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Abstract

To communicate over an ad hoc sensor network, many routing protocols usually collect
information from the whole of the network. Thus, for transmitting a message, they consume an
amount of power that is proportional to the size of the network.

Now, we restrict the problem so that messages can be transferred only in a certain direction
on a two-dimensional surface. If we solve this problem by employing a protocol using only local
information, the protocol would consume an amount of power that is proportional to not the
size of the network, but the length of the transmission path since only the nodes near the path
would consume power.

Inspired by the glider of the Game of Life cellular automaton, we propose a protocol designed
to obtain information on the shape and the direction of movement of each group of nodes by
using only local information. Our protocol has limited straightness for a random distribution of
arrangements of nodes.

Keywords: Sensor networks, Cellular arrays and automata, Routing protocols

1 Introduction

Many studies have been conducted on power consumption during communication in sensor networks.
In these studies, many assumptions have been made. One study investigated the use of protocols
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designed for ordinal ad hoc wireless networks, while another developed a protocol that requires an
additional magnetometry device[4].

In this study, instead of considering additional hardwares, we assume that many sensor nodes
are distributed in an area. We propose a communication protocol with low power consumption.

Unlike ad hoc networks of PCs, one-to-one communication is not important in ad hoc sensor
networks. A sensor node is equipped with some sensors, and the information gathered by the
sensors is expected to be transferred to nodes, called sink nodes, that are used solely for recording
information; the sink nodes are placed at the outer edge of the sensor network. Note that a sensor
network can have more than one sink node. Some studies assume a group of sink nodes arranged
in a row, called a wall[4]. When such an assumption is made in the case of a densely distributed
sensor network, since it is not important to decide a route from a sensor node to a sink node, strict
routing is not necessary to obtain information, such as the air temperature in an area. Moreover,
the information may be transferred to the outer edge of the sensor network.

Now, let us consider an intuitive way to transfer signals. Let signals be transmitted along
straight paths from two points on the outer edge of a sensor network and let the paths be such that
they intersect at some point. Then, signals sent from both points can be obtained at the point of
intersection. This might be achieved if we can implement a specific structure going straight on, like
the glider in the Life Games of cellular automaton in sensor networks.

In this paper, we propose a protocol that transfers information linearly by using only local
information in a sensor network consisting of sensor nodes distributed on a two-dimensional surface.
We investigate the validity of this protocol and the influence of the density of nodes on the protocol
through simulation and mathematical analysis. Additional studies on the protocol are in progress.

Now, we consider power consumption of protocols in a scenario where many nodes are distributed
in an area over a two-dimensional surface. Theoretically, if a protocol that looks up some nodes
causes traffic to all nodes, the amount of power consumption of such a protocol must be O(N),
where N denotes the number of whole nodes in the network. On the other hand, suppose that a
protocol can transfer information by making only nodes near the transmission path work. Then,
the amount of power consumption of this protocol would be O(v/N) since the maximum number of
working nodes is the ratio of the length of one edge to the area of the surface. Therefore, the power
consumption of our protocol is lower than previously proposed protocols.

The rest of the paper is organized as follows. In Section 2, we present the notation used. We
discuss related work in Section 3. The proposed protocol is presented and analyzed in Sections 4 and
5, respectively. Observations of some experiments on our protocol are shown in Section 6. Finally,
we discuss future works in Section 7.

2 Preliminary

In this study, a sensor node has a size of zero and no identity number. Let the radius of the
communication range of each node be one. We assume that a node consumes the power only when it
sends messages. Let Q be the set of whole nodes. Let A denote the set of natural numbers. Further,
let R denote the set of real numbers.

We denote a sensor node by a lowercase letter such as a, and a set of nodes by an uppercase letter
such as A. Let [a] denote the set of sensor nodes that are placed within the communication area of
a. In order to expand this representation for the set of sensor nodes, we denote [A] as (J,¢ 4[a].

Sensor nodes are distributed on a two-dimensional surface. We employ xy rectangular coordi-
nates. Then, we present a protocol that can make patterns move in the z-axes direction. These
patterns are received by information collection nodes that are placed on the line x = g, where ¢ is a
sufficiently large number. The information collection nodes are not only placed at (g,0), but also in
the range from (g, yq) to (g, —y4), where y, is also a sufficiently large number. This implies that even
if patterns deviate from the z-axis direction, the information can be received by the information
collection nodes. By adding a payload of finite length containing information to messages to form
patterns, we can easily transfer information. In this study, we focus on an algorithm and conditions
required for such moving patterns. Moreover, we do not investigate how to transfer information.
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Now, let us consider the property our protocol satisfies. Assume that every node that executes
protocol II takes several status at each instant. These status must include the status in which the
node does not consume power and one in which the node consumes power since it sends messages.
Let S(t) C € be the set of nodes that are consuming power at time ¢. Furthermore, for point p € R?
and 7 > 0, let R(p,r) C Q be the set of nodes contained in a circle with radius r and center at p.
Moreover, for points p; and pa, let d(p1, p2) denote the distance between p; and ps. Then, we define
the“autonomous migrating protocol” as follows:

Definition 1 Protocol II is an autonomous migrating protocol if it satisfies the following two con-
ditions:

(locality)
(vt € R)(3p € R?)[S(t) € R(p,r)]

and
(migration)

(Vto S R)(VD > 0)(3])0,])1 € RQ)(Htl > to)
[S(to) € R(po,r) A S(t1) € R(py,7), Ad(po, p1) > D].

When we design protocols, it is convenient to assume that all nodes are synchronized. However,
since our study assumes that many nodes are distributed densely over a wide area, it is not realistic
to make this assumption. Nevertheless, protocols that make patterns go straight on, such as gliders
in the Game of Life of cellular automaton, require only nodes near the route to be synchronized. We
first improve a protocol that simulates a synchronized network on an asynchronous network without
any special assumption such as a leader (for example Synchronizer « in [2]) in order to work in
a limited area by limiting the number of times each message is transferred. Then, by employing
the improved synchronizing protocol, protocols that make patterns go straight on for synchronized
networks to work on asynchronous networks.

We assume that even if many nodes send messages to a node in the same round, the messages do
not interfere with each other, and the receiving node can receive all messages separately. Moreover,
we assume that our protocol can also absorb communication delays so that every node can receive
and handle all messages sent in the same round. Each node must receive messages that are sent
within its communication area, should not be capable of receiving messages that are sent outside
its communication area, and should be capable of deciding whether it wants to receive a message.
According to these assumptions, our protocol can use the condition of whether a node receives a
message at a certain time. These assumptions can be realized with high probability by guaranteeing
enough interval of each round with respect to the number of nodes and the number of messages, and
by employing a lower layer protocol resending messages when it detects a collision.

3 Related Work

Under a scenario in which thousands of disposable sensors are scattered over a forest, Chatzigiannakis
and Nikoletseas proposed a protocol in which once a sensor node detects an event, the sensor network
transmits the information to a wall that consists of sink nodes[4]. However, their scenario is different
from ours in that they assumed that each node has a sensor that can obtain the direction to the
wall, such as a magnetometry device.

On the other hand, Dil and Havinga proposed a protocol for a sensor network in which beacons
that know their location and nodes that do not know their location are distributed in a mixed
manner[5]. The protocol makes nodes estimate their location according to the relationship between
the number of hops from themselves to beacons, and compute the routing information. This protocol
is similar to ours with regard to the computation of the routing information by using only local
information.

172



International Journal of Networking and Computing

Karp presented a communication protocol that searches neighbor nodes for the node nearest
to the destination; the nodes are assumed to be distributed on a two-dimensional surface[3]. His
assumption that nodes communicate with only neighbor nodes is similar to our assumption. However,
his protocol assumes that each node knows its global position and identity.

While we were designing our protocol, we were inspired by special patterns called “gliders” in the
Game of Life cellular automaton[7]. The Game of Life is the most famous rule of two-dimensional
cellular automaton. The rule is that a cell is alive if there exist three neighbors; otherwise it dies.
Under this rule, there exist patterns that repeat periodically, and then change their position. In this
study, we design a protocol to form a repeating moving pattern. It is also possible to extend the
Game of Life by increasing its neighborhood size. There are families of glider-like moving clusters
of live cells with the extended rule (Larger than Life cellular automata)|6].

Further, there are studies on sensor networks employing the idea of cellular automata [1, 8, 9, 10].
However, we have not found any studies that make use of migration of patterns on stable nodes,
resembling a glider, to control routing for messages without using special devices.

4 Our Protocol

We propose the following protocol: when suitable sets of nodes Cy, Dy, Ey, Cq, D1, and E; are
given as the initial nodes, the protocol makes nodes compute C,,, D,,, and E,, inductively for n > 2.

Protocol 1 For n > 2, each pattern is defined as follows:

Cn = [Dn—l] N [En—l] - Cn—l —Dp_1—FEp_q— Cn—2 —Dp_2— En—27 (1)
Dn = [Cn] N [anl] - Cn - Cnfl - anl - Cn72 - Dn727 and (2)
En = [Cn] N [Enfl] - Cn - Cnfl - Enfl - Cn72 - En727 (3)

where the symbol — denotes subtraction for sets.
Each node computes our protocol as follows:

1. In order to distinguish among sets that are adjacent to each other, the number of the index
of each set is represented as a finite bit series of sufficient length, and only the lower bits are
calculated.

2. The names of C, D, and E are also coded. Thus, each node can code the name of the set that
it belongs to. We call the coded name of a set “local id”.

3. Each node broadcasts its local id.

4. After nodes receive local ids from others, each of them calculates and determines which set it
belongs to on the basis of the protocol definition.

Note that when the sets are decided up to n — 1, only C,, is decided at first: D,, and E,, are decided
in next step.

From the above discussion, we can see that this protocol requires each node to use memory
corresponding to a finite number of bits.

We simulate this protocol on nodes distributed randomly. We show the result in Figure 1. We
can see the series of patterns go partly straight. However, sometimes this protocol happens to stop
at a random distribution of nodes.

5 Stability

In this section, we discuss the stability of Protocol 1.
First, we consider the following distribution of nodes:

Condition 1 Nodes are distributed continuously.
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Figure 1: A results of the simulation

T~

DO D1 D2
EO E1 E2

| —

Figure 2: Stable pattern

Theorem 5.1 For Condition 1, there exists an initial pattern to obtain congruence patterns repeat-
edly. That is, there exists an initial pattern that facilitates the infinite repetition of the protocol.

Note that Condition 1 is not realistic. If a node receives infinitely many messages, it cannot
handle them in a single step. However, we ignore the limitation of the computation power of each
node in this theorem.

Proof.) We give the initial pattern as Cy, Dy, Eo, C1, Dy, and E; ! (Figure 2). We then show
that our protocol yields pattern Cy, Do, and F5 that are congruent with Cy, D, and E1, respectively,
along the z-axis. This shows that the protocol can repeat infinitely by computing inductively.

First, we define the initial pattern as follows. Let Cy be the right-side semicircle of the central
coordinate of (0,0) with a radius of one. Let Dy and Ey be the areas surrounded by the right-side
semicircle of the central coordinate of (0,0) with a radius of two, by Cp, and by the line = 1. Let
(4 be the right-side semicircle of the central coordinate of (1,0) with a radius of one. Let D; be the
area surrounded by the right-side semicircle of the central coordinate of (1,0) with a radius of two,
the left side semicircle of the central coordinate of (1,1) and the radius of one, outer boundaries of
Dy and C1, and the line x = 2. We define F; similar to Dy.

Now, we explain how to obtain C3. Recall that Cy is contained by the common area of [Di]
and [E1]. According to Condition 1, there exist nodes d and e of D and E near (2,0), respectively.
We can assume that d and e can be selected to be arbitrarily close to each other. Thus, both the
communication areas d and e almost coincide with a circle of the central coordinate of (2,0) with a
radius of one. Let C5 be the area generated by subtracting Cy, Dy, and E; from this circle. This
gives the right-side semicircle. Thus, Cy is congruent with Cj.

Next, we consider Da. As described in Figure 3, let us consider the common area of [Cs] and
[D4]. First, we consider the outer boundary of [C3]. Recall that [C3] denotes an area enclosed by
circles whose centers are contained in Cy and whose radii are equal to one. [C3] can be divided

IThese patterns are obtained by trial and error.
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Figure 3: Outer boundary of [D1] and [C5]

into three parts. The communication area of the nodes around the arc of Cy corresponds to the
right-side semicircle of the central coordinate of (2,0) with a radius of two. On the other hand, the
nodes around the code can communicate with nodes up to the line z = 1. Now, we focus on a node
around the point of intersection (2,1) (say ¢) of the arc and the chord. Its communication area
forms a circle of the central point of ¢ with a radius of one. We draw the outer boundary of [C5] as
a dot-dash line in Figure 3.

Second, we consider the outer boundary of [D;]. We focus on the common part between [D;] and
[C2]. The communication area of the nodes around the line = 2 that surrounds D; reaches the
line x = 3. On the other hand, the communication area of the nodes around the arc of the central
coordinate of (1,0) with a radius of two that surrounds D; is bounded by the arc of the central
coordinate of (1,0) with a radius of three. Now, we focus on the point of intersection(say p) of the
arc of Dy and the line x = 2. The communication area of a node around p corresponds to the arc of
the central coordinate of p with a radius of one. Since the z-coordinate of p is equal to 2 and since
the distance between p and (1,0) is equal to two, the coordinate of p is (2,/2). Therefore, this arc
connects to both the line z = 3 and the arc of the central coordinate of (1,0) with a radius of three.
We draw the outer boundary of [D;] as a dot-dot line in Figure 3.

Finally, we find that one of the points of intersection of the boundaries of [C5] and [D;] is (3, v/2).
Then, we can easily verify that Ds is congruent with D;.

It can similarly be shown that F5 is congruent with Fj. O

Next, we consider the following sparse distribution.

Condition 2 There exists at least one node in any circle of radius r.
We consider the condition for r to repeat our protocol.

Theorem 5.2 In Figure 2, for Cy, Dy, Ey, C1, D1, and E1, let each of Cy, Dy, Ey, and C1 satisfy
Condition 1 while the remaining area containing Dy and FEy satisfy Condition 2. Then, if r < %,
Cy must have a node.

Proof.) The outer boundary of Cy is decided by the communication areas of the node of Dy and
the node of E; that are close to each other. Thus, we look for the condition of r such that for the
closest pair of node d (in D;) and node e (in Ej), their common communication area can contain
a circle of radius r. Let sg be the inscribed circle of radius r in Dy near E;. We define s, in 4
similarly. The length A of the perpendicular line from the center of s; to the z-axis is as follows:

(1—r)?+h%=1+r)2 (4)

On the other hand, since the outer boundary of Cs is determined by a node in sg and a node in s,
we select a node d from sy and a node e from s, in order to minimize Cy (Figure 5.2). In order that
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Figure 5: Relationship among the inscribed circles

C5 contains a circle of radius r irrespective of the selected d and e, the distance between the centers
of s4 and s, must be smaller than 1 — 2. Then, we have the following inequality:

(2r)? + h? < (1 —2r)% (5)

From (4) and (5), we obtain r < %. O

The larger the distance between the selected nodes of D,,_1 and E,_1, the smaller is the size of
C,. Thus, for the distance to be large, C,_1 should be larger. Next, we consider the condition that
C5 has a node when the size of C7, which is the right-side semicircle, is the maximum.

Theorem 5.3 Suppose that Condition 2 is satisfied everywhere. In Figure 5, our protocol is given
Co, Do, Ey, and Cy as the initial set of nodes. Then, if r < 0.076, Cy must have a node.

Proof.) Similar to the case of Theorem 5.2, according to Figure 5, we introduce the condition
by showing the relationship among the conditions of existence for nodes. Consider a circle s4 with
radius r in the area Dy. According to Condition 2, there must a node in this circle. Further, consider
a circle sg; with radius r in the area D; and a circle s¢ with radius r in the area Cs. By considering
the symmetry, we assume that the center of s¢ is located on the x- axis.

This theorem can be proved by obtaining the condition for s¢ to be in the area Cs.

Let h be the length of the perpendicular line from the center of sgzg to the z-axis. Similarly,
let I be the length of the perpendicular line from the center of s4; to the z-axis. Moreover, let the
distance between the point of intersection of the perpendicular line and the z-axis, and point (1,0)
be u.
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Figure 6: Random Distribution

In order that C's contains s¢, the communication area of a node in s4; must contain s¢. Therefore,
the following inequality holds:

(I+7r—u)?+1% < (1-2r)2 (6)

By letting sq9 be in contact with both Cy and C;, we find that the node nearest to the z-axis
must exist at least in s4p9. Then, we have the following condition for sgg:

R4+ (1—7r)?2=(1+r)% (7)
Similarly, to bring s41 close to the xz-axis, we have the following conditions:

(I—h)?+(r+u? = (1-2r)? and (8)
w41 = (147)% 9)

From the above formulas, we have the following inequality:
— 43 4 2472 + 517 — 4 < 0. (10)
Then, by numerical analysis, we obtain the following condition:
—1.725 < r < 0.076,r > 7.650.

Since r must be contained in (0, 1], we obtain the condition 0 < r < 0.076. |

6 Experimental Observation

In this section, we show some behaviors of our protocol for certain distributions of nodes.

We design a simulator using C# language. Our simulator processes each node every round
according to our assumptions. It does not simulate the propagation of radio waves. It only guarantees
that each message must reach nodes within the communication area of its sender, and must be
processed in the same round. It displays the movement of the information by changing the color of
nodes with respect to their state by their communication.

6.1 Random Distribution

In this paper, we have not discussed how our protocol should be started. On the other hand, we
assume that there exists a receiving wall and the pattern starts moving toward the wall. For this
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Figure 7: Refraction

assumption to hold true, nodes to start our protocol must have information on the direction of the
wall. Thus, additional assumptions are required.

Accordingly, we made the receiving wall enclose a region. For example, in order to receive
information about animals in the woods, we would enclose the woods with the receiving wall. In
this case, no matter which direction the protocol starts with, patterns can reach efficiently when the
protocol has straightness. Moreover, we do not have to add any assumption, except for the way to
position of the receiving wall. On the other hand, we don’t focus on how to manage the receiving
wall efficiently. Nevertheless, even if the receiving wall consists of other kind of sensor nodes, the
number of required nodes is at most O(v/N). Moreover, for sensor network that consists of small
nodes like smart dusts, the assumption that we make the receiving wall enclose the region might not
be very unrealistic.

In Figure 6, we show the results of our simulation; in the simulation, the receiving wall is set to
be in the form of a circle with radius 50, nodes are distributed randomly, and the protocol starts
at the center of the circle. In this simulation, we make the protocol start by giving condition D
to some nodes in an area and condition E to some nodes in another area with the two areas being
in contact. Such a start yields two patterns moving toward opposite sides. In the left image, the
protocol reaches the wall while maintaining straightness for a dense distribution. On the other hand,
in the right image, it bends and it stops for a sparse distribution. Each distribution of these results
(for » = 0.1, 0.2) is obtained as follows:

1. We achieve triangulation by using regular triangles with side length r over the whole area.
2. We put a node on each vertex of all triangles. Thus, Condition 2 is satisfied.
3. We move every node over a uniform random distance, from zero to one.

With these steps, the distribution does not satisfy Condition 2 strictly, but the average density may
approximate the distribution of Condition 2.

Therefore, we find that these results of our simulation support our proposition that the straight-
ness of our protocol depends on the density of the distribution of nodes.

The condition of this simulation is limited. However, the result of simulations indicates that our
protocol works well in conditions less stringent than those specified by the theorems.

6.2 Refraction

In this section, we show how the direction of migration of the pattern can be controlled by changing
the density of nodes. In Figure 7, the position p; ; of each node a; ; (i and j are integers) is given
as follows:

pij = ((20i+1)k(j),sign(j)sk(j)) € [0,30] x [3,6]
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where
k) = { 001+00025)j] it lj] <16
D= 0.05 otherwise, and

J

sk(7) = Y 2k(m) —k(j) — k(0).

m=0

In Figure 7, r becomes the minimum value of about 0.01473 in the vicinity of y = 0. On the other
hand, r becomes 0.1v/2 in the region of |y| > 1.055 since nodes are located there in the form of
grid at intervals of 0.1. We put an initial pattern around of point (3,3) in order to go into the line
y = 0 with angle of incidence of 70 degree. Then, we have a dense area near the row a; o (i € N).
Now, we make the pattern move in an aslant direction relative to the dense area. The direction of
the pattern is bent like refraction. This property is opposed to the property of light. Nevertheless,
by putting two dense rows in parallel, we can send a message along the parallel dense rows like an
optical fiber.

7 Future Work

In this paper, we proposed a transferring protocol using local information for a sensor network and
analyzed the conditions to be satisfied for the execution of the protocol. However, we have not
obtained the condition to execute the protocol repeatedly yet. We are studying this condition as
well the possibility of using the protocol for a randomly distributed sensor network. Moreover, the
average velocity and the straightness should be investigated for any random distribution.
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