
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 3, Number 2, pages 182–191, July 2013

A Faster Algorithm for Finding Disjoint Ordering of Sets

E. Cheng

Mathematics and Statistics
Oakland University
Rochester, MI 48309
echeng@oakland.edu

K. Qiu

Computer Science
Brock University

St. Catharines, Ontario
kqiu@brocku.ca

Z. Shen

Computer Science and Tech.
Plymouth State University

Plymouth, NH 03264
zshen@plymouth.edu

Received: February 7, 2013
Revised: May 17, 2013
Accepted: June 20, 2013

Communicated by Sayaka Kamei

Abstract

Consider the problem of routing from a single source node to multiple target nodes with the
additional condition that these disjoint paths be the shortest. This problem is harder than the
standard one-to-many routing in that such paths do not always exist. Various sufficient and nec-
essary conditions have been found to determine when such paths exist for some interconnection
networks. And when these conditions do hold, the problem of finding such paths can be reduced
to the problem of finding a disjoint ordering of sets. In addition to the applications in finding
disjoint shortest paths in interconnection networks, the problem of finding disjoint ordering of
sets is an interesting combinatorial problem in its own right. We study the problem of finding
a disjoint ordering of sets A1, A2, ..., Am where Ai ⊆ A = {a1, a2, · · · , an} and m ≤ n. We
present an O(n3) algorithm for doing so, under certain conditions, thus improving the previously
known O(n4) algorithm, and consequently, improving the corresponding one-to-many routing
algorithms for finding disjoint and shortest paths.

1 Introduction

In an interconnection network, there exist several well-known disjoint path paradigms [3]: (1) dis-
joint paths between two nodes (one-to-one); (2) disjoint paths from one fixed node to a set of nodes

182

International Journal of Networking and Computing

(one-to-many); and (3) disjoint paths from a set of nodes to another set of nodes of the same cardi-
nality (many-to-many). There are large amount of work done on many well-known interconnection
networks for various paradigms, especially for the first two, that are too numerous to list. As for the
third paradigm where given k pairs of nodes (s1, t1), (s2, t2), ..., (sk, tk) in a graph G, the problem
of checking for the existence of k disjoint paths in arbitrary graph G for k ≥ 3 is NP-complete [10].
For the n-star Sn, k pairwise paths of length no more than D(Sn)+ 5, where D(Sn) is the diameter
of the n-star, can be found in O(n2) time [6]. For the hypercube, the problem is studied in [5, 7].

We can also impose certain conditions for each of these paradigms, creating different versions of
the disjoint path problems. For example, we can ask that disjoint paths be the shortest, or that the
sum of all distances be as small as possible.

In this paper, we consider the routing paradigm (1) with the additional condition that all disjoint
paths be the shortest paths as well. This problem of finding disjoint shortest paths between a source
node and multiple target nodes in a graph is a very interesting problem considering that such paths
do not always exist. For some trivial graphs, e.g., linear arrays and 2-d meshes, it is easy to derive
a necessary and sufficient condition for such paths to exist. For example, for a linear array, two
such paths exist iff the two target nodes are on different sides of the source node. Similarly, for a
2-d mesh, 4 such paths exist iff no quadrant contains more than 2 target nodes and no two nodes in
the same quadrant are on the same row or column as the source node (i, j) (here, for any node in
general position (i, j), we divide the mesh into four quadrants, for example, one quadrant consists
of points (x, y), where x > i and y ≥ j, etc.). For non-trivial graphs, it is in general not easy to find
such conditions.

The hypercube is one of the most popular interconnection networks. A hypercube of dimension
n, or an n-cube, consists of 2n nodes labeled as 0, 1, 2, ..., 2n− 1. Two nodes u and v are connected
if and only if their binary representations differ in exactly one bit. For example, nodes u = 1 and
v = 3 are linked in a 3-cube since 001 and 011 differ in one bit. For any node v in an n-cube, its
binary representation is v = v1v2 · · · vn, where vi ∈ {0, 1} for 1 ≤ i ≤ n.

For the hypercube, because of the symmetry, without loss of generality, we assume that the source
is the identity node 0 = 00 · · · 0. Most of the routing algorithms for the hypercube find disjoint paths
from 0 to n target nodes in an n-cube whose lengths are bounded but are not necessarily the shortest.
For example, it is shown in [14] that there exist n disjoint paths in an n-cube such that all paths
have lengths no longer than n+ 1 while in [13], it is shown that n disjoint paths exist such that at
most one path has length n+ 1 and all other paths have length no more than n. Note that a path
from 0 to node u is shortest if d(0, u) = H(u), the Hamming weight of u defined to be the number
of 1’s in u. Also note that some routing algorithms may find the disjoint paths that are shortest
possible for the set of target nodes but not the shortest.

When we impose the condition that these disjoint paths be the shortest, it is clear that such
paths exist only for certain sets of n target nodes in an n-cube. A necessary and sufficient condition
was presented for such paths (disjoint and shortest) to exist for a set of n target nodes in [13].
This condition was later generalized in [4]. In addition, an O(n4) routing algorithm was given to
find the paths if they do exist. This routing algorithm finds the disjoint shortest paths by finding
a disjoint ordering of sets with a system of distinct representatives (SDR). The existence of an
SDR, and subsequently a disjoint ordering, are important to the disjoint shortest paths routing
in the hypercube. They can also be used to characterize the sufficient and necessary condition
for such paths to exist in the star graph, a popular member of the Cayley graphs to which the
hypercube also belong, and possibly other Cayley graphs based on the symmetric group [1]. Once it
has been determined that disjoint and shortest paths do exist in an interconnection network using
the iff condition involving SDR’s, a disjoint ordering will generate such paths. In addition to the
application in finding disjoint shortest paths in interconnection networks, the problem of finding
disjoint ordering of sets is an interesting combinatorial problem in its own right. In this paper,
we present an algorithm that finds disjoint ordering of n sets in O(n3) time for reasonably small
n’s and in O(n3) expected time for arbitrary n’s, improving the previous O(n4) algorithm. This
algorithm immediately implies an O(n3) algorithm for finding n disjoint shortest paths in an n-
cube. In addition, it immediately gives an routing algorithm for finding disjoint shortest paths in
any interconnection network when such paths can be characterized by SDR’s and disjoint ordering

183

A Faster Algorithm for Finding Disjoint Ordering of Sets

of sets. We give necessary background in the next section and present our algorithm for finding
disjoint ordering of sets in Section 3. Further discussions on the relation between the problems of
routing and finding disjoint ordering of sets and that of matching as well as future work are given
in Section 4.

2 System of Distinct Representatives and Disjoint Ordering
of Sets

Definition 1 ([4]) Let (A1, A2, · · · , Am) be a collection of subsets of a set A = {a1, a2, · · · , an}, m ≤
n. An ordered set of distinct elements [ai1 , ai2 , · · · , aim] is called a system of distinct representatives
(SDR) if aij ∈ Aj, for 1 ≤ j ≤ m.

For example, if A = {1, 2, 3, 4} and A1 = {1, 2}, A2 = {3}, and A3 = {2, 3}, then [1, 3, 2] is an
SDR for A1, A2, and A3. On the other hand, if A = {1, 2, 3, 4} and A1 = {1}, A2 = {1, 4},
and A3 = {4}, then there does not exist an SDR for A1, A2, and A3. Clearly, an SDR of
(A1, A2, · · · , Am) corresponds to a matching of size m of the bipartite graph where the partite
sets are A and {A1, A2, · · · , Am} such that there is an edge from a ∈ A to Ai iff a ∈ Ai. The
well-known Hall’s Theorem [8] gives the iff condition for the existence of an SDR for a collection of
finite sets.

For n target nodes in an n-cube with 2n nodes:

u1 = u11u12...u1n,

u2 = u21u22...u2n,

...

un = un1un2...unn.

they correspond to n sets U1, U2, ..., Un which are defined as follows. If uij = 1, then we include j
in set Ui. It was shown in [4] that an iff condition for n disjoint shortest paths to exist in the n-cube
is that there exists an SDR for U1, U2, ..., and Un. For example, for nodes

u1 = 0110

u2 = 1000

u3 = 0111

u4 = 1001,

we have

U1 = {2, 3}
U2 = {1}
U3 = {2, 3, 4}
U4 = {1, 4}.

One SDR for the four sets is [2, 1, 3, 4].
The binary representations of the n nodes can be viewed as the adjacency matrix of a bipartite

graph and the condition that an SDR exists means that Hall’s condition [8] is satisfied, i.e., n disjoint
shortest paths exist if and only if there exists a permutation i1i2 · · · in of symbols from {1, 2, · · · , n}
such that u1,i1 = u2,i2 = · · · = un,in = 1, namely, there is a 1 on each row and each column in
the adjacency matrix. In other words, there exists a perfect matching for the bipartite graph or,
equivalently, there is an optimal solution with cost n to the corresponding classic assignment problem
[12] represented by the cost matrix which is the set of binary representations (note that to view the
problem as an assignment problem, all 0 entries should be changed to a fixed value greater than 1).

184

International Journal of Networking and Computing

For the above example, it represents a bipartite graph G = ({A,B,C,D, a, b, c, d}, {(A, b), (A, c),
(B, a), (C, b), (C, c), (C, d), (D, a), (D, d)}). One possible assignment is

0 1 1⃝ 0
1⃝ 0 0 0
0 1⃝ 1 1
1 0 0 1⃝

where the assignment solution is circled. This particular assignment is equivalent to a perfect
matching of {(A, c), (B, a), (C, b), (D, d)}. Note that the solution to the assignment problem (and
thus the perfect matching problem) is not unique.

Finding a maximum (perfect) matching for a bipartite graph with 2n vertices can be done in
O(n5/2) [9].

Once an SDR is found, an actual routing is then found by finding a disjoint ordering of the sets
Ui’s. The concepts of ordering and disjoint ordering of elements of a finite set are defined below.

Definition 2 ([4]) A permutation of the elements of a finite set is called an ordering. Let X and
Y be two sets ordered as OX = (x1, x2, · · · , xa) and OY = (y1, y2, · · · , yb), we say that OX and OY

are disjoint if

{x1, x2, · · · , xi} ≠ {y1, y2, · · · , yi},

for 1 ≤ i ≤ min(|X|, |Y |) unless i = |X| = |Y |.

Note that by the definition, there exists a disjoint ordering even if X = Y . A simple example is
when X = Y = {1, 2}, then (1, 2) and (2, 1) are disjoint.

A collection of finite sets have a disjoint ordering if each set has an ordering and all the orderings
are pairwise disjoint. Specifically, if all singletons in the collection are distinct, then the first elements
of a disjoint ordering of the collection form an SDR. For example, for the following collection of sets
and their disjoint ordering, 1, 3, 2, 4 form an SDR [1, 3, 2, 4]:

A = {1, 2, 4} OA = (1, 2, 4)

B = {1, 3, 4} OB = (3, 4, 1)

C = {1, 2, 3} OC = (2, 3, 1)

D = {1, 2, 4} OD = (4, 1, 2).

Once again, for our previous example with SDR = [2, 1, 3, 4], a disjoint ordering is

(2, 3)

(1)

(3, 4, 2)

(4, 1),

implying a routing:

0000 → 0100 → 0110

0000 → 1000

0000 → 0010 → 0011 → 0111

0000 → 0001 → 1001

Note that neither the SDR nor the disjoint ordering for a collection of sets is necessarily unique,
if they do exist. An O(n4) algorithm is given in [4] to find a disjoint ordering for any collection
of sets with an SDR. This immediately implies an O(n4) routing for disjoint shortest paths on an
n-cube.

185

A Faster Algorithm for Finding Disjoint Ordering of Sets

It has been shown that the existence of an SDR is an iff condition for disjoint shortest paths to
exist in not only the hypercube, but also star graphs, and quite possibly many other interconnection
networks [1] and disjoint ordering gives actual routing for these paths. In addition, the problem of
finding disjoint ordering for a given SDR is an interesting combinatorial problem in its own right.
In the next section, we present an O(n3) algorithm for this problem. Without loss of generality, we
assume that A = {1, 2, · · · , n}, m = n so we have A1, A2, ..., An where Ai ⊆ A. We also assume
that an SDR is given. Clearly, m ≤ n because if m > n, it is impossible to have an SDR. If m < n,
we can always add sets Aj = {1, 2, · · · , n}, j = m+ 1,m+ 2, · · · , n.

3 Finding a Disjoint Ordering from a Given SDR

An important step in our algorithm is to represent the n sets as an n× n matrix (aij)n×n where

aij =

{
0 if j /∈ Ai

1 if j ∈ Ai.

With this representation, we then perform a sequence of steps that we call row reductions to be
described next until the representation matrix is reduced to an SDR. Note that this final SDR
does not have to be the originally given SDR. The actual disjoint ordering for the n sets is then
constructed from the reductions.

3.1 Row Reduction

The key step in our algorithm is based on the following observation:

Theorem 1 Given n sets with an SDR in their matrix representation
a11 a12 · · · a1n
a21 a22 · · · a2n
... · · · · · · · · ·

an1 an2 · · · ann

then for any row Ai, we can find A

′

i such that H(A
′

i ⊕ Ai) = 1 and , H(A
′

i) = H(Ai) − 1, where

H(Ai) is the Hamming weight of vector representing Ai. Furthermore, if H(Ai) > 1, i.e., A
′

i ̸= 0,

then sets A1, A2, ..., Ai−1, A
′

i, Ai+1, ..., An still have an SDR.

In essence, Ai has been reduced to A′
i by eliminating one specific 1 from Ai. We call the process

to find such an A
′

i from Ai a reduction. The theorem is proved by the reduction algorithm given
next. Note that the elements of the SDR are circled.

For set Ai, for each 1 other than the 1 in the SDR, remove it and see whether the resulting A
′

i

is not equal to any of the other n− 1 sets. If such a 1 exists, remove it and we have found our A
′

i.
Otherwise (removing any such a 1 results in a set equal to Aj for some j ∈ {1, 2, · · · , n} − {i}), the
situation can be illustrated below when removing the bold 1 will result in Ai becoming Aj :

A1

A2

...

Aj aj1aj2 · · · 0 · · · 1⃝· · · 1 · · · ajn
...

Ai aj1aj2 · · ·1 · · · 1 · · · 1⃝· · · ajn
...

An

186

International Journal of Networking and Computing

Note that because the n sets have an SDR, there have to be two indices l and m (l ̸= m) such that

ajl = ajm = ail = aim = 1,

and ajl and aim are part of the SDR. We can get a new SDR by switching the two 1⃝’s while keeping
the remaining SDR intact as follows:

A1

A2

...

Aj aj1aj2 · · · 0 · · · 1 · · · 1⃝· · · ajn
...

Ai aj1aj2 · · · 1 · · · 1⃝· · ·1 · · · ajn
...

An

Note that because the sets do have an SDR and crossing any 1 in Ai other than 1 results in another
set, we know for sure that removing the 1 will generate a set that is different from any other set.

Now we can remove the 1 (in bold) formerly as part of the SDR in Ai to get A
′

i and clearly, the

new set of sets still have an SDR, H(Ai ⊕ A
′

i) = 1, and subsequently, H(A
′

i) = H(Ai) - 1. Also, if
we remove a 1 at position j for Ai, it implies that we should insert the element j in the left end of
the disjoint ordering for Ai. This step is repeated each time a reduction is performed, and at the
end, we should have our disjoint ordering.

3.2 Implementation and Analysis

We now discuss how to perform the above reduction and its time.
Before the reduction, the following pre-processing is done:

1. Create the binary representation matrix for the given sets A1, A2, ..., An;

2. Convert the n rows into integers, also compute the Hamming weights of all sets. Both sequences
are then sorted;

3. Find an SDR.

Step 1 takes O(n2). Step 2 takes O(n2 +n log n) = O(n2) time while Step 3 takes O(n5/2) time.
Note that these steps are done only once at the very beginning.

Note that in order to reduce a set Ai, if we delete 1’s that are not in the SDR, in the order
from the most significant position to the least significant position (left to right), we will get a sorted
sequence of numbers. This observation leads to an O(n) reduction:

If deleting a 1 (at position k) from Ai that is not in the SDR results in a number v that is not
equal to any of the remaining n− 1 values corresponding to the n− 1 other rows of the matrix (we
can compute v in constant time because v = Ai’s value - 2n−k), delete this 1, the new value v is
inserted into the list of sorted targets (O(n) time, if done sequentially, or O(log n) time by a binary
search). Similarly, the Hamming weight of the new row is also computed in constant time since it is
H(Ai) - 1 and inserted to a sorted list of Hamming weights. To check whether v is equal to any of
the n− 1 values, we can simply perform a linear search (even though these n− 1 values are sorted)
and let’s say that it takes m steps, m ≤ n. If this is not the case, we are done with reducing Ai. If
v is equal to one of the n− 1 values, then we try to reduce the next 1 on Ai. But when we do the
checking again, we can simply start from the place where the last search ended. This is because the
new value to be searched for is larger than v. As we can see, even though each search could take
O(n) time, the total search time remains O(n). Therefore, the time for reducing Ai to A′

i is O(n).

187

A Faster Algorithm for Finding Disjoint Ordering of Sets

If there are t 1’s (t ≤ n) in Ai, the amortized search time for each 1 is O(n/t). If t = θ(n), this time
becomes constant.

For example, for the representation matrix

A1 : 1 0 1 1⃝
A2 : 0 0 1⃝ 1
A3 : 1 1⃝ 0 1
A4 : 1⃝ 0 1 0

and we want to reduce A1. The sorted sequence of the sets is 3, 10, 11, 13. Crossing out the first 1
results in 3; Crossing out the second 1 results in 9. So we delete the second 1 and insert 9 into the
sorted sequence of sets.

On the other hand, if no matter which 1 is deleted, the resulting row becomes one of the remaining
rows, as illustrated in the two cases below where row A1 is to be reduced, then we can simply find
any one of the remaining sets and perform the reduction (by switching the 1’s in the SDR first) and
the updating mentioned above. The time for this operation is also O(n).

A1 : 1 1 1⃝
A2 : 0 1⃝ 1
A3 : 1⃝ 0 1

A1 : 1 0 1⃝ 1
A2 : 0 0 1 1⃝
A3 : 1 1⃝ 0 1
A4 : 1⃝ 0 1 0

Therefore, a row reduction can be done in O(n) time.

3.3 Generating a Disjoint Ordering

We can now state the algorithm as follows:

1. while there exist sets whose Hamming weights are greater than 1, select one set Ai such that
H(Ai) = max

1≤j≤n
{H(Aj) > 1}; (The Hamming weights of sets can be computed at the beginning

of the algorithm and updated after each reduction so that this step takes O(n) time)

2. perform a reduction as described above.

The disjoint ordering generating algorithm is to simply apply the reduction O(n2) times, as there
are O(n2) 1’s in the n sets, until they are reduced to an SDR.

As for the total time t(n) of the algorithm for n sets, we need O(n2) time to convert the n
binary set representations to integer values, O(n log n) time to sort them, O(n5/2) to find a perfect
matching to get an SDR (these two steps need to be done only once), and perform the O(n)-time
reduction O(n2) times, resulting in a total time of O(n3).

For this running time, the following discussion is in order. When we have an n-bit binary number,
the range of the corresponding integer is {1, 2, · · · 2n − 1}. It is certainly not reasonable to assume
that two numbers of the magnitude O(2n) can be compared in constant time. Therefore, our running
time stands only when n is relatively small. For arbitrary n, one remedy is to compute all integers
modulo q for some suitable prime number q, for example, a q such that 10×q just fits into a computer
word [2, page 912]. In this sense, our situation is similar to the one faced by the Rabin-Karp string
matching algorithm [11]. Accordingly, our algorithm has an O(n3) expected running time. The
justification is similar to that given in [2, page 915].

Note that from the algorithm we always pick a set with the largest Hamming weight to reduce
at any time. This is important in order to avoid conflict as described below.

188

International Journal of Networking and Computing

...

· · · 1̄ · · · 1 · · · 1 · · · : A
...

· · · 1 · · · 1 · · · 1 · · · 1 · · · : B
...

where H(A) = 3 and H(B) = 4 and 1̄ indicates that the 1 was previously deleted from A. If A
is reduced first, we would have such a situation as described above. Then when B is reduced, the
leftmost 1 is tried first and it is found that the resulting set is different from any of the other rows,
so that 1 is incorrectly removed, while in fact, the resulting row is actually A.

The proof that the ordering so obtained are disjoint is thus clear: if after a reduction, the resulting
set becomes a set that is reduced earlier, then it means that a set with smaller Hamming weight is
reduced earlier, a contradiction.

We end this section by an example. Given five sets Ai’s, i = 1, 2, 3, 4, 5 whose matrix represen-
tation is as follows:

A1 : 1⃝ 1 0 0 0
A2 : 0 1 1⃝ 0 0
A3 : 1 1⃝ 1 0 0
A4 : 0 0 0 1⃝ 1
A5 : 0 0 1 1 1⃝

with the SDR circled. Since H(A3) = 3, we do the reduction on A3. We first try the first 1 (from
the left) and the resulting set is A2. We then try the third 1 and the resulting set is A1. We then
switch the two 1’s in the SDR in A1 and A3 and remove the second 1 in A3 to get:

A1 : 1 1⃝ 0 0 0
A2 : 0 1 1⃝ 0 0
A3 : 1⃝ 0 1 0 0
A4 : 0 0 0 1⃝ 1
A5 : 0 0 1 1 1⃝

We now have a disjoint ordering as follows:

OA1 = ()

OA2 = ()

OA3 = (2)

OA4 = ()

OA5 = ()

The next set to reduce is A5. When the third 1 is removed, the resulting row becomes A4. So we
remove the fourth 1 to obtain

A1 : 1 1⃝ 0 0 0
A2 : 0 1 1⃝ 0 0
A3 : 1⃝ 0 1 0 0
A4 : 0 0 0 1⃝ 1
A5 : 0 0 1 0 1⃝

The disjoint ordering now becomes

OA1 = ()

189

A Faster Algorithm for Finding Disjoint Ordering of Sets

OA2 = ()

OA3 = (2)

OA4 = ()

OA5 = (4)

The next five reductions are straightforward and we will end up with:

A1 : 0 1⃝ 0 0 0
A2 : 0 0 1⃝ 0 0
A3 : 1⃝ 0 0 0 0
A4 : 0 0 0 1⃝ 0
A5 : 0 0 0 0 1⃝

The disjoint ordering generated is:

OA1 = (2, 1)

OA2 = (3, 2)

OA3 = (1, 3, 2)

OA4 = (4, 5)

OA5 = (5, 3, 4)

4 Conclusion

We have developed an O(n3) algorithm that generates a disjoint ordering for n sets which have
an SDR and whose elements are from a set A of size n. improving the previously known O(n4)
algorithm. A trivial lower bound to this particular problem of finding a disjoint ordering of n sets is
clearly Ω(n2). It is certainly our intention to examine the possibility of further improving the O(n3)
time algorithm we have just developed and for arbitrary n or finding a bigger lower bound.

As shown in [4], a disjoint ordering implies a set of shortest disjoint paths from the source node
to the target nodes for the hypercube. Thus we immediately have an O(n3) routing algorithm for
finding n disjoint shortest paths on an n-cube, provided that they do exist. In terms of finding
disjoint shortest paths for one-to-many paradigm in interconnection networks, it is reasonable to
think that this disjoint ordering finding problem/algorithm could be applicable to networks where
nodes of the graph have this coordinate type of representations such as nodes in the hypercube and
the star graph. And it is also possible that the problem of finding disjoint and shortest paths in other
paradigms such as the one-to-one paradigm between two nodes (one-to-one) can be characterized by
SDR/disjoint ordering. These issues are further discussed in [1]. We plan to find more applications
for disjoint ordering of sets in the general area of routing in interconnection networks.

So far, we know that the existence of an SDR is the necessary and sufficient condition for the
existence of disjoint and shortest paths from a single node to a set of nodes in some networks (e.g.
the hypercube and star graph). In these cases, the disjoint ordering of sets correspond to the actual
paths. In general, for any given sets A1, A2, ..., Am, where Ai ⊆ {a1, a2, · · · , an}, m ≤ n, an
SDR of A1, A2, ..., Am implies a disjoint ordering of A1, A2, ..., Am and vice versa. Also, finding
an SDR is equivalent to finding a maximum matching in the bipartite graph with A1, A2, ..., Am

as one independent set and {a1, a2, , · · · , an} as the other where there is an edge between Ai and
aj iff aj ∈ Ai. The necessary and sufficient condition from [4] is equivalent to the existence of a
perfect matching for a balanced bipartite graph. To date, the best known algorithm by Hopcroft
and Karp for finding such a matching takes O(n5/2) time. In fact, both the O(n4) algorithm in
[4] and our O(n3) algorithm for finding disjoint ordering of sets use this matching algorithm as
a subroutine. Our goal is to improve the O(n3) algorithm. To this end, there are two possible

190

International Journal of Networking and Computing

approaches. The first one is to keep using the matching algorithm as a subroutine. This approach
immediately implies an Ω(n5/2) lower bound for the disjoint ordering of sets. The second one is
to find an algorithm independent of the matching algorithm. This approach has an Ω(n2) lower
bound. But more importantly, this gives us another angle to the problem of matching. For example,
for a balanced bipartite graph, its adjacency matrix can be viewed as consisting of rows, each of
which corresponds to a set Xi. Clearly, a disjoint ordering of these sets implies a perfect matching.
If a simpler and/or more efficient disjoint ordering of these sets can be found without using the
matching algorithm, it would immediately imply a simpler and/or more efficient algorithm for a
perfect matching for a balanced bipartite graph. However, whether it is possible to find a disjoint
ordering of sets without first finding an SDR remains to be seen.

References

[1] E. Cheng, K. Qiu, and Z.Z. Shen. On Disjoint Shortest Paths Routing in Interconnection
Networks: A Case Study in the Star Graph. Manuscript, 2012.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms, 2nd ed.
The MIT Press, 2001.

[3] M. Dietzfelbinger, S. Madhavapeddy, and I.H. Sudborough. Three Disjoint Path Paradigms in
Star Networks. In Proc. of the 3rd IEEE Symposium on Parallel and Distributed Processing,
Dallas, Texas, IEEE Computer Society Press, pages 400-406, 1991.

[4] S. Gao, B. Novick, and K. Qiu. From Hall’s Matching Theorem to Optimal Routing on Hyper-
cubes. Journal of Combinatorial Theory (B), 74(2): 291-301, 1998.

[5] T.F. Gonzalez and D. Serena. n-Cube Network: Node Disjoint Shortest Paths for Maximal
Distance Pairs of Vertices. Parallel Computing, 30:973-998, 2004.

[6] Q.P. Gu and S.T. Peng. An Efficient Algorithm for k-Pairwise Disjoint Paths in Star Graphs.
Information Processing Letters, 67:283-287, 1998.

[7] Q.P. Gu and S.T. Peng. An Efficient Algorithm for the k-Pairwise Disjoint Paths Problem in
Hypercubes. Journal of Parallel and Distributed Computing, 60:764-774, 2000.

[8] P. Hall. On Representatives of Subsets. J. London Math. Soc., 10:26-30, 1935.

[9] J.E. Hopcroft and R.M. Karp. An n5/2 Algorithm for Maximum Matching in Bipartite Graphs.
J. SIAM COMP., 2:225-231, 1973.

[10] R.M. Karp. On the Computational Complexity of Combinatorial Problems. Networks, 5:45-68,
1975.

[11] R.M. Karp and M.O. Rabin. Efficient Randomized Pattern-Matching Algorithms. Technical
Report TR-31-81, Aiken Computation Laboratory, Harvard University, 1981.

[12] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity
Dover, Mineola, New York, 1998.

[13] K. Qiu and B. Novick. Disjoint Paths in Hypercubes. Congressus Numerantium, 119:105-112,
1996.

[14] M.O. Rabin. Efficient Dispersal of Information for Security, Load Balancing, and Fault Toler-
ance. Journal of ACM, 36(2):335-348, 1989.

191

