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Abstract

The existing k-dominant skyline solutions are restricted to centralized query processors, lim-
iting scalability, and imposing a single point of failure. To overcome those problems in this
paper, we propose the computation and maintenance algorithms for spatial k-dominant skyline
query processing in large-scale distributed environment. Where the underlying dataset is par-
titioned into geographically distant computing core (personal computer) that are connected to
the coordinator (server). Our proposed techniques preserve the spatial k-dominant computation
object itself into a serialized form. This preservation is done in client’s core after completing a
computational job successfully. When the issue of maintenance comes in action, preserve data
object retrieves and use for computation. This procedure eliminates the necessity of interme-
diate re-send and re-computation of k-dominant skyline for the maintenance issue. Thus, we
quantify the gain of data transferring consecutively into different cores to maximize the overall
gain as well as the query or balancing the load on different cores fairly. Extensive performance
study shows that proposed algorithms are efficient and robust to different data distributions.

Keywords: Skyline, k-dominant Skyline, Load table, Maintenance

1 Introduction

An user often wants to optimize their decision making and selection criteria across multiple at-
tributes. In many cases, especially in multi-criteria decision making, there is no single best answer
to a query. Skyline queries do not require an explicit preference function, which may be difficult for
the user to define when the relative importance of the different criteria is vague.
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Figure 1: Skyline Example

A skyline query retrieves a set of skyline objects so that the user can choose promising objects
from them and make further inquiries. Skyline objects in a database are objects that are not
dominated by any other objects in the database. Given an n-dimensional database DB, an object
Oi is said to be in skyline of DB if there is no other object Oj (i ̸= j) in DB such that Oj is better
than Oi in all dimensions. If there exists such Oj , then we say that Oi is dominated by Oj or Oj

dominates Oi. Figure 1 shows a typical example of skyline. The table in the figure is a list of hotels,
each of which contains two numerical attributes: distance and price, for online booking. A user
chooses a hotel from the list according to her/his preference. In this situation, her/his choice usually
comes from the hotels in skyline, i.e., one of h1, h3, h4 (see Figure 1 (b)). Therefore, such skyline
query functions are important for several database applications, including customer information
systems, decision support, data visualization, and so forth. A number of efficient algorithms for
computing skyline objects have been reported in the literature [1, 2, 3, 4, 5].

In a high-dimensional dataset a skyline query often retrieves too many objects to investigate.
To minimize the result and to find more important and meaningful objects, Chan et al. considered
k-dominant skyline query [6]. They relaxed the definition of “dominated” so that an object is likely
to be dominated by another. Given an n-dimensional database, an object Oi is said to k-dominates
another object Oj (i ̸= j) if there are k (k ≤ n) dimensions in which Oi is better than or equal to
Oj . A k-dominant skyline object is an object that is not k-dominated by any other objects.

Until now the k-dominant skyline literature has focused on centralized databases. In practice,
data are often collected from multiple sources that are geographically distant from each other.
For example, assume a travel agency has numerous computing cores (data sources), each of which is
located in a different city (New York, Los Angeles, Chicago, etc.), and manages only local properties.
A query may demand the k-dominant skyline of the properties in specific source via coordinator
(server). For this or similar type application, a distributed architecture is more suitable. This is
because, compared to the centralized counterpart, it has smaller computation cost, it allows better
local data management, smaller update cost, and higher tolerance to machine failures.

In this paper, we study the efficient maintenance of spatial k-dominant skyline queries, where
the underlying dataset is partitioned into geographically distant computing cores that are connected
to the coordinator. Assume a system architecture, that consists of a server with a network access
point, and several core connect to the server (Figure 2). The server can directly communicate with
any core and request for k-dominant skyline computation. In such a setting, each time the server
sends a k-dominant skyline request with new dataset or maintenance request to a core, all objects
information that are not k-dominated have to be transferred to the server. Our previous work [16]
suffers from data transmission point of view. The server needs to resend the dataset again and again
for each update. For example, assume initially cores C1, C2, and C3 are assigned to process three
regional datasets R1, R2, and R3 respectively. After completing the computational work when a
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Figure 2: System architecture

core C1, becomes free then the new dataset D4 will be assigned to it. In our previous work [16],
for computational complexity, C1 did not store internal data structure related to D1. Next, when
dataset D1 requires some maintenance work then the server needs to assign a new core to perform
the same computation and maintenance operation respectively. This procedure consumes a lot of
computing power. The proposed work overcomes that problem and the controlling server need not to
resend the dataset again and again for each maintenance issue. In this approach data computation
object itself is stored as binary logic object data in the corresponding computing core. This technique
usually used to store image objects. As computation object itself is stored, we don’t have to worry
about the complexity of storing internal data structure related to a dataset. Computational objects
are stored and can be restored again if necessary.

Wu et al. [29] proposed distributed skyline query processing algorithm (DSL), to support skyline
search on a horizontally partitioned dataset. DSL is not applicable to our problem, where the
underlying database DB is horizontally partitioned onto the participating cores in an arbitrary
manner. Specifically, we allow each core to contain any subset of DB, rather than only the data
falling in a particular region. It is worth mentioning that the partitioning scheme adopted by DSL
incurs expensive network overhead for maintenance DB. For example, assume that core C1 receives
an insertion to DB that, however, falls in the region assigned to core C2. Since the object must
be retained at core C2, an object transfer (from core C1 to core C2) is required. In general, every
insertion may be accomplished by an object transfer, which is prohibitively costly in practice. Similar
thing will happen for delete as well as update operations. The proposed work does not suffer from
these drawbacks, because each core can manage its local dataset without any network transmission.

Here are the contribution of this paper:

(1) We extend k-dominant computation from centralized to distributed datasets. We propose a
framework for the maintenance of distributed spatial k-dominant skyline queries over multiple cores,
aiming to reduce data transmission overhead.

(2) We introduce three novel algorithms for distributed k-dominant skyline queries. The regis-
tration and ranking power calculation, and the job distributed algorithms work in server site. For
client site we develop computation core selection algorithm.

(4) Moreover, all computing cores are reliable, failure of one or more computing core does not
create any problem, the rest of the computing cores are responsible to conduct the computational
work.

(5) We conduct extensive experiments to perform the evaluation. The evaluation results show
that the proposed techniques are efficient and scalable. Our algorithms consistently outperform
against its competitor multicore based spatial k-dominant skyline (MSKS) in all examined setups.

The remainder of this paper is organized as follows. Section 2 discusses related work. Section 3
presents the notions and properties of regional k-dominant skyline computation. We provide detailed
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examples and analysis of our algorithm in Section 4. We experimentally evaluate our algorithm in
Section 5 under a variety of settings. Finally, Section 6 concludes the paper.

2 Related Work

Our work is motivated by previous studies of skyline query processing, k-dominant skyline query
processing as well as distributed k-dominant skyline query processing, which are reviewed in this
section.

2.1 Skyline Query Processing

Borzsonyi et al. first introduced the skyline operator over large databases and proposed three al-
gorithms: Block-Nested-Loops(BNL), Divide-and-Conquer(D&C), and B-tree-based schemes [2].
BNL compares each object of the database with every other object, and reports it as a result only
if any other object does not dominate it. A window W is allocated in main memory, and the in-
put relation is sequentially scanned. In this way, a block of skyline objects is produced in every
iteration. In case the window saturates, a temporary file is used to store objects that cannot be
placed in W . This file is used as the input to the next pass. D&C divides the dataset into several
partitions such that each partition can fit into memory. Skyline objects for each individual par-
tition are then computed by a main-memory skyline algorithm. The final skyline is obtained by
merging the skyline objects for each partition. Chomicki et al. improved BNL by presorting, they
proposed Sort-Filter-Skyline(SFS) as a variant of BNL [4]. Among index-based methods, Tan
et al. proposed two progressive skyline computing methods Bitmap and Index [7]. In the Bitmap
approach, every dimension value of a point is represented by a few bits. By applying bit-wise AND
operation on these vectors, a given point can be checked if it is in the skyline without referring to
other points. The index method organizes a set of d-dimensional objects into d lists such that an
object O is assigned to list i if and only if its value at attribute i is the best among all attributes
of O. Each list is indexed by a B-tree, and the skyline is computed by scanning the B-tree until
an object that dominates the remaining entries in the B-trees is found. The current most efficient
method is Branch-and-Bound Skyline(BBS), proposed by Papadias et al., which is a progressive
algorithm based on the best-first nearest neighbor (BF-NN) algorithm [5]. Instead of searching for
nearest neighbor repeatedly, it directly prunes using the R*-tree structure.

Recently, more aspects of skyline computation have been explored. Vlachou et al. introduce the
concept of extended skyline set, which contains all data elements that are necessary to answer a
skyline query in any arbitrary subspace [9]. Fotiadou et al. mention about the efficient computation
of extended skylines using bitmaps in [20]. Chan et al. introduce the concept of skyline frequency
to facilitate skyline retrieval in high-dimensional spaces [11]. Tao et al. discuss skyline queries in
arbitrary subspaces [12].

2.2 k-Dominant Skyline Query Processing

Chan et al. introduced k-dominant skyline query [6]. They proposed three algorithms, namely,
One-Scan Algorithm (OSA), Two-Scan Algorithm (TSA), and Sorted Retrieval Algorithm (SRA).
OSA uses the property that a k-dominant skyline objects cannot be worse than any skyline object
on more than k dimensions. This algorithm maintains the skyline objects in a buffer during the
scan of the dataset and uses them to prune away objects that are k-dominated. TSA retrieves a
candidate set of dominant skyline objects in the first scan by comparing every object with a set of
candidates. The second scan verifies whether these objects are truly dominant skyline objects or
not. This method turns out to be much more efficient than the one-scan method. A theoretical
analysis is provided to show the reason for its superiority. The third algorithm, SRA is motivated
by the rank aggregation algorithm proposed by Fagin et al., which pre-sorts data objects separately
according to each dimension and then merges these ranked lists [8].

The above skyline as well as k-dominant methods are designed for centralized database and do
not work in the distributed environment. Several attempts have been made to address distributed
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skyline retrieval, leading to a number of interesting methods [17, 14]. Balke et al. extended the
skyline problem for the web in which the attributes of an object are distributed in different web-
accessible servers. They assumes that a d-dimensional database is vertically partitioned into d lists,
where each list contains the values of a dimension in ascending order. They also develop an enhanced
solution that, instead of visiting the lists in a round-robin fashion, always accesses the most promising
list, so that the least expansion is performed on each list to discover an anchor point p. Huang et
al. [14] study skyline search on hand-held devices in a mobile ad-hoc network (MANET). Each device
store a tiny horizontal fraction of the underlying relation, and is able to communicate only with its
neighbors, i.e., devices within its contact range. The connection is ad-hoc because (i) two devices
cease to be neighbors when they move out of each other’s contact range, and (ii) new neighbors are
formed when two devices come close to each other. The objective is to compute the skyline over the
data of all the devices and report it at the querying device Q, by consuming as little bandwidth as
possible.

2.3 Distributed k-Dominant Skyline

Distributed skyline computation has recently attracted considerable attention and has been studied
in a variety of distributed systems, including web information systems [17], parallel systems [23],
peer-to-peer systems [18, 20, 21, 24, 25, 27, 28, 29], mobile ad-hoc networks [26], as well as more
generic distributed systems [19, 22]. Most of the existing approaches focus on highly distributed
environments, such as peer-to-peer networks, assuming that all data sources store common at-
tributes. Several approaches belong to this category, namely DSL [29], SSP [27], SKYPEER [24],
and BITPEER [20]. DSL was proposed by Wu et al. [29] and it is the first paper that addresses
constrained skyline query processing over disjoint data partitions by using a structured peer-to-peer
overlay, namely CAN. Wang et al. [27] propose the SSP algorithm based on the use of a tree based
peer-to-peer overlay (BATON) for assigning data to servers. SKYPEER [24] transforms the multi-
dimensional data into one-dimensional values and utilizes a thresholding scheme in order to reduce
the transferred data. Fotiadou et al. [20] propose BITPEER for supporting efficiently continuous
subspace skylines in a distributed setting by using distributed bitmap indexes. However, unfortu-
nately none of the above methods are designed for distributed k-dominant skyline computation. This
is because the maintenance of k-dominant skyline for an update is much more difficult due to the
intransitivity of the k-dominance relation. Assume that “A” k-dominates “B” and “B” k-dominates
“C”. However, “A” does not always k-dominate “C”. Moreover, “C” may k-dominate “A”. Because
of the intransitivity property, we have to compare each object against every other object to check the
k-dominance. Therefore in [15], Siddique and Morimoto, resolved k-dominant skyline maintenance
problem in a centralized dataset. We proposed MSKS [16] algorithm for spatial k-dominant skyline
computation and maintenance. The server needs to resend the dataset again and again for each
update. In this paper, we expand the k-dominant skyline queries to spatially distributed datasets
and resolve the dataset resending problem.

3 Preliminaries

This section discusses the distributed k-dominant skyline computation, maintenance problems, and
associated properties. Our objective is to extract the local k-dominant skyline and deliver it to a
server computer CR. We refer CR as the coordinator of the k-dominant skyline retrieval. Assume
there are x regional datasets named R1, R2, · · · , Rx and y computing cores called C1, C2, · · · , Cy.
CR can be any computer other than C1, C2, · · · , Cy. CR is able to initiate communication with each
core directly. Assume each dataset is n-dimensional and D1, D2, · · · , Dn are the n attributes of each
regional dataset. Let O1, O2, · · ·, Or be r objects (tuples) of a regional dataset, say Rp (1 ≤ p ≤ x).
We use Oi.Dj to denote the j-th dimension value of Oi.
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3.1 k-Dominance

An object Oi is said to dominate another object Oj , which we denote as Oi ≤ Oj , if Oi.Ds ≤ Oj .Ds

for all dimensions Ds (s = 1, · · · , n) and Oi.Dt < Oj .Dt for at least one dimension Dt (1 ≤ t ≤ n).
We call such Oi as dominant object and such Oj as dominated object between Oi and Oj .

By contrast, an object Oi is said to k-dominate another object Oj , denoted as Oi ≤k Oj , if
Oi.Ds ≤ Oj .Ds in k dimensions among n dimensions and Oi.Dt < Oj .Dt in one dimension among
the k dimensions. We call such Oi as k-dominant object and such Oj as k-dominated object between
Oi and Oj .

An object Oi is said to have δ-domination power if there are δ dimensions in which Oi is better
than or equal to all other objects of Rp.

3.2 Spatial k-Dominant Skyline

An object Oi ∈ Rp (1 ≤ p ≤ x) is said to be a spatial skyline object of Rp if Oi is not dominated
by any other object in Rp. Similarly, an object Oi ∈ Rp is said to be a spatial k-dominant skyline
object of Rp if Oi is not k-dominated by any other object in Rp. We denote a set of all spatial
k-dominant skyline objects in Rp as Skyk(Rp). Note that objects that have k-domination power
must be k-dominant skyline objects but not vice versa.

4 Distributed Spatial k-dominant Skyline

In this section, we present our algorithms for job distributing and computing spatial k-dominant
skyline objects and maintaining the result when update occurs. There is a crucial difference between
our network architecture and those in [14, 9, 29]. The architecture in [14, 9, 29] aim at supporting
massive distributed environments with a huge number of data machines. In our scenario the cores
number is moderately small.

Our job distribution algorithms are useful for efficient k-dominant skyline retrieval in distributed
environment. Job distribution is important for three reasons. (i) Efficient distributing method
enhances user experience by preventing a long idle period. (ii) It allocates the best computing core
to the largest regional dataset. (iii) It provides core allocation guarantee for every regional dataset.
We illustrate job distributing technique among multiple cores in Section 4.1. Then show how to
compute spatial k-dominant skyline for all k at a time in Section 4.2. Section 4.3 presents three
types of maintenance solution. They are insertion, deletion, and update operation.

The distributed system is designed in such a manner for enhanced computation speed. If a user
tries to compute in single core, it will consume a lot of computing time as well as computing power.
The user may complain about the overhead of transmitting full dataset each time a new computation
is initiated. The proposed techniques do not suffer from transmission issue.

4.1 Job Distribution

If the number of regional dataset is equal to or smaller than the available computing core (i.e., x ≤ y)
then there is no issue to consider for job distribution. However, when x > y, (i.e., the number of
regional dataset is larger than the available computing core) job distribution issues occur. We
propose three algorithms for job distribution. They are: registration and ranking power calculation,
job allocation, and computation core selection. Among the algorithms registration and ranking
power calculation and job allocation algorithms work in server site and the remaining computation
core selection algorithm works in client site.

Registration and Ranking Power Calculation

Suppose there are y computing cores called C1, C2, · · · , Cy for distributed spatial k-dominant skyline
computation. Every node needs to register itself to the coordinator CR. The CR has an independent
thread for registering and ranking computing cores. A core (say Cm) sends a registration request
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Algorithm 1: Registration and Ranking Power Calculation
Create LoadTable(ID, IP Address, Port no., Computing power, Memory size, Network traffic, Rank power, Status)

1. Start and wait 100ms for a registration request.
2. If new request arrives then

i. Assign a new ID Im for requesting core Cm.
ii. Store Cm’s Cm(IP ), Cm(CP ), Cm(M) in standard database
iii. Set Im status as “FREE”.

Else
i. Select all cores whose status are not BUSY (i.e., either “FREE” or “DEAD”).
ii. For each core Cm do the following steps:
a) Ping each Cm(IP ) 4-6 times and keep average response time Cm(RT ).
b) If Cm(RT ) = infinity, i.e., destination host is unreachable, then
Set Cm status as “DEAD” and continue.

c) Calculate Cm ranking power, RPm = 6 * Cm(CP ) + Cm(M) +(Cm(RT )−2).
d) Store RPm in LoadTable.

3. Go to step 1.

to CR. Then the independent thread of CR creates a load table named LoadTable(ID, IP Address,
Port no., Computing power, Memory size, Network traffic, Rank power, Status). ID can be any
value between 1 to y. Each core status can be either “FREE”, “BUSY” or “DEAD”. Computing
power Cm(CP ), memory size Cm(M) are supplied by corresponding core during the registration
procedure. Proposed method periodically monitors the traffic status during RPm calculation. The
average ping time or response time Cm(RT ), from controlling core CR to Cm uses as an indication of
traffic status. If the network is busy, the average ping time will be high. Again if Cm is disconnected
then the average ping time becomes infinity. In such situation Cm is marked as a dead core, i.e.,
core status field of LoadTable for Cm is set as “DEAD”. We consider three parameters such as
computing power, memory size, and network traffic to calculate RPm of Cm. Cm(CP ) and Cm(M)
are provided by Cm during the registration period and are stored in CR’s LoadTable. Rank power
RPm indicates the computing power of each individual core and is calculated using formula: RPm

= 6 * Cm(CP ) + Cm(M) +(Cm(RT )−2). In each ideal time (after waiting for new request up to a
certain period of time), CR continuously computes the ranking power of cores whose status are not
“BUSY”. In all other situations the proposed technique calculates RPm and stores it in LoadTable.
Registration and ranking power calculation algorithm is shown in Algorithm 1.

Job Allocation

The next challenging task is distributing computation job among cores. To do this CR creates a
QueueTable(Data id, Data location, Job type, Job status, Processing core ID, Processing time).
Data id can be any value such as “A”,“B”,“C”, etc. Data location is the location of the dataset.
Job type can be either “New” or “Maintenance”. Job status can be set as either “Unprocessed”
or “Processed”. Processing core ID is the id of the participating core. Processing time is the
completion time of the assigned job. A job request may have two different operations: completely
new processing (i.e., Spatial k-dominant skyline computation) or a maintenance operation. If the
job request is completely new then the type field in QueueTable populate with “New” otherwise set
“Maintenance”. When CR receives a new job. It places the job in queue and sets job data status as
“Unprocessed”. In CR an independent thread runs continuously to search the queue in order to find
whether or not any new job is being submitted. If a job or a set of jobs has status “Unprocessed”
then the thread starts parsing other field values for each new job. Assume a new request for dataset
Rp has arrived in queue. CR needs to find a suitable core to assign the computation responsibility.

If CR receives “New” request for the dataset Rp then, it searches LoadTable to find a free core
say, Cm with status “FREE” to do the job. It is possible to have more than one core with “FREE”
status. In such situation it selects the core Cm with highest Rank power. After that it initiates a
new child thread at CR to consult the computation process with Cm. In the child thread, Cm status
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Algorithm 2: Job Allocation
Create LoadTable (ID, IP Address, Port no., Computing power, Memory size, Network traffic, Rank power, Status)

QueueTable(Data id, Data location, Job type, Job status, Processing core ID, Processing time)
1. Search QueueTable for all entries with job status “Unprocessed”.
2. If found then for all available dataset do the following steps

a. Read the job type.
b. If the job type is “New” then
i. Search LoadTable for a core Cm with status “FREE”.
ii. If Cm found then set Status = “BUSY”

Initiate new thread for assign computation:
# Make RMI call to do the computation.
# Receive the result.
# Store result into a standard database.
# Update queue, set core ID = Cm and Job status = “Processed”.
# Mark Cm Status = “FREE”.

iii. Else continue
c. Elseif the job type is maintenance then
i. Search QueueTable for the core Cq who processed the dataset last time.
ii. If Cq found then

Search LoadTable to get the current Cq status.
If Cq Status = “FREE” then
# Update LoadTable, set Cq Status = “BUSY”.
# Initiate the maintenance job:

(.) Make RMI call to do the computation.
(.) Receive result.
(.) Store result into standard database.
(.) Update queue, set core ID = Cm and Job status = “Processed”.
(.) Mark Cq Status = “FREE”.

Else continue
Else continue

3. Go to step 1.

is changed from “FREE” to “BUSY”. CR transfers Rp to Cm, and waits for result. Waiting period
may vary depending on the size of Rm. After receiving the computation result, the resultant data
is being preserved in database and Cm status is marked as “FREE”. The computation time and
computing core ID are also stored in CR’s data storage system.

In case of “Maintenance” request CR searches QueueTable for the core say, Cq who has processed
Rp most recently. After finding the core Cq, CR searches LoadTable to obtain the information on
current status of Cq. If Cq is available i.e., “FREE” then CR initiates necessary steps to send the
maintenance request to Cq and waits for result. After receiving the result, it updates the local
database. However if Cq is not free, CR has to wait until it becomes “FREE”. During the time
of initiating a maintenance job to core Cq, LoadTables status field is changed from “FREE” to
“BUSY”. Meanwhile the dataset Rp status field in QueueTable is set to “Processed”. Algorithm 2
represents the job allocation algorithm.

Populating Load and Queue Table

This section discusses about how to populate LoadTable and QueueTable. Assume two comput-
ing core (core 1 and core 2) send their registration request to CR. These requests are registered
to LoadTable as shown in Table 1. Suppose at a certain period of time CR receives three data
processing requests. Among the requests two for new data processing and remaining one for main-
tenance. At this stage the QueueTable becomes Table 2. From QueueTable CR finds some jobs
with “Unprocessed” status. LoadTable shows that both cores have “FREE” status and core 1 has
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Table 1: LoadTable after complete the registration task

ID IP Add. Port no. Comp. Power Mem. Size Net. traffic Rank Power Status
1 192.168.0.4 2321 3.6 GHz 2048 MB 600 ms 2069.64 FREE
2 192.168.0.19 2222 2 GHz 2048 MB 300 ms 2060.0 FREE

Table 2: QueueTable after receives three jobs

Data id Data Location Job type Job status Processing core ID Processing time
A C:\Data\a.csv New Unprocessed NA NA
B C:\Data\b.csv New Unprocessed NA NA
A C:\Data\x.csv Maintenance Unprocessed NA NA

the highest ranking power. Then CR assigns the job with data id “A” to core 1 and data id “B”
to core 2, and updates LoadTable and QueueTable accordingly (see Tables 3 and 4). Since now
no core has “FREE” status, no new job initialization is possible until any one becomes “FREE”.
Suppose after 1500 seconds, computation process of data “A” has been completed. CR preserves
the result. Updated LoadTable and QueueTable are shown in Tables 5 and 6, respectively. Finally,
the maintenance job upon dataset “A” is assigned to core 1. Similar procedure will repeat for large
number of new dataset computation as well as maintenance.

Computation Core Selection

The most challenging task is to develop a mechanism for clients end computation. In this approach,
client’s core, say, Cc, begins its operation by issuing a participation registration request to CR.
After that Cc waits until any computation request is received. As we mentioned previously, there
exist two types computation requests: “New” and “Maintenance”.

If Cc receives a “New” request, it simply creates an object of computation class and initiates the
spatial k-dominant skyline computation. After performing the calculation, Cc preserves resultant
data and some internal status data of computing object for future maintenance operation. Preserving
only resultant and status data may cause some difficulties to re-initiate k-dominate computation as
well as maintenance. To overcome those problems we preserve the computing object itself instead
of resultant and status data. Cc serializes the computing object, and preserves the object as Binary
Logic Object Data (BLOD) into a database of file system. Then it returns the result to CR and
waits for a new job request.

In case of receiving a “Maintenance” computation request for regional Rp dataset, Cc searches its
local database or file system for the computation object whose dataset match with Rp. It should be
found, because CR sent such request upon finding that Cc has already completed such computation
in recent time. Cc de-serializes the BLOD data and constructs computation object. After performing
required maintenance operation, Cc sends back the resultant data and again preserves the serialized
form of computation object. Computation core selection algorithm is shown Algorithm 3.

4.2 Spatial k-dominant Skyline Computation

Assume there is a regional dataset Rp(1 ≤ p ≤ x) as shown in Table 7. In order to prune unnecessary
objects efficiently in the k-dominant skyline computation, we compute domination power of each

Table 3: LoadTable after assign the jobs between two cores

ID IP Add. Port no. Comp. Power Mem. Size Net. traffic Rank Power Status
1 192.168.0.4 2321 3.6 GHz 2048 MB 600 ms 2069.64 BUSY
2 192.168.0.19 2222 2 GHz 2048 MB 300 ms 2060.00 BUSY
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Table 4: QueueTable after assign the jobs

Data id Data Location Job type Job status Processing core ID Processing time
A C:\Data\a.csv New Processing 1 NA
B C:\Data\b.csv New Processing 2 NA
A C:\Data\x.csv Maintenance Unprocessed NA NA

Table 5: LoadTable after completing the job of core 1

ID IP Add. Port no. Comp. Power Mem. Size Net. traffic Rank Power Status
1 192.168.0.4 2321 3.6 GHz 2048 MB 600 ms 2069.64 FREE
2 192.168.0.19 2222 2 GHz 2048 MB 300 ms 2060.00 BUSY

Table 6: QueueTable after completing the job of core 1

Data id Data Location Job type Job status Processing core ID Processing time
A C:\Data\a.csv New Processed 1 1500
B C:\Data\b.csv New Unprocessed 2 NA
A C:\Data\x.csv Maintenance Unprocessed NA NA

Algorithm 3: Computation Core Selection
Standard database management system (MySQL)
1. Each core with Status = “FREE” sends computation request to CR.
2. If new processing request arrives from CR then

a. Check the job type.
b. If the job type is “New” then
i. Initiate new computation class object.
ii. Perform spatial k-dominant skyline computation.
iii. Serialize the computation object.
iv. Preserve the computation object into standard database.
v. Return result to the CR.

c. Elseif the job type is “Maintenance”
Search local database management system for processing object
i. If found then
# De-serialize the stored object to make it alive.
# Perform the maintenance operation.
# Serialize the computation object.
# Replace the previous serialized object with the new one.
# Return result to CR.

ii. Else return ERROR: OBJECT NOT FOUND.
4. Return to step 2.
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Table 7: Symbolic Regional Dataset, Rp

Obj. D1 D2 D3 D4 D5 D6

O1 7 3 5 4 4 3
O2 3 4 4 5 1 3
O3 4 3 2 3 5 4
O4 5 3 5 4 1 2
O5 1 4 1 1 3 4
O6 5 3 4 5 1 5
O7 1 2 5 3 1 2

Table 8: Ordered Domination Table

Obj. D1 D2 D3 D4 D5 D6 DP Sum DC IDX
O7 1 2 5 3 1 2 4 14 3 O5

O5 1 4 1 1 3 4 3 14 4 O7

O4 5 3 5 4 1 2 2 20 6 O7

O2 3 4 4 5 1 3 1 20 5 O7

O6 5 3 4 5 1 5 1 23 5 O7

O3 4 3 2 3 5 4 0 21 5 O7

O1 7 3 5 4 4 3 0 26 6 O7

object. We sort objects in descending order by domination power. If more than one objects have
the same domination power then sort those objects in ascending order of the sum value. This order
reflects how to k-dominate other objects.

Table 8 is the sorted object sequence of Table 7, in which the column “DP” is the domination
power and the column “Sum” is the sum of all values. In the sequence, object O7 has the high-
est domination power 4. Note that object O7 dominates all objects below it in four attributes,
D1, D2, D5, and D6.

After computing the sorted object sequence, we compute dominated counter (DC) and dominant
index (IDX). Detailed algorithm can be found in [15]. The dominated counter (DC) indicates the
maximum number of dominated dimensions by another object in Rp. The dominant index (IDX)
is the strongest dominator. That means IDX keeps the record of the corresponding strongest
dominator for each object.

The columns DC and IDX of Table 8 show the result of the procedure. Skyk(Rp) is a set of
objects whose DC is less than k. According to the dominated counter, we can see that Sky6(Rp) =
{O7, O5, O2, O6, O3}, Sky5(Rp) = {O7, O5}, and Sky4(Rp) = {O7}. Since there is no object whose
DC value is less than 3, thus Sky3(Rp) = {∅}.

4.3 Spatial k-dominant Skyline Maintenance

In this section, we discuss the maintenance problem of Skyk(Rp) after an update has occurred in
Rp. In the maintenance phase, we keep a vector that contains the minimal value for each dimension,
which we call the minimal vector. The minimal vector of Table 8 is {1, 2, 1, 1, 1, 2}. We also keep an
inverted index of the dominant index column (IDX). Table 9 is the inverted index of Table 8.

Lemma 1: Assume O1.Ds ≤ O2.Ds for all dimensions Ds (s = 1, · · · , n) for O1, O2 ∈ Rp. If O1

is not deleted from Rp, O2 will never be in the k-dominant skyline of Rp.

Proof: Since O2 is n-dominated by O1, it is also k-dominated by O1 because (k ≤ n). Therefore,
while O2 is in the Rp, there will be at least one object, namely O1, that k-dominates it and con-
sequently cannot become a k-dominant skyline. It implies that only Skyn(Rp) objects are relevant
for the k-dominant skyline maintenance task. ♢
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Table 9: Inverted Index

Obj. dominated
O5 O7

O7 O5, O4, O2, O6, O3, O1

Table 10: Ordered Domination Table after Insertions

Obj. DP Sum DC IDX Obj. DP Sum DC IDX
O7 4 14 3 O5 O7 4 14 3 O5

O5 3 14 4 O7 O5 3 14 4 O7

O4 2 20 6 O7 O10 2 13 4 O7

O2 1 20 5 O7 O4 2 20 6 O7

O6 1 23 5 O7 O2 1 20 5 O7

O9 0 18 5 O2 O6 1 23 5 O7

O3 0 21 5 O7 O9 0 18 6 O10

O1 0 26 6 O7 O3 0 21 5 O7

O8 0 36 6 O7 O1 0 26 6 O7

O8 0 36 6 O7

Insertion

Assume OI is inserted into Rp. We maintain Skyk(Rp) by examining the dominated counter (DC)
by scanning the sorted object sequence. If the DC value of an object is updated, we also update
the inverted index. During the update procedure, if OI is n-dominated by another object, then we
can stop the procedure immediately.

After updating DC and IDX, we insert OI into the sorted object sequence. We use a skip list
data structure for the sequence so that we can insert efficiently.

Assume we insert O8 = (6, 6, 6, 6, 6, 6) in the running example. By comparing with the first
object O7, we can find that O8 is 6 dominated by O7. Therefore, we immediately complete the
update of DC and IDX. Then, we insert O8 into the last position of the sorted sequence. Next, we
insert O9 = (3, 4, 4, 2, 2, 3). O9 is not 6 dominated by any object and we can find that the strongest
dominator of O9 is O2. Then, DC and IDX are updated as in Table 10 after inserting O9. Next, we
insert O10 = (2, 2, 3, 1, 2, 3). O10 is not 6-dominated by any object and the strongest dominator of
O10 is O7. Moreover, O10 becomes the strongest dominator of O9. Then, DC and IDX are updated
as in Table 10 after inserting O10.

Deletion

Assume OD is deleted from Rp. We check the inverted index to examine whether there is OD’s
record in the index.

Note that in Table 9 “Obj.” column in each record is the strongest dominator for objects in the
“dominated” column. Therefore, if there is no OD’s record in the inverted index, we do not have to
change the dominated counter (DC) for other objects. Otherwise, we initialize DC for each object
in the OD’s index record. Then, we perform the pairwise comparison. In this case, we do not have
to examine DC for objects that are not in the OD’s index record and therefore it is not costly.

Consider the running example again. Assume we delete O10. We examine DC of O9 by scanning
Table 10. The updated result is Table 10.

Update

In this section, we propose maintenance solution for update operation. Although one can handle
update operation with consecutive deletion and insertion. However, single update operation is
usually faster than consecutive delete and insert operation. Assume OU is updated from Rp. Then,
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Table 11: Ordered Domination Table after Updates

Obj. DP Sum DC IDX Obj. DP Sum DC IDX
O7 4 14 3 O5 O5 3 14 3 O4

O5 3 14 4 O7 O4 2 20 4 O7

O4 2 20 6 O7 O7 2 24 4 O5

O3 1 17 5 O7 O2 1 20 4 O5

O2 1 20 5 O7 O6 1 23 5 O4

O6 1 23 6 O3 O3 0 21 5 O5

O1 0 26 6 O7 O1 0 26 6 O4

Table 12: Response time for heterogeneous cores
Core Type Time (ms)
Single Core 603455

Core2 362701
Core i3 106986
Core i5 61329
Core i7 30458

same as delete operation, we have to check the inverted index to examine whether there is OU ’s
record in the index. If there is no OU ’s record in the inverted index, then we need one scan to revise
the dominated counter (DC) for updated object as well as all other data objects. Otherwise, we
initialize DC for each object from scratch. However, in this situation we argue that compared with
non-IDX objects, the number of IDX objects is very few and therefore update operation is also
not very costly.

Consider Table 8 and select a non-IDX object such as O3 for update. Assume we update D5

value of this object from 5 to 1. Then after dominance checking with other objects we find that O3

becomes the strongest dominator of object O6. This update procedure is shown in Table 11. Again
from Table 8 if we select an IDX object such as O7. In this case, we update the values of D1 and
D5 from 1 to 6. The revised result after this update is shown in Table 11.

5 Performance Evaluation

We conduct a series of experiments to evaluate the effectiveness and efficiency of our proposed
methods. There are no other existing techniques that deal with the problem of maintaining k-
dominant skyline. So in this paper, we compare our methods against MSKS, which was proposed
in [16]. Our heterogeneous simulation takes five different cores (PCs) that are connected to a
coordinator (server). Processors of those cores are as follows: single core, core2, core i3, core i5, and
core i7. They have 3GB main memory. We choose independent distribution with 6 dimensionality
and 100k data cardinality to evaluate each core performance. Table 12 shows the computation time
of each core. We observe that high power computing cores take less time than those of low power
cores. This result establishes the necessity of rank power computation.

Next, our homogeneous simulation takes similar type of cores. The number of cores is moderately
small (from 2 to 8). Each of the cores has an Intel(R) Core2 Duo 2 GHz CPU and 3GB main memory.
We evaluate our algorithms against MSKS using different types of datasets. As benchmark, we
use the datasets proposed by Borzsony et al. [2], in which there are three types of synthetic data
distributions: ‘correlated’, ‘anti-correlated’, and ‘independent’. The generation of the synthetic
datasets is controlled by three parameters, n, “Size”, and “Dist”, where n is the number of attributes,
“Size” is the total number of objects in the dataset, and “Dist” can be any of the three distributions.
In addition, we have generated smaller synthetic datasets for all insertion experiments. For example
to conduct insertion experiment on 100k synthetic dataset, we have also generated additional 10k
dataset. As for delete and update operations, we choose random object from the experimental
dataset.
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5.1 Spatial k-dominant Computation Varying Core Number

We first study the effect of spatial k-dominant computation varying core number on our techniques.
We use anti-correlated, independent, and correlated datasets with dimensionality n to 7, cardinality
to 100k, and k to 6. The number of cores varies from 2 to 8. Figure 3(a), (b), and (c) shows the time
to compute spatial k-dominant skyline. Figure 3 shows that the performance of proposed methods
outperform than MSKS for all data distribution.

5.2 Effect of Data Distribution

To study the effect of data distributions we use anti-correlated, independent, and correlated datasets
with dimensionality n to 7, cardinality to 100k, k to 6, and core number to 8. figure 4(a), (b), and
(c) shows the time to maintain spatial k-dominant skyline for the maintenance ranges from 1% to
5%. In this experiment, 1% maintenance for 100k dataset implies that there are 333 insertions,
333 deletions, and 334 updates (total 1k updates) occurred in the dataset. Figure 4 shows that the
performance of both methods deteriorates significantly with the increase of maintenance size. We
further notice that for anti-correlated dataset, many spatial k-dominant skyline objects retrieved as
a result the maintenance cost of this distribution incurs high computational overheads.

5.3 Effect of Dimensionality

For this experiment, we choose the anti-correlated datasets and the core number is 8. We set the
data cardinality to 100k and vary dataset dimensionality n ranges from 4 to 8 and k from 3 to 7.
Figure 5(a), (b), and (c) shows the update performance. The MSKS technique is highly affected
by the curse of dimensionality, i.e., as the space becomes sparser its response time rapidly decreases.
Figure 5 shows that if the dimensionality and the maintenance ratio increase the response time of
proposed methods grows steadily, which is much less than that of MSKS.

5.4 Effect of Cardinality

For this experiment, we select the anti-correlated datasets with varying dataset cardinality ranges
from 100k to 200k, set the value of n to 7, k to 6, and core number to 8. Figure 6(a), (b), and (c)
shows the time to maintain k-dominant skyline for maintenance ranges from 1% to 5%. The result
shows that if the maintenance ratio and data cardinality increase the response time of proposed
methods also increases. However, the response time is much smaller than that of MSKS.

6 Conclusion

k-dominant skyline has side effect of taking larger time for centralized computation. Centralized
system also has maintenance problem. To solve those problems, we consider regionally distributed
k-dominant skyline and present an efficient architecture for computing the query result as well as
the maintenance problem. We introduced registration and ranking power calculation, job allocation,
and computation core selection algorithms for efficient load distribution and shortening the response
time. Our algorithms consistently outperform against MSKS algorithm. Intensive experiments
show the efficiency and scalability of our proposed methods. However, current architecture can
handle small number of cores. We leave the work to support large number of cores for future
research.
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