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Abstract

Since embedded systems are used for various purposes at a variety of places, their security,
reliability, and availability are important concerns. Virtualization technology has been used
for a long time in order to improve the security of systems, and the other advanced features
recently become available also to improve the reliability and/or availability. In order to apply
virtualization technology to systems, the detailed analysis of target processor architectures is
required. Although such analysis was performed for x86 architecture, it is not available for
the ARM architecture, which is the most widely used processor architecture for embedded
systems. This paper focuses on such analysis of the ARM processor architecture. We also
present the implementation details of a virtual machine monitor (VMM) based on the analysis.
We implemented a VMM, called SIVARM, for the ARM architecture to perform and verify
the analysis of its ability to support a VMM. We successfully booted Linux on SIVARM and
performed the evaluation by executing several benchmark programs on the ARM 1136JF-S
processor. It verifies the analysis of the sensitive instructions and also enables the analysis of
the performance impact of the virtualization.

Keywords: Virtual Machine Monitor, ARM Processor Architecture.

1 Introduction

Virtualization technology [10] has been used for a long time in order to improve the security of
systems by executing an operating system (OS) on a virtual machine monitor (VMM) [9, 15]. It
becomes much more common nowadays as virtualization software becomes a commodity on x86
based systems [12]. VMMs can provide more advanced features, such as logging and replay [5],
live migration [6], redundant execution [20], and so on, in order to improve the reliability and/or
availability of systems.

Since embedded systems are used for various purposes at a variety of places, their security,
reliability, and availability are important concerns. In order to apply virtualization technology to
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improve them, the detailed analysis of target processor architectures is required. Although such
analysis was performed for x86 architecture [21], it is not available for the ARM architecture [23],
which is the most widely used processor architecture for embedded systems. While there have been
research projects to develop VMMs on the ARM embedded processor [4, 7, 8, 13, 17], all of them
failed to provide enough and verified analysis performed on real hardware. Therefore, we decided to
perform the analysis by developing our own VMM on the ARM processor that can execute Linux
as its guest OS on real hardware.

This paper focuses on such analysis of the ARM processor architecture. We also present the
implementation details of a VMM based on the analysis. We implemented a VMM for the ARM
architecture to perform and verify the analysis of its ability to support a VMM. We call our VMM
SIVARM, a simple VMM for the ARM architecture, because it is based on the trap and emulation
model to virtualize the ARM processor. Since the trap and emulation model requires the exact
analysis of a target processor architecture, the successful execution of Linux on SIVARM verifies that
our analysis is correct. We successfully booted Linux on SIVARM and performed the evaluation by
executing several benchmark programs on the ARM 1136JF-S processor. It verifies the analysis of the
sensitive instructions and also enables the analysis of the performance impact of the virtualization.
SIVARM provides only a single virtual machine (VM); thus, it can accommodate only a single guest
OS. Although such limitation makes SIVARM unsuitable for practical use, it is very much enough
for the analysis and can rather clarify the performance impact because of its simple configuration.

The rest of this paper is organized as follows. Section 2 describes the related work. Section
3 describes the basics of the ARM architecture, and Section 4 describes its sensitive instructions.
Section 5 describes the design and implementation of SIVARM, and Section 6 describes the experi-
ment and evaluation. Section 7 discusses the issues related to the implementation and limitation of
SIVARM. Finally, Section 8 concludes this paper.

2 Related Work

There have been a few efforts to port Xen [2] to the ARM architecture [8, 13]. These efforts take
the paravirtualization approach [22]; thus, they do not require the precise analysis of the ARM
architecture to realize a VMM on it. While [8] ported Xen to the ARM architecture, it could not
complete the porting until it boots Linux on it. It could merely boot Mini-OS, which is a tiny OS
accompanied with Xen for the testing purpose, on it. Xen ARM [13] completed the porting of Linux,
but it required a lot of the modifications to the Linux kernel. It modified approximately 4500 lines
of the Linux kernel source code. Such a large number of modifications make Xen ARM difficult to
keep up with the version up. In contrast to that, our implementation modified only 81 lines at 48
places that are far less than Xen ARM, and the modifications are straightforward; thus, it is easy
to apply the modifications to the latest kernel source code.

The work to build Choices Hypervisor on the ARM architecture [4] classified the sensitive in-
structions of the ARM architecture since they need to be emulated in the hypervisor layer. It used
the QEMU processor emulator [3] to execute the whole system including the hypervisor and its guest
OS. It modified QEMU to cause a trap when any of the sensitive instructions is executed. Such
modifications change the processor behavior and make it possible to easily catch the execution of
the sensitive instructions; thus, the work does not have to analyze the behavior of each sensitive
instruction, and did not classify them into the privileged and non-privileged sensitive instructions.
There is another ARM hypervisor [17] that took a similar approach to Choices Hypervisor. This
hypervisor interprets the ARM instructions on the fly and translates the sensitive instructions to
the trap instructions; thus, there is no need to distinguish between the privileged and non-privileged
sensitive instructions, either. The classification of the sensitive instructions is required to realize a
VMM using the trap and emulation approach, and this paper classifies them in detail. Moreover,
no experiment results are described in both of the above efforts; thus, they could not verify the
correctness of their classifications of the sensitive instructions. We successfully booted Linux on our
VMM and could execute benchmark programs on real hardware; thus, our classification was verified
by the actual execution of Linux.
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usr/sys
r0
r1
r2
r3
r4
r5
ré
r7 fiq
r8 r8_fiq
r9 r9_fiq
r10 r10_fiq
r11 r11_fiq
12 r12_fiq irq svec und abt
r13 sp r13_fiq r13_irq r13_svc r13_und r13_abt
r4ir r14_fiq r14_irq r14_svc r14_und r14_abt
r15 pc
cpsr
|spsr_fiq| |spsr_i rq| bpsr_svd bpsr_und |spsr_abt

Figure 1: The registers of ARM architecture

KVM/ARM [7] brings a KVM-based virtualization solution to the ARM architecture. It works
only on the Android emulator. The execution of the emulator significantly limits the capability
to analyze the ability to support a VMM. There are at least the following two limitations; 1)
the classification of the sensitive instructions into the privileged and non-privileged ones is not
verified since there is no guarantee that the emulator behaves exactly the same as real hardware
especially for the sensitive instructions, and 2) the execution of the emulator makes it impossible to
analyze the performance impact. We also worked on the analysis of the sensitive instructions and the
development of our VMM on the emulator, and reported the results [25, 26] earlier than KVM/ARM.
We then moved our work on real hardware. Since we completed our work on real hardware, there
are no limitations that the efforts on the emulator imply. We verified the correctness of the sensitive
instructions classification on real hardware, analyzed the performance impact of the virtualization,
and brought a solution to mitigate such impact.

There are several commercial solutions to virtualize the ARM architecture, such as VLX for ARM
by VirtualLogix [27], OKL4 Microvisor by OK Labs [19], MVP by VMware [28], and INTEGRITY
secure virtualization by Green Hills [11]. While these solutions are proprietary and their details are
not available, there is a statement that all of them require paravirtualization [7].

As described above, there have been a number of efforts to realize the virtualization platform of
the ARM architecture. Except for the commercial proprietary solutions, Xen ARM [13] is the only
successful effort that works on real hardware, and all of them including Xen ARM and the commercial
solutions require paravirtualization. Therefore, our work has the significance by presenting the
analysis result of the ARM architecture’s ability to support a VMM through a simple trap and
emulate implementation on real hardware.

3 ARM Architecture

This section summarizes the basics of the ARM architecture, which are necessary to analyze the
ability to realize a VMM on it.

3.1 Processor Modes and Registers

The processor modes of the ARM architecture are composed of the privileged mode (FIQ, IRQ,
SVC, ABT, UND and SYS) and the non-privileged mode (USR). General application programs are
executed in USR. The 5 modes of the privileged mode except for SYS are the exception modes.
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Table 1: The exception types and their corresponding processor modes and high vector addresses

Exception type Mode Vector address
Reset Supervisor | OxFFFF0000
Undefined instructions Undefined | 0xFFFF0004
Software interrupt (SWI) Supervisor | 0xFFFF0008
Prefetch Abort (instruction fetch memory abort) | Abort 0xFFFF000C
Data Abort (data access memory abort) Abort 0xFFFF0010
IRQ (interrupt) IRQ 0xFFFF0018
FIQ (fast interrupt) FI1Q 0xFFFF001C

When an exception is caused, the processor mode changes to the corresponding exception mode
automatically.

The ARM architecture defines 37 registers as depicted in Figure 1. They are composed of the
31 general purpose registers and the 6 program status registers (PSRs). While RO - R12 registers
are used for general use, their usage is defined by ARM Thumb Procedure Call Standard (ATPCS)
[24] as follows. RO - R3 and R12 are used as the general scratch registers. R13 is the stack pointer
(SP). R14 is the link register (LR). R15 is the program counter (PC). The current program status
register (CPSR) holds the current PSR, and the saved program status resister (SPSR) holds the
value of the CPSR saved when an exception is caused. The PSR contains condition the code flags,
interrupt disable bits, and processor mode bits. The ARM architecture monitors and controls the
internal behavior of a processor by using the CPSR.

Fach of the exception modes utilizes several banked registers. When the processor mode changes
to an exception mode, the corresponding banked registers for that mode are used. Linux executes its
kernel in SVC and user processes in USR. When an exception is caused, the corresponding exception
mode is used in the stub code of the exception handler.

3.2 Exception

The ARM architecture defines the 7 exception types. When an exception is caused, the execution
jumps to the static address that corresponds to the caused exception type. The static address is
called an exception vector. There are two locations where the exception vectors are placed. One
starts at 0x0, and the other starts at OxFFFF0000. Those at the first and the latter locations are
called the normal and high vector address, respectively. Table 1 shows the exception types supported
by the ARM architecture, and their corresponding processor modes and high vector addresses.

When an exception is caused, the execution jumps to the corresponding exception vector in the
corresponding exception mode. At the time, the CPSR is automatically saved in the SPSR of the
exception mode, and interrupts are disabled. When the exception handling is finished, the value of
SPSR is restored to the CPSR, and the execution returns to the address saved in the LR.

The following describes how Linux uses the exception mechanism. Since there are only 4 bytes
allocated for each vector address, only a single instruction can be placed for each vector; thus, Linux
places a branch instruction at an exception vector in order to jump to the address of the stub of the
exception handler because Linux needs to handle the different exception types. There is a stub for
each exception type, but the stubs of different exception types are basically the same. The following
shows a stub code:

1 vector_\name:

2 .if \correction

3 sub 1lr, 1lr, #\correction
4 .endif

5 stmia sp, {r0, 1lr}

6 mrs 1r, spsr

7 str 1lr, [sp, #8]

8 mrs r0, cpsr
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9 eor r0, r0O, #(\mode ~ SVC_MODE)
10 msr  spsr_cxsf, r0

11 and 1lr, 1lr, #0xO0f

12 mov r0, sp

13 ldr 1r, [pc, 1lr, 1sl #2]

14 movs pc, 1lr

The exception handler to be invoked is decided based on the processor mode when the exception
is caused. The previous processor mode is saved in the SPSR; thus, the stub reads the SPSR at Line
6. At Line 13, the value of the SPSR is used to choose which exception handler is to be invoked. At
Line 14, the chosen exception handler is then invoked. At this time, the processor mode becomes
SVC. This is done by setting the value based on the CSPR at Line 8 - 10. The value is calculated
by changing the processor mode bits to SVC. Since the MOVS instruction at Line 14 is with the S
suffix, the SPSR set at Line 10 is moved to the CPSR while the execution jumps to the exception
handler decided at Line 13.

3.3 Access Control

The ARM architecture defines a two-stage access control using a domain and an access permission
(AP) bit. The domain is a mechanism that divides a virtual memory space and performs the access
control of divided regions. By using the domain, a part of a shared virtual memory space can be
isolated from the others. The domain access control register (DACR) controls the access to domains.
The DACR stores a domain type for each domain. There are the three domain types, no access,
client, and manager. The no access type denies any access to the domain. In contrast, the manager
type allows all access to the domain. The client type bypasses the access control by a domain.
Instead, the access permission (AP) bit of a page table entry is used for the access control.

Using the AP bit enables the access control for smaller memory spaces than using the domain.
The privilege level of the current processor mode affects the access control when the AP bit is used.

4 Sensitive Instructions

This section describes the sensitive instructions of the ARM architecture. Sensitive instructions are
the instructions that modify the state of system resources and processor modes; thus, the classifica-
tion of the sensitive instructions is a must to develop VMMs on any processor architectures. Since
a VMM needs to emulate such operations, all sensitive instructions have to be privileged and cause
exceptions when executed in user mode [10]. If there are sensitive instructions that do not cause
exceptions, special care must be taken to make them cause exceptions. Sensitive instructions that
cause exceptions when executed in user mode are called privileged sensitive instructions. Those
that do not cause exceptions are called non-privileged sensitive instructions. Table 2 and 3 show
the privileged and non-privileged sensitive instructions, and their details are described below. This
section focuses on the classification of sensitive instructions. The treatment of sensitive instructions
is described later in Section 5.2.

4.1 Co-processor Register Access Instructions

The ARM architecture employs the notion of co-processors to extend the architecture in order to
make it configurable. The co-processors provide important functions to manage system resources.
For example, the MMU is one of them, and controls virtual memory and cache. The MRC, MRRC,
MCR, and MCRR instructions shown in Table 2 are the co-processor register access instructions.
Since these instructions are privileged instructions, they cause the undefined instruction exception
when executed in non-privileged mode; thus, they can be properly emulated by the VMM.
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Table 2: Privileged sensitive instructions

Instruction Operation User mode behavior

MRC, MRRC | Load from a co-processor register | Undefined instruction exception

MCR, MCRR | Store to a co-processor register Undefined instruction exception

Table 3: Non-privileged sensitive instructions

Instruction Operation User mode behavior
MRS (CPSR) | Load from CPSR Executable
MRS (SPSR) | Load from SPSR Unpredictable
MSR (CPSR) | Store to CPSR Disregarded
MSR (SPSR) | Store to SPSR Unpredictable
MOVS Move registers and copy SPSR to CPSR Unpredictable
CPS Change processor mode Disregarded
LDM (2) Load from the specified address to user-mode registers | Unpredictable
LDM (3) LDM (2) and copy SPSR to CPSR Unpredictable
STM (2) Store to the specified address from user-mode registers | Unpredictable
RFE Return from exception Unpredictable
SRS Store return state Unpredictable

4.2 PSR Access Instructions

There are the several instructions that access the PSRs, such as CPSR and SPSR. They are sensitive
instructions since the PSRs maintain the processor state and the state is modified by changing their
values. While their execution must be emulated by the VMM, they require special attention because
they behave differently when executed in non-privileged mode as shown in Table 3. The execution
of MSR that stores a value to CPSR is ignored. The execution of MRS (SPSR) and MSR (SPSR),
SPSR, MOVS, CPS, LDM (3) is unpredictable. MRS (CPSR) that loads the current value from
CPSR is executable, but such behavior is not desirable if its execution in non-privileged mode needs
to be hidden. Therefore, these instructions are non-privileged sensitive instructions, and special care
must be taken to make them cause exceptions.

4.3 USR Registers Access Instructions

LDM (2) and STM (2) are the instructions that access USR banked registers in privileged mode.
LDM (2) loads the value at the specified address to USR banked registers, and STM (2) stores
the values of USR banked registers to the specified address. These instructions are supposed to
be executed in privileged mode, and they behave differently when executed in non-privileged mode
as shown in Table 3. The execution of these instructions in non-privileged mode is unpredictable.
Therefore, these instructions are non-privileged sensitive instructions, and special care must be taken
to make them cause exceptions.

5 Design and Implementation

This section describes the design and implementation of SIVARM, a simple VMM for the ARM
architecture. SIVARM is based on the trap and emulation model to virtualize the ARM processor.
Since the trap and emulation model requires the exact analysis of a target processor architecture,
the successful execution of Linux on SIVARM verifies that our analysis described above is correct.
SIVARM provides only a single VM; thus, it can accommodate only a single guest OS. Although such
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limitation makes SIVARM unsuitable for practical use, it is very much enough for the verification
of the analysis.

5.1 Policies of the Design and Implementation

This section describes the policies of the design and implementation for developing SIVARM.

5.1.1 Detecting Sensitive Instructions

If a VMM controls a guest OS on its VM, the VMM must detect sensitive instructions that are
executed by the guest OS. When detected, the VMM updates the state of the VM by emulating the
detected instructions. If a VMM cannot detect sensitive instructions that are executed by a guest OS,
the VMM cannot properly update the state of the VM according to the sensitive instructions; thus,
the VMM cannot execute the guest OS correctly. In this study, we execute SIVARM in privileged
mode and the guest OS in non-privileged mode. This design enables the detection of privileged
sensitive instructions that are executed by the guest OS as exceptions; thus, SIVARM can emulate
them. Non-privileged sensitive instructions described in Section 4.2 do not cause exceptions when
executed in non-privileged mode, and special care must be taken to make them cause exceptions.
We handle them by replacing them with representative privileged instructions described in Section
5.2.2.

5.1.2 Introducing Virtual Processor Modes

We execute the guest OS in non-privileged mode to detect sensitive instructions that are executed by
the guest OS as described above. Since the ARM architecture does not provide multiple protection
rings, unlike the x86 architecture, both the kernel and user programs of Linux must share the same
non-privileged mode in order to execute them in non-privileged mode. This design, however, causes
a problem that there is no way to distinguish if the execution is in the kernel or a user program by
examining the processor mode bits of the PSR.

In this study, we solve this problem by introducing virtual processor modes in non-privileged
mode. We construct 7 virtual processor modes that correspond to the real processor modes, and
SIVARM manages them. SIVARM executes the guest OS kernel in virtual privileged modes and
user processes in virtual non-privileged mode.

5.2 Emulation of Sensitive Instructions

This section describes how SIVARM detects and emulates privileged and non-privileged sensitive
instructions executed in a guest OS.

5.2.1 Emulation of Privileged Sensitive Instructions

As described in Section 4, most sensitive instructions are privileged instructions. Since a guest OS
is executed in non-privileged mode on SIVARM, the execution of a privileged sensitive instruction
causes the undefined instructions exception. SIVARM emulates the privileged sensitive instruc-
tion that caused the undefined instructions exception. When the undefined instructions exception
is caused, the processor mode changes to the undefined mode!, and interrupts are disabled auto-
matically. The execution jumps to the undefined instructions exception vector, and then jumps to
the stub of the undefined instructions exception handler because SIVARM initializes the exception
vectors to have branch instructions.

The stub of the undefined instructions exception handler saves the general scratch registers
defined in ARM Thumb Procedure Call Standard (ATPCS) [24] on the stack, first. It then calls the
the undefined instructions exception handler. By passing the pointer to the saved general scratch
registers as its argument to the handler, the saved registers can be referred and updated during the
emulation in order to reflect the result of the emulation. After the undefined instructions exception

IThe ARM architecture defines a processor mode that is called the undefined mode.
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is handled, the execution returns to the stub, and the saved registers are restored. Finally, the
execution returns to the instruction next to where the guest OS caused the exception.
The following shows the stub of the undefined exception handler:

1 _vmm_und_handler_stub:

2 push {r0-r3, ri12, ri4}
3 mov r0, sp

4 bl vmm_und_handler

5 pop {r0-r3, r12, ri14}
6 movs pc, ri4d

RO - R3, R12 are the general scratch registers. Since they can be corrupted in the callee functions
implemented in the C language, the stub saves them on the stack with the push instruction at Line
2. R14 contains the instruction address next to where the guest OS caused the exception, and is
used to return to the guest OS; thus, R14 is also saved here because the branch instruction at Line
4 corrupts it to save the return address in it. The undefined instructions exception handler takes
the pointer to the saved general scratch registers as its argument. Since the registers are saved on
the stack and the SP points to them; thus, the SP is copied to RO at Line 3 to make it the first
argument. Then, the execution branches to the undefined exception handler at Line 4. After the
undefined instructions exception is handled, the execution returns to the stub at Line 5. The saved
registers are restored there, and the execution returns to the guest OS at Line 6.

In the undefined instructions exception handler, it first obtains the instruction that caused the
undefined instructions exception from the address where the exception was caused. By examining
the obtained instruction along with the other information, the handler decides how it handles the
exception. There are four courses to handle the exception, emulating the privileged sensitive in-
struction, handling the representative privileged instruction, handling the virtual banked registers,
and having the guest OS handle the exception. The handling of the first case is described below,
and the handling of the other three cases are described in Section 5.2.2, 5.3.1, 5.4, respectively.

If the handler finds that a privileged sensitive instruction caused the exception and that it
needs to be emulated, SIVARM emulates it by executing it in the VMM instead. The execution of
privileged sensitive instructions in non-privileged mode causes the undefined instructions exception
because they are executed without sufficient privilege; thus, they are executed in privileged mode
for emulation. The following shows the code that executes the privileged sensitive instruction that
caused the exception:

asm__ __volatile__(
"ldr r2, =0xFFF90000\n\t"
"str r0, [r2], #4\n\t"
"ldr r0, =0xE1AOFOOE\n\t"
"str r0, [r2], #-4\n\t"
"push {r14}\n\t"
"blx r2\n\t"
"pop {r14}\n\t"

© 00 O Ui W

)

At the beginning of the code above, RO contains the privileged sensitive instruction that caused
the exception. The code uses the two word length area at OxFFF90000 and OxFFF90004 to place
the instructions necessary for emulation; thus, it first loads OxFFF90000 in R2 at Line 2. Next, it
stores the sensitive instruction in the first word at Line 3, and the following instruction in the second
word at Line 5.

mov  pc, 1r

The binary representation of this instruction is 0xE1AOF00E shown at Line 4. R14 (ie. the LR) is
saved at Line 6 because it is corrupted by the following branch instruction. The execution branches
to OxFFF90000 where the sensitive instruction was stored at Line 7, and returnes to Line 8 by
executing the next instruction stored at Line 5. Finally, the LR is restored at Line 8. Therefore,
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the code shown above executes the privileged sensitive instruction, which caused the undefined
instructions exception, in the VMM.

If the privileged sensitive instruction that caused the undefined instructions exception uses the
general scratch registers as its operand, they need to be taken care of. If the sensitive instruction
refers registers, the referred registers are restored from the saved registers before executing the
instruction. Contrarily, if the sensitive instruction writes a value to a register, the corresponding
register in the saved registers is updated to the value after the execution of the instruction. Moreover,
the context affecting the execution of the instruction also needs to be restored correctly before the
execution of the instruction. This is done by reflecting the condition code bits of the SPSR in the
CPSR.

The steps described above emulate the privileged sensitive instruction correctly.

5.2.2 Emulation of Non-Privileged Sensitive Instructions

The execution of a privileged sensitive instruction in non-privileged mode causes the undefined
instructions exception; thus, it can be emulated in the exception handler as described in Section
5.2.1. The execution of a non-privileged sensitive instruction in non-privileged mode, however, does
not cause an exception. The MRS and the MSR instructions described in Section 4.2 are such
instructions. These non-privileged sensitive instructions cannot be detected by using exceptions if
they are left as they are; thus, special care must be taken to make them cause exceptions.

This study takes an approach to rewrite non-privileged sensitive instructions in the code of
Linux to adequate privileged instructions statically. Since these substitutional instructions cause
exceptions, their execution can be detected. We call them the representative privileged instructions.
The privileged instructions of which operands are not used in Linux can be used as the representative
privileged instructions. The following is an example:

mrc pl5, 2, r2, c2, c2, 2

Since representative privileged instructions cause an exceptions on behalf of the corresponding non-
privileged sensitive instructions, each of them needs to be associated with one of the non-privileged
sensitive instructions.

Since the execution of a representative privileged instruction causes the undefined instructions
exception, SIVARM handles the exception in the same way as privileged sensitive instructions until it
differentiates the courses of the emulation. If the undefined instructions exception handler finds that
a representative privileged instruction caused the exception, it examines the instruction that caused
the exception and emulates the corresponding non-privileged sensitive instruction. The following
shows the code to emulate the representative privileged instruction shown above:

1 if (inst == O0xEE522F52) { // mrc p15,2,r2,c2,c2,2
2 /*

3 * arch/arm/kernel/head.S

4 * msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE
5 */

6 __asm__ __volatile__(

7 "mrs rO, spsr\n\t"

8 // PSR_F_BIT | PSR_I_BIT

9 "orr r0O, #0xCO\n\t"

10 "msr spsr_c, rO\n\t"

11 )

12 }

This representative privileged instruction is a replacement of the MSR instruction shown at Line
4. While this MSR instruction tries to change the processor mode to SVC, it cannot be properly
executed in non-privileged mode. The representative privileged instruction causes an exception,
and emulates it in the undefined instructions exception handler by modifying the SPSR not to set
the SVC_MODE bit. After the exception handling, the SPSR is restored to the CPSR; thus, the
emulation of the MSR instruction can be done appropriately.
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The steps described above emulate the non-privileged sensitive instruction correctly by using the
representative privileged instruction.

5.3 Virtual Processor Mode

This section describes the implementation of the virtual processor mode introduced in Section 5.1.2.
The purpose of the virtual processor mode is the emulation of privileged mode in non-privileged
mode. Such emulation requires the virtual banked registers and the virtual protection levels.

5.3.1 Virtual Banked Registers

The banked registers are the registers available for the exception modes as described in Section 3.1.
While they can be used only in privileged mode, the guest OS kernel considers they exist; thus,
SIVARM emulates and virtually provides them. For their emulation, SIVARM utilizes the general
purpose registers of USR and the memory space to hold the contents of the virtual banked registers.
The virtual banked registers consists of all the registers shown in Figure 1 except for the PC and the
CPSR. When the virtual processor mode is changed, the contents of the general purpose registers
are exchanged in accord with the mode before and after the transition.

Moreover, the SPSR for each mode needs to be handled appropriately. When an exception is
caused, the value of CPSR before the exception is saved in the SPSR of the mode corresponding
to the exception. While saving the SPSR is performed automatically for the transition of the real
processor mode, it needs to be emulated by SIVARM for the transition of the virtual processor
mode. Therefore, when an exception is handled by the guest OS kernel, SIVARM saves the CPSR
in the virtual SPSR of the virtual processor mode that corresponds to the caused exception.

5.3.2 Virtual Protection Levels

While the kernel and user processes of the guest OS share the same real non-privileged mode, they
need to have the same access right as they execute in the real processor mode; thus, the virtual
privileged mode should have the access right to the all memory space of the guest OS, and the
virtual non-privileged mode should not have the access right to the kernel memory space of the
guest OS. Moreover, SIVARM is executed in real privileged mode, and should be protected from the
guest OS.

In order to provide the protection for the virtual processor modes described above, we construct
the virtual protection levels by using the domains described in Section 3.3. We configure the domains
as shown in Table 4. D0, D1, and D15 are the domains where the guest OS kernel, user processes,
and SIVARM belong to, respectively. Each line shows which component is being executed, and each
column shows the setting of the domain. We confirm whether the domain configuration in Table
4 achieves the access control correctly. First, when our VMM is executed, both DO and D1 are
set to the manager. This setting enables the VMM to access all domains. When user processes
are executed, DO is set to the no access. This setting prohibits user processes to access the kernel
memory space. When the kernel is executed, both DO and D1 are set to the manager. This setting
enables the kernel to access the memory spaces of both the kernel and user processes. The setting
of DO and D1 is the same setting in the original Linux kernel without a VMM. Moreover, by setting
D15 to the client, the access control is enforced by the AP bit in the PTE. This setting successfully
protects the VMM from the kernel and user processes.

5.4 The Exception Handling of the Guest OS

The Linux kernel needs to handle exceptions caused by its user processes and sometimes by itself
even when it is executed as the guest OS on a VMM. The ARM architecture, however, defines the
exception vectors at the fixed locations. When an exception is caused, the processor mode changes
to privileged mode, and the execution jumps to the corresponding exception vector. Since only
SIVARM executes in privileged mode, it handles the exception first.
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Table 4: The access control for virtual processor mode using domain.

VMM (D15) | User (D1) | Kernel (DO0)
VMM (D15) | Client Manager | Manager
User (D1) Client Client No access
Kernel (D0) | Client Manager | Manager

The exception handler of SIVARM decides how it handles an exception by examining the obtained
instruction along with the other information as described in Section 5.2.1. If the cause of an exception
is not to invoke SIVARM for emulation, the exception needs to be passed to the Linux kernel for
its handling. In this case, SIVARM upcalls the corresponding exception handler of the Linux kernel
by setting up the virtual processor mode including the virtual banked registers and the virtual
protection level appropriately.

5.5 Emulation of Devices

When the guest OS executed in non-privileged mode accesses devices, it causes the data abort
exception because of the lack of the access right. SIVARM needs to handle such an exception and to
emulate the access to devices correctly. Since we support only a single VM on SIVARM, the access to
devices can be emulated by simply executing the instruction for device access in SIVARM. Therefore,
the emulation of device access is basically the same as the emulation of sensitive instructions. Only
difference is that the type of the exception caused by device access is not the undefined instructions
exception but the data abort exception; thus, the exception handler of the data abort exception of
SIVARM and its stub are used for the emulation of devices.

6 Experiment and Evaluation

We performed several experiments in order to evaluate SIVARM by executing Linux on it. This
section describes the experiments and their results.

6.1 Experiment Environment

The experiment environment used for the evaluation is shown below.

OS : Linux 2.6.26

Board : Atmark Techno Armadillo-500
CPU : ARM 1136FJ-S (400MHz)
Memory : 64MB

The experiments were performed on the actual evaluation board that equips with the ARM processor.

6.2 Evaluation of the Size of Implementation

Constructing SIVARM based on the design and implementation described in Section 5 resulted in
6835 lines in the C language and 190 lines in the assembly language. The executable object of
SIVARM consists of the 52.5KB of the text section and the 1.3KB of the bss section. It does not
have the data section. When it executes, it takes the 16MB of the virtual address space at the
bottom of it.

The modifications made to the Linux kernel are only 81 lines at 48 places. Among them, the
modifications for the representative privileged instructions described in Section 5.2.2 are 55 lines at
39 places. Since the changes to the Linux kernel are very few, it is very easy to apply those changes
to the Linux kernel source code.
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Table 5: Comparison of Linux kernel sizes

text data bss
Original Linux kernel | 3336170 | 124472 | 93852
Modified Linux kernel | 3330714 | 124472 | 93852

Table 6: Execution result of each benchmark

Benchmark | NativeLinux (usec) | SIVARM (usec) | SIVARM /Native
fork+exit 769.17 5,508.46 7.16
fork+exec 1,314.40 8,875.08 6.75
pipe 35.20 204.72 5.82
syscall 0.76 15.15 19.93

Table 5 shows the comparison of the original and modified kernel sizes. The text section is smaller
for the modified kernel, and the data and bss sections remain the same. The reduction of the text
size is mainly due to the two reasons. One major reason is that SIVARM takes some kernel functions
that were originally in the modified kernel. Such functions include the setting up the first virtual
address space and the initialization of the trap table. The other rather minor reason is that there are
places where multiple non-privileged sensitive instructions are replaced with a single representative
privileged instruction. For example, the original kernel requires the two instructions, MRS and
CPS, in order to save the current state and to disable interrupts. Since those instructions appear
contiguous, they can be replaced with a single representative privileged instruction that performs
the two operations.

6.3 Evaluation of Preliminary Performance

We executed micro benchmark programs on the Linux kernel with SIVARM, and compared the
results with those executed on the native Linux kernel. We used the benchmark programs, which
are basically equivalent to the fork+exec, fork+exit, pipe, and syscall (getpid) programs included
in the LMbench benchmark suite. Table 6 shows the results. The numbers in the column of
SIVARM /Native shown in the table are the ratios of the execution times with SIVARM normalized
to those of the native Linux. From the results, we can observe that there is severe performance
degradation by introducing SIVARM. The performance of executing a simple system call (syscall)
is the most severely impacted because its execution path on the native Linux kernel is very simple
while that on SIVARM includes emulating several privileged instructions. The other benchmark
programs involve fair amounts of work that is executed in the Linux kernel; thus, the performance
degradation is not that severe.

We further conducted the performance evaluation by employing the performance monitoring
counters available on the ARM processor. Table 7, 8, 9, and 10 show the numbers of instructions
executed, instruction and data cache misses, and main TLB misses for each benchmark programs
we used above, respectively. These results show that the numbers of instructions and cache misses
increase on SIVARM while the number of TLB misses does not change. From these results, we
can observe that the number of instructions executed on SIVARM increases significantly and that
such increase affects instruction cache misses. The similarity can be found in the execution times
of the benchmarks. Therefore, the performance degradation can be explained by the increase of the
numbers of instructions and cache misses. For example, the performance of a simple system call
(syscall) is the most severely impacted because the number of instructions executed on SIVARM is
much greater than the native Linux.

We also measured the number of transitions to the VMM occurred during the execution of each
benchmark program. Table 11 shows the results. The numbers are the average of several runs; thus,
some numbers are non-integer values. In the table, und_emu and dabt_emu are the events caused
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Table 7: The number of instructions executed

Benchmark | NativeLinux | SIVARM | SIVARM/Native
fork+exit 79,132 862,570 10.9
fork+exec 111,967 | 1,338,965 12.0

pipe 5,499 30,414 5.53
syscall 89 2,733 30.7
Table 8: The number of instruction cache misses

Benchmark | NativeLinux | SIVARM | SIVARM/Native
fork+exit 3,672 18,671 5.08
fork+-exec 7,434 30,013 4.04

pipe 280 1,671 5.97
syscall 4 28 7.00

Table 9: The number of data cache misses

Benchmark | NativeLinux | SIVARM | SIVARM /Native
fork+exit 6,368 15,282 2.23
fork+-exec 10,181 23,364 2.29
pipe 46 461 10.0
syscall 0 20 N/A
Table 10: The number of main TLB misses
Benchmark | NativeLinux | SIVARM | SIVARM/Native
fork+exit 111 114 1.03
fork+exec 118 119 1.01
pipe 11 11 1.00
syscall 0 0 N/A

Table 11: The number of transitions to the VMM

Benchmark | und_emu | dabt_emu | irq-svc | dabt_svc | und_usr | irq_usr | dabt_usr | pabt_usr | swi
fork+exit 2,610 4.1 0.2 0 0 0 28 13 3
fork+exec 3,946 5.9 0.3 1 2 0 26 19 7
pipe 72 0.1 0 0 0 0 0 0 4

syscall 8 0 0 0 0 0 0 0 1

Table 12: Share of execution addresses of sensitive instructions for fork-+exit

Order Function Address Functionality Share
1 | cpu_v6_dcache_clean_area Clean data cache line 27
2 cpu_v6_set_pte_ext Set L2 page table entry 4
3 ret_to_user Return to user from IRQ OFF 2
Table 13: Share of execution addresses of sensitive instructions for fork+exec
Order Function Address Functionality Share
1 | cpu_v6_dcache_clean_area Clean data cache line 35
2 | v6_flush_kern_dcache_page Write back page 3
3 cpu_v6_set_pte_ext Set L2 page table entry 3
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Table 14: Improvement ratio for benchmark

Benchmark | Before | After | Improvement Ratio
fork+-exit 7.16 | 4.60 35.8
fork+exec 6.75 3.89 42.4

Table 15: Improvement ratio for the number of instructions executed

Benchmark | Before | After | Improvement Ratio
fork+exit | 10.90 | 6.54 40.0
fork+exec | 11.96 | 5.31 47.2

Table 16: Improvement ratio for the number of transition to the VMM

Benchmark | Before | After | Improvement Ratio
fork+-exit 2,610 | 1,479 43.3
fork+exec | 3,946 | 1,986 49.7

by privileged instruction emulation and device emulation, respectively. The others are the events
caused by the different types of exceptions. The results show that the numbers of the und_emu events
for fork+exit and fork+exec are significantly large. Those numbers imply that the fork and exec
system calls require the execution of privileged instructions many times. We further investigated in
which functions privileged instructions are executed many times. Table 12 and 13 show the results.
Surprisingly, the execution of the single function, cpu_v6_dcache_clean_area, causes 27% and 35% of
privileged instructions executed for fork+exit and fork+exec, respectively.

6.4 Performance Improvement

From the preliminary performance evaluation and analysis described above, we found that the
emulation of privileged instructions is a major cause of the performance degradation on SIVARM.
Especially, the cpu_v6_dcache_clean_area function, which flushes and cleans the data cache lines, is
the major source of privileged instruction emulation. The following shows its source code written in
the assembly language:

1  ENTRY(cpu_v6_dcache_clean_area)

2 1: mer pi15, 0, r0, c7, c10, 1

3 add 10, rO, #D_CACHE_LINE_SIZE
4 subs rl, r1, #D_CACHE_LINE_SIZE
5 bhi 1b

6 mov pc, 1r

Line 2 is the privileged instruction for data cache line cleaning, and is executed repeatedly as
specified by its argument. Since this function repeats the execution of the specific privileged instruc-
tion, each execution causes the transition to SIVARM and degrades the performance. Therefore, it
should be effective to replace the whole function with a single representative privileged instruction.

Table 14, 15, and 16 show the results of the performance improvement by replacing the whole
cpu_v6_dcache_clean_area function with its representative privileged instruction. The results show
that the overhead introduced by SIVARM is cut to approximately a half by eliminating the single
major source of privileged instruction emulation. By the performance improvement described above,
some amount of overheads were eliminated. There are, however, large overheads still introduced by
SIVARM. We need to identify and remove the sources of the overheads to further improve the
performance of SIVARM.

7 Discussion

This section discusses the issues related to the implementation and limitation of STVARM.
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7.1 Support of Multiple Virtual Machines

SIVARM provides only a single VM; thus, it can accommodate only a single guest OS. It was
designed in this way because it is very much enough for the analysis of the ARM architecture’s
ability to support a VMM although such limitation makes SIVARM unsuitable for practical use.
Once a single VM was realized, it is straight forward to support multiple VMs.

In order to support multiple VMs, there is basically nothing specific to the ARM architecture. It
is necessary to enhance SIVARM at least to support the context of each VM. The context consists
of the contents of the general purpose and privileged registers along with the information of the
resources allocated to its VM. When switching between VMs, the current context is saved, and
the next context is restored. Since the ARM architecture defines the trap handlers at the specific
addresses that are located in SIVARM, all interrupts go through SIVARM; thus, SIVARM can use
interrupts for the timings to switch VMs. SIVARM does not provide virtualized devices, either. If
a single device needs to be shared among multiple VMs, it needs to be virtualized for multiplexing.
If it does not need to be shared, it can be accessed by simply mapping its I/O address rage to a VM
since the ARM architecture employs memory mapped I/0.

Only caveat is the physical memory allocation to VMs. SIVARM achieves memory access pro-
tection using the domain mechanism. Shadow paging is, however, not implemented since memory
virtualization is not necessary to accommodate only a single guest OS for the purpose of our anal-
ysis. Shadow paging enables multiple VMs to execute the same guest OS kernel image since it can
provide the VMs with the same virtualized physical memory starting at the same address. Shadow
paging then takes care of translating virtualized physical addresses to real physical addresses. There
is the other way to accommodate multiple VMs without using shadow paging. Physical memory can
be partitioned, so that each VM uses only the allocated physical memory region. The partitioned
memory regions start at different addresses. Since embedded devices have various configurations,
most OS kernels for those devices can take boot options that specify such memory information.
Linux is one of such kernels; thus, it can boot using different physical memory start addresses.

7.2 Implementation Portability

The first target processor of our work was ARM926EJ-S, of which architecture is ARMv5TEJ [25, 26].
We successfully booted SIVARM and executed Linux on it using the QEMU system emulator [3]
that emulates ARM926EJ-S. SIVARM currently runs on ARM1136JF-S, of which architecture is
ARMv6. As far as the sensitive instructions are concerned, the difference between ARMv5TEJ and
ARMYV6 is the introduction of the CPS, SRS, and RFE instructions. The emulation code for those
instructions were added to support ARM1136JF-S. Since the implementation of SIVARM started
to support ARMv5TEJ and ARMv6 is defined as a superset of ARMv5TEJ, SIVARM should be
portable enough to support both ARMv5TEJ and ARMv6.

The processors based on ARMv7, which is a newer architecture, became widely available recently.
According to the architecture manual [1], there is no new system level instruction introduced for
ARMv7. Since there are, however, the other architectural changes, SIVARM may require modifica-
tions to support ARMv7 based processors.

7.3 Usage Models

Our analysis showed that virtualizing the ARM architecture by simply trapping and emulating sen-
sitive instructions imposes high runtime overhead. In order to address such a performance problem
related to virtualization, ARM announced the new processor, Cortex-A15, that provides the hard-
ware assisted virtualization mechanism comparable to Intel VT. Such a hardware assisted mechanism
works better if virtualization is always required. The hardware assisted mechanism, however, makes
processors much bigger and more complicated; thus, it is not very cost effective to apply it to smaller
architectures.

We consider that there are a number of cases that virtualization can be used temporarily to help
things better and that higher runtime overhead is not a big problem. For example, when security
maintenance is performed, higher runtime overhead can be accepted [12, 14, 16, 18]. In such cases,
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our simple virtualization method enables the temporary introduction of virtualization by applying
the patch to the kernel at the boot time.

8 Summary

This paper described the analysis of the ARM architecture’s ability to support a VMM through a
simple implementation. Since embedded systems are used for a lot of purposes at a variety of places,
their security, reliability, and availability must be improved. Virtualization technology has been
used for a long time in order to improve the security of systems, and the other advanced features
recently become available to improve the reliability and/or availability of systems. In order to apply
virtualization technology to improve them, the detailed analysis of target processor architectures
is required. Such analysis was performed for x86 architecture, but it was not available for the
ARM architecture, which is the most widely used processor architecture for embedded systems.
This paper described such analysis of the ARM processor architecture and the details of a VMM
implementation on it. We implemented a simple VMM, called SIVARM, for the ARM architecture
to perform the analysis of its ability to support a VMM. We successfully booted Linux on SIVARM
and performed the evaluation by executing several benchmark programs on the ARM 1136JF-S
processor. It verified the analysis of the sensitive instructions and also showed the performance
impact of the virtualization.
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