
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 3, Number 2, pages 217–227, July 2013

Naxim: A Fast and Retargetable Network-on-Chip Simulator with QEMU and SystemC

Keita Nakajima

Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Shuto Kurebayashi Yusuke Fukutsuka Takuji Hieda
Ittetsu Taniguchi Hiroyuki Tomiyama

College of Science and Engineering, Ritsumeikan University
1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8603, Japan

Hiroaki Takada

Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Received: February 19, 2013
Revised: May 21, 2013
Accepted: June 18, 2013

Communicated by Yasuaki Ito

Abstract

Systems-on-Chip (SoC) architectures have been shifting from single-core to multi-core so-
lutions, and they are at present evolving towards many-core ones. Network-on-Chip (NoC)
is considered as a promising interconnection scheme for many-core SoCs since it offers better
scalability than traditional bus-based interconnection. In this work, we have developed a fast
simulator of NoC architectures using QEMU and SystemC. QEMU is an open-source CPU em-
ulator which is widely used in many simulation platforms such as Android Emulator. In the
proposed simulator, each CPU core is emulated by a QEMU, and the network part including
NoC routers is modeled with SystemC. The SystemC simulator and QEMUs are connected by
TCP sockets on a host computer. Our simulator is fast because QEMUs run in parallel on a
multi-core host computer or even multiple host computers. Also, our simulator is highly re-
targetable because QEMU provides a variety of CPU models and we use QEMU as is. In our
experiments, our simulator successfully simulates a 108-core NoC in a practical time. We have
also confirmed the scalability and retargetability of our NoC simulator.

Keywords: instruction-set simulation, network-on-chip, SystemC, software development support

1 Introduction

The continuous advance in semiconductor technology enables us to place more CPU cores on a
single System-on-Chip (SoC). According to ITRS Report 2011 Edition [1], the number of cores
on a chip has been increasing by 40% every year, and it will exceed a hundred cores in 2017 for

217

Naxim: A Fast and Retargetable Network-on-Chip Simulator with QEMU and SystemC

high-performance embedded applications such as networking routers. In the forthcoming many-core
SoC era, the traditional bus-based interconnection architecture is no longer feasible due to its poor
throughput performance. Network-on-Chip (NoC), in which cores communicate with each other
by sending/receiving packets through routers (switches), has emerged as a promising alternative
paradigm for on-chip communication. Compared with the traditional bus-based interconnection,
NoC brings various benefits such as shorter wire delay, higher overall throughput, higher fault
tolerance, regularity in physical design, and so on.

Along with an increase in the number of cores, software development as well as hardware design
becomes more complicated and time-consuming. In many cases of embedded software development,
what is worse, hardware prototype boards are not available until very late stages of the system design.
Before the real hardware becomes available, software development inevitably relies on simulation on
host computers. Software simulation is broadly classified into two methods [2]. One is native
execution (host-compiled simulation in other words), in which software is directly compiled with a
native compiler and executed on the host computer. Native execution is very fast, but its execution
behavior on the host computer may be very different from that on the target computer. Another
drawback of native execution is that it cannot be used for development of Hardware-dependent
Software (HdS). The other method is interpretive simulation, in which software is cross-compiled
with a compiler of the target CPU, and the compiled code is executed on an instruction-set simulator
of the target hardware. Interpretive simulation behaves more accurately than native execution, but
suffers from a lower execution speed. Thus, the two methods are complementary. At early phases of
software development, software functionality is extensively validated by means of native execution,
and at later phases, the software is carefully optimized and tested by interpretive simulation. This
paper studies interpretive software simulation for NoC architectures.

Several innovative techniques have been developed in the past for the improved speed of inter-
pretive software simulation. Among them, dynamic binary translation is one of the most efficient
techniques, and is employed by a number of simulators and virtual machines developed in indus-
try and academia. QEMU is one of the most popular simulators with dynamic binary translation
[3]. QEMU supports a variety of processors including multicore processors, but it does not support
NoC-based many-core processors by itself.

This paper describes a simulator, named Naxim, for NoC-based many-core architectures using
QEMU and SystemC. SystemC is a de-facto standard language for event-driven simulation of elec-
tronic systems, and its reference simulator is freely available from the website of Accellera [4]. The
Naxim simulator uses a SystemC simulator and a set of QEMUs. Each CPU core is simulated by
a QEMU. In case of N -core NoC, therefore, N QEMUs are executed. The network part including
NoC routers is modeled with SystemC. The SystemC simulator and QEMUs are connected by the
TCP socket on a host computer.

The Naxim simulator features as follows.

• The Naxim simulator is efficiently executed on a multicore host computer. Recent processors
used in host computers (i.e., PC and workstations) have multiple CPU cores, over which
multiple threads/applications are executed in parallel. In Naxim, the SystemC simulator
and individual QEMUs are different applications from a viewpoint of the host OS. Thus, the
SystemC simulator and QEMUs can be executed in parallel on the host computer.

• The Naxim simulator can be executed on multiple host computers since the SystemC simulator
and QEMUs are connected via standard TCP sockets.

• The Naxim simulator is highly retargetable since QEMU supports a variety of processors and
we use QEMU without any modification.

• The Naxim simulator consists of SystemC and QEMU, both of which are open-source software.
Commercial software is not used in our simulator.

The reminder of this paper is organized as follows. Section 2 reviews related works. Section 3 de-
scribes the Naxim simulator, and Section 4 shows a set of experiments and discusses the effectiveness
of our simulator. Finally, Section 5 concludes this paper with a summary.

218

International Journal of Networking and Computing

��������	

���
������	

���
	��

������ ������

������ ������

��� ��� ��� ���

Figure 1: An overview of the Naxim simulator.

2 Related Work

In the past, a number of NoC simulators have been developed in the world. C++, Java and SystemC
are popular languages to develop NoC simulators. NoC simulators written in SystemC include Noxim
[5], NNSE [6] and PPNOCS [7]. Most of existing NoC simulators simulate on-chip interconnection
network only, and do not simulate CPU cores. They are suitable to evaluate the performance of
network architectures using synthetic packets, but are not applicable to software development for
NoCs. On the contrary, our NoC simulator simulates CPU cores as well as on-chip interconnection
network, and thus is applicable to software development.

In [8], the authors have devolped a hardware/software cosimulator using QEMU and SystemC.
Their simulator has cycle-level timing accuracy, but does not support multi/many-core SoCs.

Several researchers have developed simulation platforms which take advantage of QEMU and
SystemC. The core of the simulation platforms is a set of libraries to connect QEMU and SystemC
so that users can easily devlop their own simulators. Examples of such simulation platforms include
QBox [9, 10], TLMu [11], and Rabbits [12, 13]. Some of them support simulation of multi-core
architectures, but to the best of our knowledge, they are not used for simulation of NoCs with more
than 100 cores. Our NoC simulator, on the other hand, can successfully simulate 108-core NoCs at
a practical speed.

There also exist several simulation platforms which are not based on QEMU and SystemC.
Examples of such simulation platforms include GEMS [14] and GEM5 [15]. GEMS is often used
in conjunction with Wind River Simics [16, 17]. Using these platforms, engineers can easily devlop
a simulator of their own NoC architecture. To our understanding, however, these simulators are
executed as a single process on a host computer, and thus, cannot take advantage of the multi-core
parallelism of the host computer.

3 The Naxim Simulator

This section describes an overview and detailed organization of our NoC simulator.

3.1 Overview

At present, our NoC simulator is executable on Linux-based host computers. However, it can be
easily portable to different OS machines which support TCP/IP protocols.

Figure 1 shows an overview of our simulator for a quad-core NoC architecture. The simulator
consists of an OSCI SystemC reference simulator and four QEMUs. Each QEMU simulates a CPU
core. The network part including routers and interconnection between the routers are modeled in
SystemC, and executed on the SystemC simulator. Each router module modeled in SystemC is

219

Naxim: A Fast and Retargetable Network-on-Chip Simulator with QEMU and SystemC

��������	

���������

�������

������

��	

��

��

�

��	���

�	
��

�����

��
�����

�����

����������	
��������

��������	
�������

������� �������

�����������

���	�

������������

��������� ���������

���������

� �

�

�

�

�

� �

�����

����� �����

�����

����������

Figure 2: Internal organization of the Naxim simulator.

connected to a corresponding QEMU by a TCP socket. The SystemC simulator and QEMUs are
executed as different processes on a host machine.

NoC topologies supported by our simulator are ring and 2D-mesh. At present, the NoC router
in Naxim is very simplified because Naxim is developed mainly for software designers who want to
perform functional debugging of software and do not require details of the hardware architecture.
Our simple router model features static X-Y routing, store-and-forward switching, no virtual channel,
unlimited-size buffer for each direction, no pipelining, and delta-time latency. These restrictions do
not come from our simulation platform, but from IPs of router modules. Our simulator can simulate
a wider range of NoC architectures by developing new router modules in SystemC.

The timing accuracy of Naxim is not cycle-accurate, and thus, Naxim cannot used for perfor-
mance evaluation of software or hardware. More specifically, neither QEMU nor the network part in
SystemC is cycle-accurate. QEMU counts the number of instructions executed, but does not count
the execution cycles 1. The SystemC part is not cycle-accurate, either. A packet is transmitted from
router to router in a delta time-unit. This means that it takes zero clock cycle to transmit a packet
from source core to destination one.

3.2 Communication between QEMU and SystemC

Figure 2 shows an internal organization of our simulator for a unidirectional ring-based NoC with
four cores. Four routers are modeled in SystemC, each of which is connected to QEMU via a TCP
socket. We decided to use TCP sockets due to their popularity and reliability. TPC sockets are
supported by most of major operating systems such as Linux and MS-Windows. Therefore, porting
Naxim onto different host computers is not difficult. TCP sockets are reliable in the sense that it is
guaranteed that sockets are delivered in order without being lost 2.

QEMU features two types of simulation, i.e., user mode emulation and full system emulation.
User mode emulation executes a single application program without running an OS on the QEMU.
In other words, QEMU simulates a target processor only, and do not simulate its peripheral devices.

1Although original QEMU is not cycle-accurate, some research groups such as [12, 18] have studied cycle-accurate
simulation based on QEMU. We can utilize their achievements at the cost of degraded portability and simulation
speed.

2TCP sockets are reliable at the cost of performance overhead. For example, UDP sockets are faster than TPC
ones, but UDP is not as reliable as TCP. UDP sockets may be delivered out of order, or may be lost in the worst case.

220

International Journal of Networking and Computing

int sendPacket(const char* p, const int& len, const int& id);

// p : pointer to data to be sent

// len : size of data to be sent (in bytes)

// id : ID of destination core

// return value : size of data sent successfully (in bytes)

int receivePacket(const int& len, const char* p);

// len : size of data to be received (in bytes)

// p : memory address to copy received data

// return value : size of data received successfully (in bytes)

Figure 3: Socket wrapper APIs.

System calls executed on the QEMU are passed to the OS of the host computer. On the other hand,
full system emulation simulates the entire target computer, including not only the target processor
but also its peripheral devices. An OS runs on the QEMU, and system calls from an application
program are handled by the OS running on the QEMU. In either type of simulation, TCP/IP
networking applications are runnable on QEMUs. In user mode simulation, network system calls are
passed to the host OS, whereas the network system calls are handled by the OS on the QEMU in full
system emulation. The Naxim simulator takes advantage of this feature of QEMU in order to connect
QEMUs to the SystemC simulator. The Naxim simulator supports both user mode emulation and
full system emulation of QEMU. We use TCP sockets as a fundamental communication protocol.
Since TCP sockets are very primitive, we have developed an additional protocol layer to provide
easy-to-use APIs to application programs. The layer is named socket wrapper in Figure 2. The
socket wrapper APIs include simple send/receive functions as shown in Figure 3.

The network part of NoC is modeled in SystemC. A router is modeled as a SystemC module.
As shown in Figure 2, each router module has a wrapper for TCP networking, and a method,
named socketPollingMethod(), monitors the TCP socket at every simulation cycle. When a packet
arrives from QEMU, the router sends it to one of neighbors according to the NoC routing protocol.
Packet routing is handled by a SystemC thread, named routerMainThread() shown in Figure 2.
Communication between routers is implemented by simple FIFO channels which are provided by the
SystemC standard library. When a packet arrives from a neighbor router, the receiver router checks
the destination of the packet. If the destination is the receiver router itself, the packet is sent to
QEMU via the TCP socket. If the destination is different, the packet is passed to a neighbor router
according to the routing protocol. Fragments of SystemC code for the top module and the router
module are presented in Figures 4 and 5, respectively. Note that these SystemC code fragments are
written for the 4-core unidirectional-ring NoC shown in Figure 2, and thus the router has only a
single input port and a single output port. In case of 2D-mesh NoCs, each router has four input
ports and four output ports for inter-core communication.

4 Experiments

We have conducted a set of experiments to demonstrate the effectiveness of the Naxim simulator.
Specifically, we have evaluated performance scalability and retargetability of the Naxim simulator. In
addition, we have compared the elapsed simulation time of Naxim with that of an existing simulator.

4.1 Experimental Setup

We used a JPEG encoding application as our benchmark program. The JPEG application was
pipelined with nine stages, each of which is mapped to a CPU core. We have simulated six NoC

221

Naxim: A Fast and Retargetable Network-on-Chip Simulator with QEMU and SystemC

class Top : public sc_module

{

// SystemC channel declaration

sc_fifo<internal_packet> ch_instance1;

sc_fifo<internal_packet> ch_instance2;

sc_fifo<internal_packet> ch_instance3;

sc_fifo<internal_packet> ch_instance4;

Router R_module1; // Router instantiation

Router R_module2;

Router R_module3;

Router R_module4;

R_module1.out_port(ch_instance1);

R_module2.in_port (ch_instance1);

R_module2.out_port(ch_instance2);

R_module3.in_port (ch_instance2);

R_module3.out_port(ch_instance3);

R_module4.in_port (ch_instance3);

R_module4.out_port(ch_instance4);

R_module1.in_port (ch_instance4);

// Other modules if any

}

Figure 4: Part of SystemC code for the top module.

class Router : public sc_module

{

// SystemC port declaration

sc_fifo_in in_port;

sc_fifo_out out_port;

sc_event arrival_event; // event of packet arrival from core

socketWrapper sw; // instantiation of socket wrapper

void socketPollingMethod();

void routerMainThread();

// user-defined threads and methods

}

Figure 5: Part of SystemC code for the router module.

222

International Journal of Networking and Computing

�
�
�
��
�
�
�
	
�

�
�
�
�
��
��
��
�

�
�
�
��
�

�
��
��

��
�
��
�
��
�
�
	

�	

��

�
�

��
�
���
��
�
�
	

�	

��
�
�

�
�
�
��
�

�
��
��

�
�
�
��
�

�
��
��

��
�
��
�
��
�
�
	

�	

��

�
�

��
�
��
�
��
�
�
	

�	

��

�
�

�
�
�
��
�

�
��
��

�
�
�
��
�

�
��
��

��
�
��
�
��
�
�
	

�	

��

�
�

��
�
��
�
��
�
�
	

�	

��

�
�

�
�
�
��
�

�
��
��

��
�
��
�
��
�
�
	

�	

��

�
�

�

�
�
��
!�
��
�
�

"

##
$
�
�

%
�
&�

��
'

��
�
��
�
��
�
�
	

�	

��

�
�

�
�
�
��
�

�
��
��

��
�
���
��
�
�
	

�	

��
�
�

��
�
���
��
�
�
	

�	

��
�
�

�
�
�
��
�

�
��
��

�
�
�
��
�

�
��
��

��
�
��
�
��
�
�
	

�	

��

�
�

��
�
��
�
��
�
�
	

�	

��

�
�

�
�
�
��
�

�
��
��

�
�
�
��
�

�
��
��

��
�
��
�
��
�
�
	

�	

��

�
�

��
�
��
�
��
�
�
	

�	

��

�
�

�
�
�
��
�

�
��
��

��
�
��
�
��
�
�
	

�	

��

�
�

�

�
�
��
!�
��
�
�

"

##
$
�
�

%
�
&�

��
'

��
�
���
��
�
�
	

�	

��
�
�

��
�
��
�
��
��
��
��
��
�
��

�
��
�	

�
��
�

�
��
��

�
��
��

�
��
�

�
��
��

�
��
��

�
��
��

�
��
��

�
��
�	

�
��
�

�
��
�
�

�
��
�
�

��
�
��
�
��
��
�
	

�	

��

�
�

�
�
�
��
�
�
�
	
�

�
�
�
�
��
��
��
��
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
��
�

�
��
��

��
�
�
���
��
�
�
	

�	

��

�
�

��
�
�
���
��
�
�
	

�	

��
�
�

�
�
�
��
�

�
��
��

�
�
�
��
�

�
��
��

��
�
�
��
�
��
�
�
	

�	

��

�
�

��
�
�
��
�
��
�
�
	

�	

��

�
�

�
�
�
��
�

�
��
��

�
�
�
��
�

�
��
��

��
�
�
��
�
��
�
�
	

�	

��

�
�

��
�
�
���
��
�
�
	

�	

��
�
�

�
�
�
��
�

�
��
��

��
�
�
��
�
��
�
�
	

�	

��

�
�

�

�
�
��
!�
��
�
�

"

##
$
�
�

%
�
&�

��
'

��
�
�
��
�
��
�
�
	

�	

��

�
�

�
��
�	

�
�
�
��
�
�
�
	
�

�
�
�
�
��
��
��
�

��
�
��
�
��
�
�
	

�	

��

�
�

��
�
�
��
�
��
�
�
	

�	

��

�
�

�
�
�
��
��

��
��

	
�
��

�
�
�
��
�
�
��
�
�
�

�
�

�
��
��
�
�

�

�

�
�
��
�
�
�
��
�
�
��
�

�
�
�

�
�
�
�!
��
"
�#
�

Figure 6: Mapping of JPEG applications onto NoC architectures.

223

Naxim: A Fast and Retargetable Network-on-Chip Simulator with QEMU and SystemC

�
�
��
�
� �
�
��
�
� �
�
��
�
� 	

	
��
�
�

�

�
��
�
�

�

�
��
�
�

	
�
��

�

�
�
�	

�

�

��
�
�

�
�
��
�
�

	
�
�
�	
�
�

�

�
��

�

	
�
��

�

�
�
��
�
�

�
�
��
�
�

�
�
��
	
�

�
�
��

�

	
�

��
�
�

�

��

���

���

���

���

���

���

���	�
�� ����	�
�� ���	�
�� ����	�
�� ���	�
�� ������	�
���

�������

�
��
�
��
�
�	

�

�
��
�

���������

����������

����������

Figure 7: Elapsed simulation times for different-size NoCs.

architectures with 9, 18, 27, 36, 72 and 108 cores. The NoC architectures are based on 2D-mesh
with XY routing. As shown in Figure 6, multiple JPEG applications are executed on the NoC
architectures. In case of a 18-core NoC, two images are encoded in parallel.

4.2 Scalability

First, we ran the Naxim simulator on a single host computer with Intel Core2 Duo P8700 (2.53GHz,
dual cores, no hyperthreading), 4GB DDR2-800 memory and Ubuntu Linux. We changed the number
of cores on the NoC along with the number of image streams, and measured the simulation time.
The size of images to be encoded is 1024-by-768 pixels. The ISA of the target cores is i386. The
simulation time is shown in blue bars in Figure 7. The results show that the simulation time is
nearly proportional to the number of cores. We successfully simulated up to 108-core NoC in a
practical time. The results demonstrate an excellent scalability of Naxim.

Next, we ran the Naxim simulator on two and four host computers. All of the host computers
were identical, with the same features as described above. The SystemC simulator was executed on
one of the hosts, and QEMUs were evenly distributed over the hosts. The simulation times on two
hosts and four hosts are shown in red and green bars, respectively, in Figure 7. The distributed
simulation on the two host computers is 34% faster than the single-host simulation, and simulation
on the four hosts is 48% faster. The results demonstrate another-level scalability, i.e., the scalability
with respect to the number of host computers as well as the number of target cores.

4.3 Retargetability

One of the important features of our NoC simulator is its high portability. Our simulator supports
any CPU core supported by QEMU since we use QEMU without modification. In order to test the
retargetability of our simulator, we changed the ISA of target cores and measured the simulation
times. We also ran QEMU as both user mode emulation and full system emulation. In case of
full system emulation, we used Debian Linux as a target OS. A single-stream JPEG encoder was
executed on a nine-core NoC architecture. The image size is 3648-by-2736 pixels. The host computer
features Intel Core i7 990x (3.46GHz, 6 cores, 12 threads), 12GB DDR3-1333 memory and Ubuntu
Linux. The simulation results are shown in Figure 8. In the figure, native refers to native software
execution without QEMU. It is confirmed that a wide range of ISAs are supported by our simulator.

224

International Journal of Networking and Computing

�� �� �� ��
��

���

���

��

��

��� ��	
��
 ���

���

����

��	
���

�

���

���

���

���

���

���

���

	��

��

����

����������

����

��	� �	���� ���� ������ ������ ��� ����� ���

�
��
�
��
�
�	

�

�
��
�
�

� ���!"���!#$%&�' (#$$�) &�!��!#$%&�'�*+�,��$$�-�.�%'/

�%&�0�

Figure 8: Elapsed simulation times for different ISAs.

Table 1: Comparison of elapsed simulation time with an existing simulator.
Elapsed simulation time

TLMu 23,466 sec
Naxim 24 sec

4.4 Comparison with an Existing Simulator

It is very difficult to quantitatively compare the performance of Naxim with other simulators. In
order to do so fairly, we need to create a simulation model of the same NoC architecture (i.e., same
instruction-set architecture, same interconnection architecture, same peripherals, and so on) on a
different simulation platform at the same level of abstraction, which was impossible for us.

Although it is not completely fair, we have created a simulation model of a 9-core SoC using
the TLMu library [11]3 and compared its simulation time with Naxim just for a reference. The
SoC modeled with TLMu is not based on NoC but a traditional bus-based architecture, but the
abstraction level of on-chip communication is the same as Naxim. The ISA of the cores is ARM.

We ran the 9-stage pipelined JPEG encoder application (1024-by-768 pixels) on the two simula-
tors as follows:

TLMu: A simulator of a bus-based 9-core SoC modeled with TLMu.

Naxim: A simulator of a 2D-mesh 9-core NoC modeled with Naxim.

Table 1 shows the elapsed simulation times of the two simulators. The results show that the
elapsed simulation time of Naxim is shorter than that of TLMu by approximately three orders of
magnitude. Although the modeled architectures are not identical, this result clearly demonstrates
the high performance of the Naxim simulator.

5 Conclusions

In this work, we have developed a fast simulator of many-core NoC architectures, named Naxim,
which takes advantage of QEMU and SystemC. QEMU simulates a CPU core, while SystemC is used
for simulation of routers and interconnection. The Naxim simulator efficiently runs on a multi-core
host computer and even on multiple host computers. Our experimental results demonstrate the high
performance, scalability and retargetability of the Naxim simulator.

3More precisely, we used the TLMu library which was modified by hdLab [19].

225

Naxim: A Fast and Retargetable Network-on-Chip Simulator with QEMU and SystemC

At present, the timing of our simulator is not cycle-accurate. Improvement of the timing accuracy
is a subject of our future work. Also, we plan to support a wider range of NoC routing and switching
mechanisms.

Acknowledgments

We would like to thank Mr. Yosuke Kurimoto for his supports to conduct our experiments.
This work is supported in part by New Energy and Industrial Technology Development Organi-

zation (NEDO), Japan.

References

[1] ITRS 2011 Edition, http://www.itrs.net/Links/2011ITRS/Home2011.htm.

[2] F. Petrot, M. Gligor, M.-M. Hamayun, S. Hao, N. Fournel and P. Gerin, “On MPSoC Software
Execution at the Transaction Level,” IEEE Design and Test of Computers, vol. 28, no. 3, pp.
32-43, 2011.

[3] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” USENIX Annual Technical
Conference, 2005.

[4] Accellera Systems Initiative, http://www.accellera.org/.

[5] M. Palesi, D. Patti and F. Fazzino, Noxim: The NoC Simulator, http://noxim.sourceforge.net/.

[6] Z. Lu, R. Thid, M. Millberg, E. Nilsson and A. Jantsch, “NNSE: Nostrum Network-on-Chip
Simulation Environment,” Swedish System-on-Chip Conference, 2005.

[7] E. S. M. Saad, S. A. Salem, M. H. Awadalla and A. M. Mostafa, “PPNOCS: Performance
and Power Network on Chip Simulator based on SystemC,” International Journal of Computer
Science, vol.8, issue 6, Nov. 2011.

[8] M.-C. Chiang, T.-C. Yeh and G.-F. Tseng, “A QEMU and SystemC-Based Cycle-Accurate ISS
for Performance Estimation on SoC Development,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 30, no. 4, Apr. 2011.

[9] M. Monton, A. Portero, M. Moreno, B. Martinez and J. Carrabina, “Mixed SW/SystemC SoC
Emulation Framework,” International Symposim on Industrial Electronics, 2007.

[10] GreenSocs Ltd., QBox: QEMU based Full System Virtual Platforms,
http://www.greensocs.com/projects/QEMUSystemC.

[11] F. Bellard, TLMu: Transaction Level eMulator, http://edgarigl.github.com/tlmu/.

[12] M. Gligor, N. Fournel and F. Petrot, “Using Binary Translation in Event Driven Simulation
for Fast and Flexible MPSoC Simulation,” International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2009.

[13] TIMA Laboratory, Rabbits: An Environment for Fast and Accurate MPSoC Simulation,
http://tima-sls.imag.fr/www/research/rabbits.

[14] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K.
E. Moore, M. D. Hill and D. A. Wood, “Multifacet general execution-driven multiprocessor
simulator (GEMS) toolset,” ACM SIGARCH Computer Architecture News, vol. 33, no. 4, pp.
92–99, 2005.

226

International Journal of Networking and Computing

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.
Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, D. A.
Wood, “The gem5 simulator,” ACM SIGARCH Computer Architecture News, vol. 39 no. 2, pp.
1–7, 2011.

[16] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt and B. Werner, “Simics: A full system simulation platform,” IEEE Computer, vol.
35, no. 2, pp. 50–58, 2002.

[17] Wind River, http://www.windriver.com/products/simics/.

[18] D. Thach, Y Tamiya, S Kuwamura and A Ike, “Fast Cycle Estimation Methodology for
Instruction-Level Emulator,” Design Automation and Test in Europe, 2012.

[19] hdLab, http://www.hdlab.co.jp/web/a050consulting/b009armcpumodel/.

227

