several stages
of Gaussian filtering and a stage of descriptor generation, all of which are windowed computations.
Generally speaking, image processing algorithms have large data sizes, admit high parallelism and
require limited data sharing across individual computations (captured by the overlap of windows
of nearby pixels). Notwithstanding this potential for a parallel (and pipelined) execution of these
algorithms, the high data bandwidth demanded by a large image restricts the computation to re-
main within a single chip or module. This adversely impacts performance and cost, particularly in
real-time applications.

In this paper we will model an image processing algorithm as a series of z windowed computations,
each of size w on an N ×N image. A z-stage pipeline will be used to run the algorithm, each stage
dedicated to a windowed computation. Note that a set of relatively simple windowed computations
could be clubbed together into a single windowed computation running on a stage. To capture the
input/output bandwidth restriction between stages we will use a parameter n ≪ N ; only an n × n

“tile” can be moved between stages at a time. As we show later, the data bandwidth requirement
generally reduces for windowed computations as we move down stages of the pipeline. Thus, n2 can
be viewed as the the unit of input bandwidth.

An ideal pipeline should have matched input, output and computational speeds. Therefore, the
quantity n2 is also used as a measure of a unit-time computation by a stage. In practice, one
could achieve this balance by selectively speeding up bottlenecked stages or slowing down (or even
hibernating) stages that are unnecessarily fast.

The scheduling of a pipelined computation is a very well studied problem (see Benoit et al.
[3] for a comprehensive survey). However, the particular case of windowed computation has not
received much attention in an analytical framework. On the other hand there is a lot of work
on implementing image and windowed computations on particular platforms (notably FPGAs and
GPUs) [1, 2, 5, 8, 11, 12]. To our knowledge, ours is the first work to analytically study windowed
computations and their execution on a pipelined platform of computation.

The main result of this paper is to show that the z windowed computations can be run on the

pipeline in about N2

n2 (1 + δ) time units, where δ =
(

n
N

+ 6n3

wN2 + zw
N

+ zn2

N2

)

= A + Bz (say). With

n2 operations per unit time, the entire computation takes zN2

n2 time on a single stage. The speed-up
achieved with z stages is z

1+δ
.

Deep pipelines generally increase speed-up. A deep pipeline also allows the computation to be
spread across more processing units and this presents greater opportunities for reducing thermal
hot-spots and for tailoring and tuning pipeline elements to particular tasks. A large value of N

reduces the overhead δ and pushes the speed-up towards the ideal. In general, N > n2 > z > w,
so the constants A and B in δ = A + Bz are quite small. Under current technology, over 30 stages
can be supported with an overhead of less than 5%. Put differently, if the computation was spread
across 30 stages, the speed-up would drop to only about 0.96 × 30 = 28.8.

We show that if z ≤ n
w

then the computation proceeds even more efficiently. Newer technologies
such as optical and 3-D interconnects [13, 15, 16] will support a larger value n. On one hand,

76

International Journal of Networking and Computing

this will admit a larger value of z for efficient operation. This, coupled with increasing processing
capabilities, would allow for larger images to be handled without significant impact on processing
time. On the other hand, a larger value of n (without a change in N) would improve the total time,
albeit at a slightly lower efficiency.

We show that each stage of the pipeline requires O(wN + n2) space. With numbers reflecting
current technology, processing a 10M-pixel image would require less that 128k bytes of space per
stage.

This work also derives two broad results for computational pipelines that may have independent
interest outside windowed computations (see Section 5).

The remainder of this paper is organized as follows. In the next section we formally define a
windowed computation. In Section 3 we describe the computational pipeline, and define a template
for executing a windowed computation on it. Section 4 is devoted to deriving the time for each
stage and tile in the pipeline. In Section 5 we derive the running time for two broad scenarios on
the pipeline and we put these intermediate results together in Section 6. In Section 7 we derive
the memory requirement per stage of the pipeline. Finally in Section 8 , we make some concluding
remarks.

2 Windowed Computations

In this section we introduce some definitions. These definitions are for the non-negative integer plane
{(x, y) : integer x, y ≥ 0} using the L1 norm (Manhattan space) in which all lines and distances
are horizontal or vertical.

Let P = [px,y] be an N ×N image, where 0 ≤ x, y < N and px,y is the image pixel at row x and
column y of the image.

Definition 1 A w-neighbor of px,y is a point whose horizontal or vertical distance does not exceed
w. Formally, pu,v is a w-neighbor of px,y iff |x − u|, |y − v| ≤ w. �

Definition 2 A w-window (or window of size w) for pixel px,y is the set

Nw(x, y) = {px+u,y+v : − w ≤ u, v ≤ w}

of all w-neighbors of px,y. �

Figure 1 shows a w window for a pixel.

w

Figure 1: A window (shaded) of size w = 3 for a pixel (dark)

77

Pipelined Execution of Windowed Image Computations

Definition 3 A windowed computation on pixel px,y refers to computing a function fw(x, y) whose
input is the set Nw(x, y) and whose output is associated with point (x, y). A windowed computation
on an entire image applies fw to each image pixel. �

Several image processing operations can be described as windowed computations. For example,
one form of median filtering uses the median of Nw(x, y) as fw(x, y). Other filtering techniques use a

(2w+1)×(2w+1) matrix [mu,v] and compute fw(x, y) =

w∑

u=−w

w∑

v=−w

mu,v · qx+u,y+v. Morphological

operators [4] for image processing are also windowed computations.

Definition 4 Let A be an area (subset of the plane) of any shape. A w-contraction of A is the
largest subset γw(A) ⊆ A such that for every point in γw(A), its w-neighbor is in A. �

Remarks: Let A be a subset of the image available to a processor. Then, the largest subset on
which the processor can perform a windowed computation of size w is γw(A). Where there is no
danger of confusion, we will drop the w-subscript and denote a w-contraction simply as γ(·). In
general, the set γ(A) is obtained by excluding all elements of A that are within a horizontal or
vertical distance of w from the perimeter of A. However, for the purpose of Definition 4, we will
allow γ(A) to coincide with A for any portions that touch a border of the plane (or image) as the
portion of the window outside the image can be constructed using portions within the image.

In Figure 1, the central pixel is the w contraction of the shaded window. Figures 6, 7 and 8
also illustrate w-contractions; all but the darkest shaded regions form a w-contraction of the entire
shaded region in these figures. In these figures, however, the left, top, and in one case, right edges of
the set are on the image border; the w-contraction does not recede by w pixels from these borders.

Generally speaking, image processing algorithms have large data sizes, admit high parallelism
and require limited data sharing across individual computations (captured by the overlap of windows
of nearby pixels). These algorithms can be viewed as series of windowed computations. For example,
the scale invariant feature transform (SIFT) [7] has several stages of Gaussian filtering with windows
of size 2 or 3, a stage of descriptor generation that can be viewed as a windowed computation with
w around 8 and a few steps that are local to pixels (window size 0)1. In this paper we consider a
series of z windowed computations on an N ×N image. Each windowed computation uses a window
of size w. The entire computation is run on a z-stage pipeline (see Section 3). The aim of this work
is to develop core ideas that describe how this computation can be run on the pipeline.

3 The Pipelined Model of Computation

We use a z-stage pipeline with stages S0, S1, · · ·Sz−1, through which the entire image passes (see
Figure 2). Stage S0 is assumed to be the source of the image (possibly a camera). The input to

S1 S2 Sz − 10S

Figure 2: A z-stage pipeline

Stage S1 is the original image (from Stage S0). The input to Stage Si (for i > 0) is the output
of Stage Si−1. The output of Stage Sz−1 is the output of the algorithm. The setting is that of a
streaming algorithm, in which a stage receives an input from the previous stage only once, and must
save any part of the input that it requires for future use.

Each stage in the pipeline has two autonomous units: (a) input buffers that can receive inputs
from the previous stage and (b) a computation/output unit that can process input data and output

1In this paper we assume that the window size is at least 1.

78

International Journal of Networking and Computing

to the next stage. Since these units work independently, no major coordination is required between
them. Note also that for the pipeline on the whole, since the output of Stage Sℓ is concurrent with
the input to Stage Sℓ+1, the time needed for a stage to handle a unit of data can be viewed as the
sum of the computing and output times.

3.1 Tiles

The entire image is typically too large to move between stages in one “iteration.” We will therefore
partition the image into small “tiles” that can move more easily between stages. Tiles also act as
atomic objects of the computation whose processing details can be abstracted away from, thereby
allowing for a more general analysis of windowed computations. The size of tiles, though primarily
indicative of the input/output bandwidth, will also reflect the computation speed of the stages. We
elaborate on this further later.

For some 1 ≤ w ≤ n < N , let ξ = N
n

and let ρ = n
w

. (The assumptions that n divides N ,
w ≤ n and w divides n are only for ease of explanation.) The entire image is typically too large
to move between stages in one “iteration.” Partition the N × N input image into n × n tiles that
are sequentially output in row-major order2 from Stage S0 to Stage S1. Call these tiles τk,0 for

0 ≤ k < ξ2 = N2

n2 . Figure 3 shows the tiles for an example with ξ = 5.

0 1 2 3 4

9

14

19

2423

18

13

87

12

17

2221

16

11

65

10

15

N

n

N

n

20

Figure 3: Partition of the image into tiles with ξ = N
n

= 5. Numbers in the tiles indicate the value
of k in Tiles τk,0.

Consider a stage that has received (through a sequence of tiles) a subset A of the image. As
observed earlier, the stage can perform a windowed computation on only a w-contraction γ(A) ⊆ A
of pixels. Given that it may have already processed some parts of γ(A), the stage may currently
process only a subset A′ ⊆ γ(A).

Let us now consider this in the context of tiles received by Stage S1 from S0 (see Figure 4). On
receiving the first n×n Tile τ0,0 from the northwest corner of the image, S1 can process only γ(τ0,0),
an (n − w) × (n − w) image subset (Figure 4 shows τ0,0 as the n × n square on the top-left corner
of the image and the (n − w) × (n − w) subset as a medium shaded square within τ0,0). Call this
(n − w) × (n − w) subset Tile τ0,1. Tile τ0,1 is output by S1 to S2. Next consider Tile τ1,0 (shown
as another n × n square to the right of τ0,0). On receiving τ1,0 from S0, Stage S1 so far holds the
subset A = τ0,0 ∪ τ1,0 of the image. It can process subset γ(A), but needs to process and pass on to

2The index of element (x, y) of an X × Y array enumerated in row-major order is xY + y, where 0 ≤ x < X and
0 ≤ y < Y (also see Figure 3).

79

Pipelined Execution of Windowed Image Computations

w image border

n

0,0τ
τ 0,1 1,1τ

1,0τ

n

w

Figure 4: Movement of the first two tiles through stages S0, S1.

Stage S2 only τ1,1 = γ(A) − τ0,1 (as τ0,1 has already been processed). This tile, τ1,1 is shown as a
lightly shaded (n − w) × n rectangle.

In general, in “iteration” k, Stage Sℓ receives τk,ℓ−1 as input and constructs

τk,ℓ = γ

(
k⋃

i=0

τi,ℓ−1

)

−
k−1⋃

i=0

τi,ℓ

In subsequent discussion, Tile τk,ℓ will be called the kth tile of Sℓ. The term Tile k or the notation
τk refers to the collection of tiles τk,ℓ for all 0 ≤ ℓ < z. The period of time during which Sℓ produces
τk,ℓ will be called its kth iteration.

3.2 Running Times for a Stage

Let |τk,ℓ| denote the area of (number of pixels in) Tile τk,ℓ.
In each iteration k, Stage Sℓ does the following: (a) receives Tile τk,ℓ−1 from the previous

Stage Sℓ−1, (b) generates Tile τk,ℓ and (c) sends τk,ℓ to the next Stage Sℓ+1. As noted earlier, part
(a) above (tile input) is concurrent with the tile output by the previous stage. Thus, the time for
Stage Sℓ to handle a tile in iteration k is the sum of those needed for parts (b) and (c) above.

The time for Stage Sℓ to output τk,ℓ is clearly proportional to |τk,ℓ|, the number of pixels in
the tile. The time to perform a windowed computation of size w, given Tile τk,ℓ−1, depends on w,
|τk,ℓ| and the function fw. Since we have assumed w to be relatively small, we will also assume
the total time for Stage Sℓ to complete iteration k to be proportional to |τk,ℓ|. This assumption is
reasonable, as in a specific instance of an image algorithm, the pipeline would be expected to be
tuned to balance the computation and input/output times. The size n × n of input tiles τk,0, that
reflects the amount of data the camera can transmit in “unit time,” can be used as a “step” in terms
of which other times are expressed. Thus, we have the following assumption.

Assumption 1 For any 1 ≤ ℓ < z and any 0 ≤ k < ξ2, the time needed for Stage Sℓ to complete

the kth iteration is tk,ℓ =
|τk,ℓ|
n2

. �

Remark: The actual times could differ from that assumed above by some constant amount that
takes into account speeds of the stages (relative to the camera) and the nature of the computation
required for fw. However, the overall ideas of this paper would still be a good starting point to
optimize for these differences.

To capture the notion of a “step” that transacts n2 elements, we will say that the pipeline has
a bandwidth of n2.

80

International Journal of Networking and Computing

4 Iteration Times (Tile Sizes)

In Section 3 we established that the time for a stage Sℓ to complete iteration k is proportional to
the size of Tile τk,ℓ output during that iteration. In this section we first determine the size |τk,ℓ| of
that tile, which, in turn, would give the “raw processing times” of the tile. Subsequently, we will
rearrange elements of tiles to obtain the “modified processing times.”

4.1 Raw Iteration Times

We first introduce some alternate notation for a tile that will be useful in this section. Observe that
for 0 ≤ k < ξ2 = N2

n2 , the n × n tiles τk,0 partition the N × N image into a ξ × ξ array of tiles (see

Figure 3). In this array, Tile τk,0 is in row x and column y where x =
⌊

k
ξ

⌋

and y = k (mod ξ). Using

this one-to-one correspondence between k and (x, y) we will write τk,ℓ and τ(x,y),ℓ interchangeably.
We will refer to an a × b tile as having height a and width b.

Since the image is initially tiled into n× n tiles τk,0 = τ(x,y),0 as shown in Figure 3, we have the
following result.

Lemma 1 For each 0 ≤ x, y < ξ, Tile τ(x,y),0 is an n × n.

Figure 4 showed τ0,0 and τ1,0 to be n × n tiles (consistent with Lemma 1.) It also showed τ0,1

to be an (n − w) × (n − w) tile and τ1,1 to be an (n − w) × n tile. Figure 5 further illustrates the
pattern of sizes of Tiles τk,0 (as dotted squares marked k), Tiles τk,1 (as dotted rectangles marked
k) and Tiles τk,2 as solid rectangles marked k.

0 1 2 3 4

5 7 86 9

11 1210 13 14

15 16 17 18 19

20 21 22 23 24

w

n
w

N

N

n
w

w

Figure 5: Tiles output by Stage S2 (solid), by Stage S1 (dashed) and Stage S0 (dotted). Numbers
indicate the value of k in Tiles τk,ℓ, for ℓ ∈ {0, 1, 2}.

The following sequence of lemmas examine the size of τk,ℓ for ℓ > 0 and lead to Theorem 8, the
main result of this section. Before we proceed, recall that γ(A) is a w-contraction of set A and that
n
w

= ρ is an integer. The results of this section hold for up to ρ+1 stages. Therefore, the maximum
stage index ℓ is ρ.

We consider the following six (non-disjoint) cases for Tiles τ(x,y),ℓ: (a) x = 0, (b) 1 ≤ x < ξ − 1,
(c) x = ξ − 1, (d) y = 0, (e) 1 ≤ y < ξ − 1, and (f) y = ξ − 1.

Case x = 0: Here Tile τ(0,y),ℓ is one of the top row of tiles and its top edge coincides with the image
border.

81

Pipelined Execution of Windowed Image Computations

Lemma 2 For 0 ≤ ℓ ≤ ρ and 0 ≤ y < ξ, Tile τy,ℓ has a height of n − wℓ.

Proof: For 0 ≤ ℓ ≤ ρ and 0 ≤ y < ξ, let tile τy,ℓ correspond to integer g = ξℓ + y. That is,
0 ≤ g < (ρ + 1)ξ enumerates tiles in the following order.

τ0,0, τ1,0, · · · , τξ−1,0
︸ ︷︷ ︸

τy,0

, τ0,1, τ1,1, · · · , τξ−1,1
︸ ︷︷ ︸

τy,1

, · · · , τ0,ℓ, τ1,ℓ, · · · , τξ−1,ℓ
︸ ︷︷ ︸

τy,ℓ

, · · · , τ0,ρ, τ1,ρ, · · · , τξ−1,ρ
︸ ︷︷ ︸

τy,ρ

We proceed by induction on g ≥ 0. By Lemma 1, τ0,0 has height n = n − w · 0 (base case).
Assuming the lemma to hold for any 0 ≤ g < (ρ + 1)ξ − 1, consider the case of g + 1 that
corresponds to tile τy,ℓ (say). Figure 6 illustrates the situation. By the induction hypothesis, all

τi, l

y

U
i = 0

y
U
i = 0

τi, l

−1

w

image border

n−wl

−1

τy, l

Figure 6: An illustration of the proof of Lemma 2.

tiles τi,ℓ−1 (if they exist) have a height of n−w(ℓ−1). Consider the contraction γ

(
y
⋃

i=0

τi,ℓ−1

)

.

Since the top of

y
⋃

i=0

τi,ℓ−1 touches the image boundary, the contraction reduces its height by

w only on the bottom edge. Thus, γ

(
y
⋃

i=0

τi,ℓ−1

)

has a height of n − w(ℓ − 1) − w = n − wℓ.

Again by the induction hypothesis, tiles τi,ℓ (for 0 ≤ i < y) have a height of n − wℓ as well.

Since, τy,ℓ = γ

(
y
⋃

i=0

τi,ℓ−1

)

−
y−1
⋃

i=0

τi,ℓ, the tile corresponding to g +1, namely τy,ℓ, has a height

of n − wℓ.

Case 1 ≤ x < ξ − 1: Consider any tile τ(x,y),ℓ, with x > 1. Observe that tile τ(x−1,y),ℓ (directly
above τ(x,y),ℓ) has already been received by Stage Sℓ.

Lemma 3 For 0 ≤ ℓ ≤ ρ, 1 ≤ x < ξ − 1, and 0 ≤ y < ξ, Tile τ(x,y),ℓ has a height of n and
spans rows xn − wℓ and (x + 1)n − wℓ − 1.

Proof: Consider any τk,ℓ = τ(x,y),ℓ with x ≥ 1. Let τ(x,y),ℓ correspond to an integer g =
(ρ + 1)ξ(x − 1) + ξℓ + y; it can be verified that 0 ≤ g < (ρ + 1)ξ(ξ − 2). We will proceed by
induction on g.

The base case with g = 0 corresponds to the tile τ(1,0),0. Since ℓ = 0, the height of the tile
is n (by Lemma 1). Also since Tile τ(0,0),0 (that lies directly above τ(1,0),0) spans rows 0 to
n − wℓ − 1 = n − 1 (Lemma 2), Tile τ(1,0),0 spans rows n and 2n− 1, as required.

Assume the lemma to hold for any 0 ≤ g < (ρ + 1)ξ(ξ − 2)− 1 and consider the case of g + 1.
Let this value of g correspond to tile τk,ℓ = τ(x,y),ℓ. Let τk′,ℓ = τ(x−1,y),ℓ be the tile directly
above τk,ℓ. Figure 7 illustrates this case.

82

International Journal of Networking and Computing

xn−wl−n

xn−wl

 −1τ k, l τi, l−1U
i = 0

k

τk, l

k

τi, lU
i = 0

τk’, l image border

w

−1

Figure 7: An illustration of the proof of Lemma 3.

Again τk,ℓ = γ

(
k⋃

i=0

τi,ℓ−1

)

−
k−1⋃

i=0

τi,ℓ. The height of τk,ℓ is bounded above by the lower border

of τk′,ℓ. By the induction hypothesis, τk′,ℓ spans xn − wℓ − 1. Therefore τk,ℓ must have an
upper border on row xn − wℓ as required. As a result of a w-contraction, the lower border of

τk,ℓ is w units above the lower border of

k⋃

i=0

τi,ℓ−1; specifically, it must be w above the lower

border of those τi,ℓ−1’s that have the form τ(x,y′),ℓ−1. By the induction hypothesis, these tiles
have a lower border at (x +1)n−w(ℓ− 1)− 1. Consequently, the lower border of τk,ℓ must be
at (x + 1)n − w(ℓ − 1) − 1 − w = (x + 1)n − wℓ − 1.

In summary τk,ℓ spans n rows from xn−wℓ to (x + 1)n−wℓ − 1, as required to complete the
proof.

Case x = ξ − 1: This includes the last row of tiles of the image.

Lemma 4 For 0 ≤ ℓ ≤ ρ and 0 ≤ y < ξ, Tile τ(ξ−1,y),ℓ has a height of n + wℓ.

Proof: Since the tiles are the last row of tiles, their lower border coincides with the image
border. Consequently, the contraction does not reduce the height. Thus, each of these tiles
τ(ξ−1,y),ℓ ends at the last row of the image, namely N − 1 = nξ − 1, and starts at row
(ξ−1)n−wℓ (immediately after tile τ(ξ−2,y),ℓ (see Lemma 3)). Thus the height of tile τ(ξ−1,y),ℓ

is nξ − 1 − ((ξ − 1)n − wℓ) + 1 = n + wℓ.

Cases y = 0, 1 ≤ y < ξ − 1 and y = ξ − 1: These cases are analogous to the first three cases.
The situation of the y = 0 case is shown in Figure 8. Notice that the hatched portion of this
figure is not relevant in determining the width of τk,ℓ, which make this analogous to the x = 0
case shown in Figure 6. The 1 ≤ y < ξ − 1 and y = ξ − 1 cases similarly correspond to the
1 ≤ x < ξ − 1 and x = ξ − 1 cases. Therefore, we have the following results that correspond
to Lemmas 2, 3 and 4.

Lemma 5 For 0 ≤ ℓ ≤ ρ and 0 ≤ x < ξ, Tile τ(x,0),ℓ has a width of n − wℓ.

83

Pipelined Execution of Windowed Image Computations

τk, l
k

τi, lU
i = 0

τi, l−1U
i = 0

k

w image border

−1

n−wl

Figure 8: An illustration of the y = 0 case.

Lemma 6 For 0 ≤ ℓ ≤ ρ, 0 ≤ x < ξ, and 1 ≤ y < ξ − 1, Tile τ(x,y),ℓ has a width of n and
spans columns yn − wℓ and (y + 1)n − wℓ − 1.

Lemma 7 For 0 ≤ ℓ ≤ ρ and 0 ≤ x < ξ, Tile τ(x,ξ−1),ℓ has a width of n + wℓ.

The following theorem which gives the tile sizes, is a direct consequence of all the results developed
in this section so far.

Theorem 8 For any 0 ≤ ℓ ≤ ρ and any 0 ≤ x, y < ξ, Tile τ(x,y),ℓ is an (n + αℓ) × (n + βℓ) array,
where

• α = −w, for x = 0

• α = w, for x = ξ − 1

• β = −w, for y = 0

• β = w, for y = ξ − 1

• α = β = 0, for all 0 < x, y < ξ − 1

From Theorem 8 and Assumption 1 the “raw time” needed for Stage Sℓ to complete various
iterations is shown in the table of Figure 9. For example, Theorem 8 states that τ(0,0),ℓ is an

(n − wℓ) × (n − wℓ) tile. So |τ(0,0),ℓ| = (n − wℓ)2 = n2
(
1 − wℓ

n

)2
= n2

(

1 − ℓ
ρ

)2

. By Assumption 1,

the raw time needed to process τ(0,0),ℓ is
(

1 − ℓ
ρ

)2

. It is this quantity that is shown in entry (0, 0)

of the table in Figure 9.

4.2 Modified Iteration Times

An ideal pipeline has the same delay in each stage. This is clearly not the case for a windowed
computation (see Figure 9). To better balance out the processing times across stages, one could
reapportion elements across adjacent tiles within a stage.

84

International Journal of Networking and Computing

y = 0 1 ξ − 2 ξ − 1

x = 0

(

1 − ℓ

ρ

)2

1 − ℓ

ρ
· · · 1 − ℓ

ρ
1 −

(
ℓ

ρ

)2

1 1 − ℓ

ρ
1 · · · 1 1 +

ℓ

ρ

2 1 − ℓ

ρ
1 · · · 1 1 +

ℓ

ρ

...
...

... · · ·
...

...

ξ − 2 1 − ℓ

ρ
1 · · · 1 1 +

ℓ

ρ

ξ − 1 1 −
(

ℓ

ρ

)2

1 +
ℓ

ρ
· · · 1 +

ℓ

ρ

(

1 +
ℓ

ρ

)2

Figure 9: Raw iterations times for Stage Sℓ. Entry (x, y) represents the time for Sℓ to generate
τ(x,y),ℓ. Entries in red indicate that a portion of the tile is processed with the next tile (shown in
green).

For any Stage Sℓ, and any tile index 0 ≤ k < ξ2 − 1, consider tiles τk,ℓ and τk+1,ℓ of sizes
s1 and s2, respectively. The processing of q ≤ s1 elements of τk,ℓ can be deferred to the
next tile τk+1,ℓ with the use of q additional memory. The new sizes of τk,ℓ and τk+1,ℓ are
s1 − q and s2 + q, respectively.

Consider Tiles τ(x,ξ−1),ℓ (where 1 ≤ x < ξ − 1) of Stage Sℓ (indicated in red in Figure 9). Defer
n2ℓ
ρ

elements of each of these tiles to the next tiles (indicated in green in Figure 9). The additional

memory of nℓ
ρ

≤ n required for this is quite modest considering that n2 space is needed for the initial
tile. The new “modified iteration times” are shown in Figure 10.

Initially as we consider the z ≤ ρ case in Section 6.1, we will use the times from Figure 10. Later
when we consider the z ≥ ρ case in Section 6.2, we will make further modifications to stage Sρ.

5 Pipelining Time

So far, we have developed results for the amount of time each stage takes to individually process
a tile. In this section we develop some preliminary results for the time needed to run the image
through the pipeline. The results of this section are general and apply to any pipeline; therefore,
they may be of independent interest. Subsequently in Section 6, we will apply the results of this
section to the image pipeline.

Recall that tk,ℓ denotes the time for Stage Sℓ to complete iteration k. By Assumption 1, tk,0 = 1,

for all k. Let Tk,ℓ be the earliest time when Sℓ can begin iteration k. Clearly Tk,0 =

k−1∑

u=0

tu,0 = k as

the the first stage S0 does not wait on any other stage. Similarly, since iteration 0 of Sℓ can start

immediately after iteration 0 of Sℓ−1 has been completed, we have T0,ℓ =

ℓ−1∑

v=0

t0,v. For k, ℓ > 0,

Stage Sℓ can start on iteration k after (a) Sℓ has completed iteration k − 1 and (b) after Sℓ−1 has
sent it τk,ℓ−1. Thus,

Tk,ℓ = max {Tk−1,ℓ + tk−1,ℓ , Tk,ℓ−1 + tk,ℓ−1} (1)

85

Pipelined Execution of Windowed Image Computations

y = 0 1 ξ − 2 ξ − 1

x = 0

(

1 − ℓ

ρ

)2

1 − ℓ

ρ
· · · 1 − ℓ

ρ
1 −

(
ℓ

ρ

)2

1 1 − ℓ

ρ
1 · · · 1 1

2 1 1 · · · 1 1

...
...

... · · ·
...

...

ξ − 2 1 1 · · · 1 1

ξ − 1 1 +
ℓ

ρ
−
(

ℓ

ρ

)2

1 +
ℓ

ρ
· · · 1 +

ℓ

ρ

(

1 +
ℓ

ρ

)2

Figure 10: Modified iterations times for Stage Sℓ. Entry (x, y) represents the time for Sℓ to generate
τ(x,y),ℓ.

Special cases of this recurrence (that are useful for the problem at hand) can be solved. We need a
few definitions.

Observe that at any given point in time if Sℓ is in iteration k, then nominally Stage Sℓ+1 is in
iteration k − 1 (if it exists).

Definition 5 For any interval [k1, k2] of iterations and Stage Sℓ, we say that Sℓ dominates Sℓ+1

(or Sℓ � Sℓ+1) in [k1, k2] iff for all iterations k1 < k ≤ k2 we have tk,ℓ ≥ tk−1,ℓ+1. Similarly, Sℓ is
dominated by Sℓ+1 (also written as Sℓ � Sℓ+1 or Sℓ+1 � Sℓ) in [k1, k2] iff for all iterations k1 < k ≤ k2

we have tk,ℓ ≤ tk−1,ℓ+1 �

Remarks: (a) When Sℓ is handling τk,ℓ, Stage Sℓ+1 is handling Tile τk−1,ℓ+1. The conditions
tk,ℓ ≥ tk−1,ℓ+1 and tk,ℓ ≤ tk−1,ℓ+1 are simply specifying which of the two stages (if any) stalls the
pipeline.
(b) Note that the definitions bound k so that both k, k − 1 ∈ [k1, k2]. Thus, even if tk1,ℓ < tk1−1,ℓ+1

was true, it would not violate the condition for Sℓ � Sℓ+1 in [k1, k2]. Therefore, in asserting
Sℓ � Sℓ+1 or Sℓ+1 � Sℓ in [k1, k2], we may assume any convenient value for tk1−1,ℓ+1 and tk2+1,ℓ−1.

Recall that Tk,ℓ is the time when Stage Sℓ starts on Tile τk,ℓ. This starting time assumes that
all ξ2 tiles will traverse the stage. In the following results we will consider running a subset of tiles
from interval [k1, k2] on Sℓ. To capture this idea we use the notation T k1

k,ℓ to indicate that the time

starts from tile τk1,ℓ (rather than τ0,ℓ). In this notation Tk,ℓ = T 0
k,ℓ.

We now develop some results for processing subsets of tiles when the pipeline stages have domi-
nance relationships. In the following, we assume the pipeline to have z stages, S0, S1, · · · , , Sz−1.

Lemma 9 Let Sv � Sv+1 in [k1, k2], for all 0 ≤ v < z − 1 and 0 ≤ k1 ≤ k2 < ξ2. Then for
k1 ≤ k ≤ k2 and 0 ≤ ℓ < z,

T k1

k,ℓ =
k−1∑

u=k1

tu,0 +
ℓ−1∑

v=0

tk,v

Proof: Because of the given dominance relationship, we have tk,ℓ ≥ tk−1,ℓ+1. We proceed by

induction on k+ℓ ≥ k1. For the base case we observe that T k1

k1,0 = 0 =

k1−1∑

u=k1

tu,0 +
−1∑

v=0

tk1,v. Assuming

86

International Journal of Networking and Computing

the lemma to hold for k + ℓ = n, consider the case where k + ℓ = n + 1. By Equation (1) we have

T k1

k,ℓ = max
{

T k1

k−1,ℓ + tk−1,ℓ , T k1

k,ℓ−1 + tk,ℓ−1

}

Applying the induction hypothesis to T k1

k−1,ℓ and T k1

k,ℓ−1 we have

T k1

k,ℓ = max
{

T k1

k−1,ℓ + tk−1,ℓ , T k1

k,ℓ−1 + tk,ℓ−1

}

= max

{
k−2∑

u=k1

tu,0 +

ℓ−1∑

v=0

tk−1,v + tk−1,ℓ ,

k−1∑

u=k1

tu,0 +

ℓ−2∑

v=0

tk,v + tk,ℓ−1

}

= max

{
k−1∑

u=k1

tu,0 +
ℓ∑

v=1

tk−1,v ,

k−1∑

u=k1

tu,0 +
ℓ−1∑

v=0

tk,v

}

= max

{
k−1∑

u=k1

tu,0 +
ℓ−1∑

v=0

tk−1,v+1 ,

k−1∑

u=k1

tu,0 +
ℓ−1∑

v=0

tk,v

}

=

k−1∑

u=k1

tu,0 +

ℓ−1∑

v=0

tk,v

The final step uses the dominance relationship to note that tk,v ≥ tk−1,v+1.

This leads to the following result.

Corollary 10 Let Sv � Sv+1 in [k1, k2], for all 0 ≤ v < z − 1 and 0 ≤ k1 ≤ k2 < ξ2. Then the time

to run all iterations k ∈ [k1, k2] through a z-stage pipeline is

k2∑

u=k1

tu,0 +

z−1∑

v=1

tk2,v.

Proof: The time T to run all the tiles is the time to start the last tile and run it; that is T =

Tk2,z−1 + tk2,z−1. By Lemma 9 we have T =

k2−1∑

u=k1

tu,0 +

z−2∑

v=0

tk2,v + tk2,z−1 =

k2∑

u=k1

tu,0 +

z−1∑

v=1

tk2,v.

Remark: Observe that because of the dominance relationship, earlier stages take more time than
later stages, and later stages have to wait for earlier stages to complete before they can proceed.
Thus, the overall time is the sum of the time needed to run all tiles through S0 (the most dominant
stage) and the time to run the very last tile through the remaining stages after it has traversed S0.

Analogous results exist for a dominance relationship in the reverse direction.

Lemma 11 Let Sv � Sv+1 in [k1, k2], for all 0 ≤ v < z − 1 and 0 ≤ k1 ≤ k2 < ξ2. Then for
0 ≤ k1 ≤ k ≤ k2 < ξ2 and 0 ≤ ℓ < z,

T k1

k,ℓ =

k−1∑

u=k1

tu,ℓ +

ℓ−1∑

v=0

tk1,v

Proof: Because of the given dominance relationship, we have tk,v ≥ tk+1,v−1. As before, we proceed
by induction on k + ℓ ≥ k1. The base case is the same as in Lemma 9. For the induction step,
consider the case where k + ℓ = n + 1. As before, applying the induction hypothesis to T k1

k−1,ℓ and

87

Pipelined Execution of Windowed Image Computations

T k1

k,ℓ−1 we have

T k1

k,ℓ = max
{

T k1

k−1,ℓ + tk−1,ℓ , T k1

k,ℓ−1 + tk,ℓ−1

}

= max

{
k−2∑

u=k1

tu,ℓ +

ℓ−1∑

v=0

tk1,v + tk−1,ℓ ,

k−1∑

u=k1

tu,ℓ−1 +

ℓ−2∑

v=0

tk1,v + tk,ℓ−1

}

= max

{
k−1∑

u=k1

tu,ℓ +
ℓ−1∑

v=0

tk1,v ,

(
k−1∑

u=k1+1

tu,ℓ−1 + tk,ℓ−1

)

+

(
ℓ−2∑

v=0

tk1,v + tk1,ℓ−1

)}

= max

{
k−1∑

u=k1

tu,ℓ +
ℓ−1∑

v=0

tk1,v ,

k−1∑

u=k1

tu+1,ℓ−1 +
ℓ−1∑

v=0

tk1,v

}

=

k−1∑

u=k1

tu,ℓ +

ℓ−1∑

v=0

tk1,v

Again, this translates to the following result for running tiles through all z stages of the pipeline.

Corollary 12 Let Sv � Sv+1 in [k1, k2], for all 0 ≤ v < z − 1 and 0 ≤ k1 ≤ k2 < ξ2. Then, the

time to run all iterations k ∈ [k1, k2] through the z-stage pipeline is

k2∑

u=k1

tu,z−1 +

z−2∑

v=0

tk1,v.

Proof: As before, the time T to run all tiles is T = Tk2,z−1+tk2,z−1 =

k2−1∑

u=k1

tu,z−1 +

z−2∑

v=0

tk1,v + tk2,z−1

=

k2∑

u=k1

tu,z−1 +

z−2∑

v=0

tk1,v.

6 Windowed Computation Time on Pipeline

In this section we put the results of the previous section together to determine the total time needed
to perform the z-stage windowed computation on the N × N image. We begin with the case where
z ≤ ρ = n

w
. Then we show how the z ≥ ρ case can be expressed in terms of the z < ρ case.

6.1 Pipelines with z ≤ ρ Stages

We develop dominance relationships between stages using the iteration times in Figure 10 and then
use Corollaries 10 and 12 to derive running times.

Lemma 13 If z ≤ ρ = n
w

, then Sℓ � Sℓ+1 in [0, ξ − 1], for 0 ≤ ℓ < z − 1.

Proof: We need to prove that for 0 < k ≤ ξ − 1, tk,ℓ ≥ tk−1,ℓ+1, or tk,ℓ − tk−1,ℓ+1 ≥ 0. Note that
since 0 ≤ ℓ < z ≤ ρ ≤ n, we have 0 ≤ ℓ+1

n
≤ 1. We examine three cases.

Observe from Figure 10 that t1,ℓ − t0,ℓ+1 =
(

1 − ℓ
ρ

)

−
(

1 − ℓ+1
ρ

)2

= 1
ρ

+
(

1 − ℓ+1
ρ

)(
ℓ+1
ρ

)

> 0.

For 2 ≤ k ≤ ξ − 2, tk,ℓ − tk−1,ℓ+1 =
(

1 − ℓ
ρ

)

−
(

1 − ℓ+1
ρ

)

= 1
ρ

> 0.

For k = ξ − 1, we have tξ−1,ℓ − tξ−2,ℓ+1 =

(

1 −
(

ℓ
ρ

)2
)

−
(

1 − ℓ+1
ρ

)

= 1
ρ

+ ℓ
ρ

(

1 − ℓ
ρ

)

> 0.

Lemma 14 If z ≤ ρ = n
w

, then Sℓ � Sℓ+1 in [ξ, ξ2 − ξ], for 0 ≤ ℓ < z − 1.

88

International Journal of Networking and Computing

Proof: Again we need to show that tk,ℓ − tk−1,ℓ+1 ≥ 0.

For k = ξ + 1, we have tk,ℓ − tk−1,ℓ+1 = 1 −
(

1 − ℓ+1
ρ

)

= ℓ+1
ρ

> 0.

For ξ + 1 < k < ξ2 − ξ, we have tk,ℓ − tk−1,ℓ+1 = 1 − 1 = 0 ≥ 0.

For k = ξ2 − ξ, we have tk,ℓ − tk−1,ℓ+1 =

(

1 + ℓ
ρ
−
(

ℓ
ρ

)2
)

− 1 = ℓ
ρ

(

1 − ℓ
ρ

)

≥ 0.

Lemma 15 If z ≤ ρ = n
w

, then Sℓ � Sℓ+1 in [ξ2 − ξ + 1, ξ2 − 2], for 0 ≤ ℓ < z − 1.

Proof: Here we need to show that tk,ℓ+1 − tk+1,ℓ ≥ 0. For ξ2 − ξ + 1 ≤ k ≤ ξ2 − 2, we have

tk,ℓ+1 − tk+1,ℓ =
(

1 + ℓ+1
ρ

)

−
(

1 + ℓ
ρ

)

= 1
ρ

> 0.

The last tile, τξ2
−1,ℓ, does not fall in a range with useful dominance properties for the stages.

We now use the above dominance properties with Corollaries 10 and 12 to determine the running
times for tile segments. The following quantities that recur in the derivations in this section are
denoted as shown below:

x1 =

z−1∑

v=1

v

ρ
=

z(z − 1)

2ρ
(2)

x2 =

z−1∑

v=1

v2

ρ2
=

z(z − 1)(2z − 1)

6ρ2
(3)

Corollary 16 If z ≤ ρ, then the time needed for tiles τk (where 0 ≤ k < ξ) to traverse all z stages
is

T1 = ξ + z − 1 − x2.

Proof: From Lemma 13 and Corollary 10, we have the time to be

T1 =

ξ−1
∑

u=0

tu,0 +

z−1∑

v=1

tξ−1,v =

ξ−1
∑

u=0

1 +

z−1∑

v=1

1 − v2

ρ2
= ξ + z − 1 −

z−1∑

v=1

v2

ρ2
= ξ + z − 1 − x2

With Lemma 14 and Corollary 10, we have the following result.

Corollary 17 If z ≤ ρ, then the time needed for tiles τk (where ξ ≤ k ≤ ξ2 − ξ) to traverse all z

stages is

T2 = ξ2 − 2ξ + z + x1 − x2.

Proof: Here

T2 =

ξ2
−ξ
∑

u=ξ

tu,0 +

z−1∑

v=1

tξ2
−ξ,v = ξ2 − 2ξ + 1 +

z−1∑

v=1

(

1 +
ℓ

ρ
− ℓ2

ρ2

)

= ξ2 − 2ξ + z + x1 − x2

With Lemma 15 and Corollary 12, we have the following result.

Corollary 18 If z ≤ ρ, then the time needed for tiles τk (where ξ2 − ξ < k ≤ ξ2 − 2) to traverse all
z stages is

T3 = ξ − 3 +
(ξ − 3)(z − 1)

ρ
+ z + x1.

89

Pipelined Execution of Windowed Image Computations

Proof: Here

T3 =

ξ2
−2
∑

u=ξ2−ξ+1

tu,z−1 +
z−2∑

v=0

tξ2−ξ+1,v =

ξ2
−2
∑

u=ξ2−ξ+1

(

1 +
z − 1

ρ

)

+
z−2∑

v=0

(

1 +
v

ρ

)

= (ξ − 3)

(

1 +
z − 1

ρ

)

+

z−1∑

v=0

(

1 +
v

ρ

)

= ξ − 3 +
(ξ − 3)(z − 1)

ρ
+ z + x1

Lemma 19 The time needed for the last tile to run through all z tiles is

T4 = z + 2x1 + x2.

Proof: Here we have

T4 =
z−1∑

v=0

tξ2−1,v =
z−1∑

v=0

(

1 +
ℓ

ρ

)2

= z + 2x1 + x2

Putting the results of Corollaries 16, 17, 18 and Lemma 19 together, we have the following result.

Theorem 20 Let integers z, n, w satisfy 1 ≤ z ≤ n
w

. Then a sequence of z windowed computations
of size w for an N × N image can be run on a z-stage, n2-bandwidth pipeline in at most

N2

n2
[1 + δ0] steps,

where

δ0 =
(4n2 + wN)z + 2wnz2

N2
.

Proof: The total time is the sum of the times in Corollaries 16, 17, 18 and Lemma 19. That is,

T = T1 + T2 + T3 + T4 = ξ2 + 4(z − 1) + (ξ−3)(z−1)
ρ

+ 4x1 − x2. Substituting the values for x1 and

x2 from Equations (2) and (3) and simplifying we have

T = ξ2 +

(
z − 1

ρ

)(

4ρ + (ξ − 3) + 2z − z(2z − 1)

6ρ

)

≤ ξ2 +

(
z

ρ

)

(4ρ + ξ + 2z).

By substituting ξ = N
n

and ρ = n
w

we have

T ≤ ξ2 +

(
z

ρ

)

(4ρ + ξ + 2z) =
N2

n2

[

1 +
(4n2 + wN)z + 2wnz2

N2

]

=
N2

n2
[1 + δ0]

Remarks: Since each input Tile τk,0 requires unit time and there are z windowed computations per

tile, the sequential time (on a 1-stage pipeline) needed for the computation is zN2

n2 . Clearly, a lower

bound for the computation time on a z-stage pipeline is N2

n2 , the total number of input tiles. The

pipeline time of N2

n2 (1 + δ0) implies a speedup of z
1+δ0

with an overhead of δ0. Typically N is quite
large (around 3000 for a 10 Mpixel image that is quite routine in digital cameras). A large modern
chip like an FPGA has a few hundred high-speed I/O pins. With 625 pins and n =

√
625 = 25,

assume that 625 pixels can be input in unit time. The window-size w is typically quite small. For
example, the Scale Invariant Feature Transform algorithm as originally proposed by Lowe [7] uses
w ≤ 3 in most stages. With N = 3000, n = 25 and w = 3, we have δ0 ≈ 0.0012z + 0.00017z2. With
z ≈ n

w
= 3, the overhead δ0 = 0.4% is quite small.

By substituting z = ρ in Theorem 20 we have the following result.

Corollary 21 All ξ2 tiles can be processed in a ρ-stage pipeline in at most

ξ2 + ξ + 6ρ steps.

90

International Journal of Networking and Computing

6.2 Pipelines with z > ρ Stages

We now address the case where the pipeline has z > ρ stages. The last stage in a (ρ + 1)-stage
pipeline is Stage Sρ. By substituting ℓ = ρ in Figure 10 we have the table shown in Figure 11(a).
Observe first that this table shows the sizes of tiles available (or their processing times) at successive

y = 0 1 ξ − 2 ξ − 1 0 1 ξ − 2 ξ − 1 0 1 ξ − 2 ξ − 1

x = 0 0 0 · · · 0 0 1 1 · · · 1 1 1 1 · · · 1 1

1 0 1 · · · 1 1 1 1 · · · 1 1 1 1 · · · 1 1

2 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · · 1 1

...
...

... · · ·
...

...
...

... · · ·
...

...
...

... · · ·
...

...

ξ − 2 1 1 · · · 1 1 2 2 · · · 4 0 1 1 · · · 1 1

ξ − 1 1 2 · · · 2 4 0 0 · · · 0 0 1 1 · · · 1 1

(a) (b) (c)

�� @@R

�
�	

�
�	

�
�	

@
@R

A
AAU

Figure 11: Running tiles on Stage Sρ. Part (a) shows the modified iteration times for Sρ. Part (b)
shows iteration times assuming a ξ + 1 delay. Part (c) shows delayed iteration times with some tile
times reapportioned across iterations. The arrows in part (b) show where partial tiles are reassigned.
The numbers within boxes show the times corresponding to the reassigned partial tiles.

iterations. If these entries are shifted back by ∆ positions in row-major order, then the new table
will represent the sizes of tiles available after a delay of ∆. Figure 11(b) shows the same table with
a delay of ξ + 1; the colors indicate corresponding entries.

As noted in Section 4.2, if a tile is available at a particular time, then it can be considered to
be available at a future time, provided there is sufficient space to save the information until needed.
Now consider, the first ξ − 1 tiles in row ξ − 2 of Figure 11(b). Each of the first ξ − 2 of these
has a size of 2 (shown in red) and the last one has size 4 (shown in green). For each of the “red
tiles,” move one unit to an unoccupied position of Figure 11(b) as indicated by the arrows. For the
“green tile,” move three units to positions indicated by the three arrows. These movements entail
an increase in the storage requirement of Sρ by about 2ξ. As we show in Section 7, this requirement
is quite small compared to the requirement for the normal operation of the pipeline.

The movement of tile segments shown in Figure 11(b) results in the tile sizes shown in Fig-
ure 11(c); the boxed entries denote the units moved along the arrows of Figure 11(b). Clearly, the
table in Figure 11(c) (in which all tiles have unit size) is the same as the table for τk,0 (see Figure 3).

Thus at stage Sρ, the tiles are identical to those of S0 except that there is a ξ + 1 delay before
stage Sρ starts. In general Stages Sℓ and Sρ+ℓ have identical distribution of tiles, except that stage
Sρ+ℓ incurs an additional ξ + 1 delay, compared to Stage Sℓ.

Now we consider the problem of running the computation on z > ρ stages. Let z = qρ + r, for

0 ≤ r < ρ. The first tile, τ0, will run normally for the first ρ stages, requiring

ρ−1
∑

v=0

(

1 − v

ρ

)

=
ρ + 1

2

steps. Then after an additional ξ + 1 delay, the process repeats in the next ρ stages. The last set of
r stages completes as indicated in Theorem 20 and its time is upper bounded by Corollary 21.

91

Pipelined Execution of Windowed Image Computations

Thus assuming ρ ≥ 3, the overall time is at most

q

(
(ρ + 1)

2
+ (ξ + 1)

)

+ ξ2 + ξ + 6ρ ≤ z

ρ
(ρ + ξ) + ξ2 + ξ + 6ρ ≤ ξ2

(

1 +

(
1

ξ
+

6ρ

ξ2
+

z

ξ2
+

z

ρξ

))

Putting this all together and substituting for ρ = n
w

and ξ = N
n

we have the following theorem.

Theorem 22 A sequence of z windowed computations of size w for an N ×N image can be run on
a z-stage, n2-bandwidth pipeline in

N2

n2

(

1 +

(
n

N
+

6n3

wN2
+

zw

N
+

zn2

N2

))

time.

Let δ =
(

n
N

+ 6n3

wN2 + zw
N

+ zn2

N2

)

. So the total time is N2

n2 (1 + δ). As noted earlier, the pipeline

time of N2

n2 (1 + δ) implies a speedup of z
1+δ

with an overhead of δ.

0 5 10 15 20 25 30

overhead

δ

pipeline depth z

1%

2%

3%

4%

5%

6%

n = 10

n = 20

n = 30

n = 40

Figure 12: Overhead δ as a function of pipeline depth z. The graph assumes a tile size of n = 25
and illustrates several values of image size N .

The expression of Theorem 22 is a function of N, n, w, z. We now discuss the impact of these
problem parameters. The quantity w indicates the window size of the image processing algorithm
in question; each pixel uses a (2w + 1) × (2w + 1) window around it. The value of w is fixed by
the algorithm and is typically quite small (around 3). As noted earlier, the values N = 3000 and
n = 25 are quite reasonable under current technology. In the following discussion, we will often
fix N and n at these values. With w = 3 as discussed above, the expression for the overhead

δ =
(

n
N

+ 2n3

N2 + 2z
N

+ zn2

N2

)

can be written as follows:

δ = n

(
1

N
+ 2

(n

N

)2
)

+ z

(
3

N
+
(n

N

)2
)

< (n + z)

(
3

N
+ 2

(n

N

)2
)

92

International Journal of Networking and Computing

Clearly for a fixed n and N , the overhead δ grows linearly with z. If n ≈
√

3N
2 (that is, 3

N
≈ 2

(
n
N

)2
),

then δ ≈ 6(n+z)
N

. With N ≫ 6, this implies a relatively weak dependence of δ on z. That is,

the overhead does not increase much for deep pipelines. On the other hand, if n ≫
√

3N
2 , then

δ ≈ 2(n + z)
(

n
N

)2
, which could be somewhat large for small N or large n. Figures 12 and 13

illustrates this.

0 5 10 15 20 25 30

overhead

δ

pipeline depth z

1%

2%

3%

4%

5%

6%

n = 10

n = 20

n = 30

n = 40

Figure 13: Overhead δ as a function of pipeline depth z. The graph assumes an image size of
N = 3000 and illustrates several values of tile size n.

The number of stages z in the pipeline, to some extent, depends on the algorithm and the
operation granularity. For example the SIFT algorithm [7] has four main stages, some of which
can be further decomposed into “substages.” For instance, the “extrema detection” phase of SIFT
consists of a sequence of Gaussian blurrings (each of which is a windowed computation). Similarly
other stages can be decomposed into substages. Thus the value of z used for SIFT could range from
1 (non-pipelined) to around 20 (with somewhat fine-grained operations). The decomposition of the
algorithm into stages must balance processing times across stages to keep the computation flowing
smoothly through the pipeline. For a given algorithm, clearly, a deep pipeline (with a large value
of z) reduces the processing time of each stage and tends to produce a higher speedup. However,
large values of z could increase inefficiencies caused by stalls between pipeline stages. Under current
technology, N ≫ n > w. As noted earlier, the values N = 3000, n = 25 and w = 3, are quite
reasonable under current technology. For these values, δ ≈ 0.012 + 0.0012z. This sustains over 30
stages with an overhead of less than 5%. Put differently, with z = 30, the speedup drops from the
ideal of 30 to only about 0.96 × 30 = 28.8. Figures 14 and 15 illustrate the drop in efficiency as z

increases.

From Figures 12 and 14 it is clear that the pipeline is more efficient (smaller overhead) as the
image size N increases (relative to tile size n). Figures 13 and 15 indicate that a larger tile size
(relative to image size N) decreases efficiency. This seems to favor small tile sizes for a fixed image

size. However, the absolute time needed to process the image is N2

n2 (1 + δ), so a large tile size has
the benefit of smaller pipeline time (albeit with higher overheads). To get a better sense of the effect

93

Pipelined Execution of Windowed Image Computations

0

40%

30%

20%

10%

50%

overhead

δ

Image size N

500 1000 1500 2000 2500 3000 3500 4000

z = 1

z = 10

z = 20

z = 30

Figure 14: Overhead δ as a function of the image size N . The graph assumes a tile size of n = 25
and illustrates several values of pipeline depth z.

of tile size we look at the overhead δ in terms of ξ = N
n

. Observe that

δ =
1

ξ

(

1 +
zw

n

)

+
1

ξ2

(
6n

w
+ z

)

In general, N ≫ n and so ξ ≫ 1. Therefore, the coefficient of n in the above expression is much
smaller than that of 1

n
. Consequently, δ decreases with n (at small values of n) at a much faster rate

than it increases with n (at higher values of n). Figure 16 illustrates this. Observe that the overhead
is nearly constant for large values of n, particularly for large values of ξ. That is, the small loss of
efficiency in increasing tile size (by increasing I/O bandwidth) is more than amply compensated by
the increase in speed.

Finally, we observe that our assumption of unit time for n2 operations requires the computation
in each stage to be suitably small, which requires z to be large. Our results show that a large value
of z can be supported quite efficiently.

7 Memory Requirement

In this section we briefly analyze the memory requirement per stage. Tiles have a maximum size of
around 4n2 = O(n2). Figure 17 shows the amount of space required by a stage to hold data needed
for the current and future iterations. The medium shaded region represents the output tile and the
dark regions represent the portion of the image received, but not yet processed. These must be
saved in memory.

The total size of the memory needed is

wq + (w + b)(w + a) + w(N − q − w − b) = wN + wa + ab = Θ(wN + n2);

we have used the fact that ab = O(n2). The additional memory needed for reapportioning tiles (see

Section 4.2 and 6.2 across iterations is O
(

ℓ
ρ

+ ξ
)

= O(ξ) = O
(

N
n

)
, which is insignificant compared

to the Θ(wN + n2) space needed for normal operation.

94

International Journal of Networking and Computing

0

40%

30%

20%

10%

50%

overhead

δ

Image size N

500 1000 1500 2000 2500 3000 3500 4000

z = 1

z = 10

z = 20

z = 30

Figure 15: Overhead δ as a function of tile size n. The graph assumes an image size of N = 3000
and illustrates several values of pipeline depth z.

With N = 4K, w = 3, n = 32, and with the assumption that each pixel conservatively requires
8 bytes, the memory requirement per stage is less than 107K bytes.

8 Concluding Remarks

In this paper we have analyzed the running time for a sequence of windowed computations on a
pipeline and shown that quite a deep pipeline is feasible under current technology. While particular
application instances may differ from the assumptions made for our analysis, this work provides a
good basis for optimizing these instances.

We have primarily dealt with the time and memory analysis of the pipeline. These could also
be starting points for pipeline tuning. The stages could be designed and clocked independently to
support a uniformity in computing and communication speeds across stages. For example, one stage
could use a multicore chip whereas another, representing a less compute-intensive stage, may be
implemented on a slower platform (possibly a lower clock rate or a uniprocessor chip). We have
assumed a row-major enumeration of tiles. It can be shown that our results also hold for the snake-
like row-major ordering. (It is important for adjacent tiles in the order to be spatially proximate.
This facilitates output of these tiles from the camera through a scan path.) Is it possible for other
input orders (such as a space-filling curve) to allow better performance? The input/output protocol
we have assumed allows for tile sizes to vary across stages and over the image. This lack of uniformity
could have disruptive effects in an implementation. One way is to fix input/output sizes and wait
to produce an output tile until all necessary input pixels have been received. Some of these issues
have been addressed in Phaneendra [10].

References

[1] S. Asano, T. Maruyama and Y. Yamaguchi, “Performance Comparison of FPGA, GPU and CPU
in Image Processing,” Proc. Field Programmable Logic and Applications (FPL), 2009, pp. 126–

95

Pipelined Execution of Windowed Image Computations

= 200ξ
= 100ξ

= 50ξ

= 25ξ

0

overhead

Tile size n

10%

20%

30%

δ

40%

50%

10 20 30 40 50 60

Figure 16: Overhead δ as a function of tile size n. The graph assumes an a pipeline size of z = 20
and illustrates several values of ξ = N

n
.

131.

[2] P. M. Athanas and A. L. Abbott, “Real-Time Image Processing on a Custom Computing Plat-
form,” IEEE Computer, 1995, pp. 16–24.

[3] A. Benoit, U. V. Catalyurek, Y. Robert and E. Saule, “A Survey of Pipelined Workflow Schedul-
ing: Models and Algorithms,” LIP Research Report RR-LIP-2010-28, École Normale Supérieure
de Lyon, France, 2010.

[4] A. C. Bovik, The Essential Guide to Image Processing, Academic Press (Elsevier), San Diego,
2009.

[5] B. A. Draper, J. R. Beveridge, A. P. W. Böhm and M. Chawathe, “Accelerated Image Processing
on FPGAs,” IEEE Trans. Image Processing, vol. 12, no. 12, Dec. 2003, pp. 1543–1551.

[6] M. Jordan, “A Configurable Decoder for Pin Limited Applications,” Master’s Thesis, Dept. of
Electrical and Computer Eng., Louisiana State University, 2006.
http://etd.lsu.edu/docs/available/etd-08192006-134649/

[7] D. G. Lowe, “Object recognition from local scale-invariant features,” Proc. 7th Int. Conf. Com-
puter Vision, vol. 2, pp. 1150–1157, 1999.

[8] I. K. Park, N. Singhal, M. H. Lee, S. Cho and C. W. Kim, “Design and Performance Evaluation of
Image Processing Algorithms on GPUs,” IEEE Trans. Parallel and Distributed Systems, vol. 22,
issue 1, pp. 91–104.

[9] J. R. Parker, Algorithms for Image Processing and Computer Vision, (2nd edition), Wiley Pub-
lishing inc. Indianapolis, 2011.

[10] P. Vinukonda, “A Study of the Scale Invariant Feature Transform on a Parallel Pipeline,”
Master’s thesis, Electrical and Computer Engg. LSU, Baton Rouge.
http://etd.lsu.edu/docs/available/etd-04272011-105721/

96

International Journal of Networking and Computing

τi, l−1U
i = 0

k

k

τi, lU
i = 0

w w b

a

q

N

image border

−1

Figure 17: Memory requirement in processing an a× b tile. There must be enough memory to hold
the portions shaded dark and medium.

[11] M.-S. Seok, I.-S. Song, S. Jin and J. W. Jeon, “A Real-time Window-based Image Processing
Architecture using a Mapping Table,” Proc Control Automation and Systems, 2010, pp. 1678–
1681.

[12] N. Srivastava, J. L. Trahan, R. Vaidyanathan and S. Rai, “Adaptive Image Filtering using
Run-Time Reconfiguration,” Proc. Reconfigurable Architectures Workshop, Int. parallel and Dis-
tributed Processing Symposium, 2003. DOI: 10.1109/IPDPS.2003.1213332

[13] R. Weerasekera, D. Pamunuwa, L.-R. Zheng and H. Tenhunen, “Two-Dimensional and Three-
Dimensional Integration of Heterogeneous Electronic Systems Under Cost, Performance, and
Technological Constraints,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 28, issue 8, pp. 1237–1250, August 2009.

[14] Xilinx Inc., “Virtex-5 User Guide,”
http://direct.xilinx.com/bvdocs/userguides/ug190.pdf.

[15] S. W. Yoon, D. W. Yang, J. H. Koo, M. Padmanabhan and F. Carson, “3D TSV Processes and
its Assembly/Packaging Technology,”Proc. Int. Conf. 3D System Integration, pp. 1–5, 2009.

[16] I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko
and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing ,” IEEE J. Solid-State
Circuits, vol. 45, issue 1, pp. 235–248, 2009.

97

