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Abstract

In the present paper, we consider fully asynchronous parallelism in membrane computing
and propose asynchronous P systems for the following four graph problems: minimum coloring,
maximum independent set, minimum vertex cover, and maximum clique. We first propose an
asynchronous P system that solves the minimum graph coloring for a graph with n nodes and
show that the proposed P system works in O(nn+2) sequential steps or O(n2) parallel steps by
using O(n2) kinds of objects. Second, we propose an asynchronous P system that solves the
maximum independent set for a graph with n nodes and show that the proposed P system works
in O(n2 · 2n) sequential steps or O(n2) parallel steps by using O(n2) kinds of objects. We next
propose two asynchronous P systems that solve the minimum vertex cover and the maximum
clique for the same input graph by reduction to the maximum independent set and show that
the proposed P system works in O(n2 · 2n) sequential steps or O(n2) parallel steps by using
O(n2) kinds of objects.

Keywords: membrane computing, asynchronous P system, graph coloring, independent set, ver-
tex cover, clique

1 Introduction

Membrane computing, which is an example of natural computing, is a computational model inspired
by the structures and behaviors of living cells. In the initial study on membrane computing, a
basic feature of membrane computing was introduced by Păun [5] as a P system. In the P system,
activities in living cells are considered as parallel computing. Each P system consists of hierarchically
embedded cell membranes, and each membrane may contain objects. Each object evolves into
another object according to applicable evolution rules.

The P system and most variants have proved to be universal [7]. In addition, the models deliver
superior performance on problems that need exponential computation time, such as NP -complete
or NP -hard problems, and various P systems [2, 4, 6, 9, 10] have been proposed for solving NP
problems. However, synchronous application of evolution rules is assumed on the above P systems
with maximal parallelism, which is a main feature of P systems. Maximal parallelism means that
all applicable rules in all membranes are applied synchronously.
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On the other hand, cell biochemistry has obvious asynchronous parallelism. Asynchronous par-
allelism means that all objects may react on rules with different speeds, and evolution rules are
applied to objects independently. Since all objects in a living cell basically work in an asynchronous
manner, asynchronous parallelism must be considered to make the P system a more realistic model.

For considering asynchronous parallelism, a number of P systems have been proposed. As an
example, some sequential P systems [1], which assume the sequential application of appropriate
evolution rules, have been proposed. As another example, two asynchronous P systems [3] have
been proposed for solving the SAT and Hamiltonian cycle problem. The P systems solve NP
problems in a polynomial number of parallel steps. In addition, another asynchronous P system [8]
has been proposed for computing arithmetic operations and factorization.

As a complexity of the asynchronous P system, two kinds of numbers are considered: the number
of sequential steps and the number of parallel steps. The number of sequential steps is the number
of executed steps in the case that rules are applied sequentially, and the number of parallel steps is
the number of executed steps with maximal parallelism.

In the present paper, we propose asynchronous P systems for four graph problems: graph coloring,
maximum independent set, minimum vertex cover, and maximum clique. The four problems are
well-known NP hard graph problems, and the minimum vertex cover and the maximum clique are
reducible to the maximum independent set in a polynomial number of steps.

We first propose an asynchronous P system that solves the minimum graph coloring for a graph
with n nodes.

The proposed P system solves the problem in O(nn+2) sequential steps or O(n2) parallel steps
by using O(n2) kinds of objects.

We next propose an asynchronous P system for the maximum independent set for a graph with
n nodes. The proposed P system solves the problem in O(n2 · 2n) sequential steps or O(n2) parallel
steps by using O(n2) kinds of objects.

We finally propose asynchronous P systems that solve the minimum vertex cover and the maxi-
mum clique for the same input graph by reduction to the maximum independent set. The proposed
P systems solve the problems in O(n2 · 2n) sequential steps or O(n2) parallel steps by using O(n2)
kinds of objects.

The remainder of the present paper is organized as follows. In Section 2, we give a preliminary
description of the model for asynchronous membrane computing. In Section 3, we propose the
asynchronous P system for minimum graph coloring. We propose the asynchronous P system for
the maximum independent set in Section 4. We also propose two asynchronous P systems for the
other two problems in Section 5. Section 6 concludes the paper.

2 Preliminaries

2.1 Computational model for membrane computing

The P system [2] mainly consists of membranes and objects. A membrane is a computing cell, in
which independent computations are executed in parallel. Each membrane may contain objects and
other membranes. In other words, the membranes form nested structures. In the present paper,
each membrane is denoted by a pair of square brackets, and the number on the right-hand side of
each right bracket denotes the label of the corresponding membrane. An object in the P system is
a memory cell that stores each data and can divide, dissolve, and pass through membranes. In the
present paper, each object is denoted by finite strings over a given alphabet and is contained in one
of the membranes.

We formally define a P system Π and the sets used in the system as follows.

Π = (O,µ, ω1, ω2, · · · , ωm, R1, R2, · · · , Rm, iin, iout)

O: O is the set of all objects used in the system.
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µ: µ is membrane structure that consists of m membranes. Each membrane in the structure is
labeled with an integer. In addition, the outermost membrane is called the skin membrane,
and the skin membrane contains all of the other membranes.

ωj: ωj is a set of objects initially contained in the membrane labeled j.

Rj: Rj is a set of evolution rules that are applicable to objects in the membrane labeled j.

iin: iin is a label of the input membrane.

iout: iout is a label of the output membrane.

In the present paper, we assume that input objects are given from the outside region into the
skin membrane, and computation starts by applying evolution rules. We also assume that output
objects are sent out from the skin membrane to the outside region.

In membrane computing, several types of rules are proposed. We consider five basic rules of the
following forms in [2].

(1) Object evolution rule: [α]h → [β]h
where h is the label of the membrane, and α, β ∈ O. With this rule, object α evolves into
another object β. (We omit the brackets in each evolution rule for cases that the corresponding
membrane is obvious.)

(2) Send-in communication rule: α[ ]h → [β]h
where h is the label of the membrane, and α, β ∈ O. With this rule, object α is sent into the
membrane and can evolve into another object β.

(3) Send-out communication rule: [α]h → [ ]hβ
where h is the label of the membrane, and α, β ∈ O. With this rule, object α is sent out of
the membrane and can evolve into another object β.

(4) Dissolution rule: [α]h → β
where h is the label of the membrane, and α, β ∈ O. With this rule, the membrane, which
contains object α, is dissolved, and the object can evolve into another object β. (Note that
the skin membrane cannot be dissolved.)

(5) Division rule: [α]h → [β]h[γ]h
where h is the label of the membrane, and α, β, γ ∈ O. With this rule, the membrane, which
contains object α, is divided into two membranes that contain objects β and γ.

We assume that each of the above rules is applied in a constant number of biological steps. In
the following sections, we consider the number of steps executed in a P system as the complexity of
the P system.

In addition, the membrane computing has two features, which are maximal parallelism and non-
determinism. Maximal parallelism means that all applicable rules are applied in parallel. (Membrane
computing is considered as a kind of parallel computing from this feature.) On the other hand, non-
determinism means that applicable rules are non-deterministically chosen in the case that there are
several possibilities of the applicable rules.

For an example of the above two features, we show a simple P system. We define the P system
Π and the sets used in the system as follows.

Π = (O,µ, ω1, R1, iin, iout)

• O = {a, b, c, d, e, f, g}

• µ = [ ]1

• ω1 = ϕ
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• R1 = {a → b, bc → d, c → e, be → f, bbe → g}

• iin = 1

• iout = 1

We now show an example of the computation of the P system Π. Let us assume that an input
object aac is given to the skin membrane from the outside region into the skin membrane. The
initial state of the P system is given as follows.

[ aac ]1

In the initial state, the applicable rules are a → b and c → e, and the two rules are applied in
parallel with maximal parallelism. Then, the state of the P system is changed as follows after the
first computation step in the P system.

[ bbe ]1

In the second state, the applicable rule is be → f or bbe → g, and one of the rules is applied with
non-determinism. Then, the state of the P system is changed to one of the following states after the
second computation step in the P system.

[ bf ]1 or [ g ]1

2.2 Asynchronous P systems

In this subsection, we describe the differences between an asynchronous P system, which is con-
sidered in the paper, and a conventional P system. In a conventional P system, evolution rules
are applied in the maximal parallel manner described in the above subsection. In an asynchronous
P system, evolution rules are applied in an asynchronous parallel manner, i.e., at least one of the
applicable evolution rules is applied in each step of the computation. The reason why we assume
asynchronous parallelism in this paper is based on the fact that every living cell acts independently
and asynchronously. Since the conventional P system ignores the asynchronous feature of living
cells, the asynchronous P system is a more realistic computation model for cell activities.

We now show an example of the differences between the conventional P system with maximal
parallelism and the asynchronous P system. We assume the asynchronous P system Πa, whose sets
used in the system are same as Π.

We consider the computations in the conventional P system and the asynchronous P system,
respectively. In the conventional P system, all applicable evolution rules are applied in parallel, and
objects are evolved as follows.

aac → bbe → bf

aac → bbe → g

On the other hand, the asynchronous P system uses four kinds of computations, which are given
below according to the order of application of the evolution rules.

aac → bbe → bf

aac → bbe → g

aac → abc → ad

aac → abc → bd

Therefore, a number of executions are possible in the asynchronous P system, and the evolution
rules in the conventional P system, which assumes a maximal parallel manner, may not work in an
asynchronous parallel manner.
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Figure 1: An example of an input graph

In the asynchronous P system, all evolution rules can be applied completely in parallel, which
is the same as the conventional P system, or all evolution rules can be applied sequentially. We
define the number of steps executed in the asynchronous P system in the maximal parallel manner
as the number of parallel steps. We also define the number of steps in the case that the applicable
evolution rules are applied sequentially as the number of sequential steps. The numbers of parallel
and sequential steps indicate the best and worst case complexities, respectively, for the asynchronous
P system. In addition, the proposed asynchronous P system must be guaranteed to output a correct
solution in any asynchronous execution.

3 Minimum graph coloring

3.1 Input and output

In this section, we consider a P system for the minimum graph coloring problem. Given a graph
G = (V,E) such that V = {v1, v2, · · · , vn}, coloring is the assignment of colors to all vertices such
that no pair of the same color vertices are bridged by an arbitrary edge e ∈ E. For example, given
the graph in Figure 1, a color assignment, such that c1 = {v1}, c2 = {v2} and c3 = {v3, v4}, is a
coloring of the graph. The minimum graph coloring problem needs to find a color assignment for
the input graph with the minimum number of colors.

The input of the minimum graph coloring is the set of objects OE , given below.

OE = {⟨ei,j ,W ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}

Each object ⟨ei,j ,W ⟩ denotes an edge (vi, vj). If an edge (vi, vj) exists in the input graph, W is
set to T ; otherwise, W is set to F .

For example, the following objects denote the input of the minimum graph coloring for the graph
in Figure 1.

⟨e1,1, F ⟩ ⟨e1,2, T ⟩ ⟨e1,3, T ⟩ ⟨e1,4, T ⟩
⟨e2,1, T ⟩ ⟨e2,2, F ⟩ ⟨e2,3, T ⟩ ⟨e2,4, F ⟩
⟨e3,1, T ⟩ ⟨e3,2, T ⟩ ⟨e3,3, F ⟩ ⟨e3,4, F ⟩
⟨e4,1, T ⟩ ⟨e4,2, F ⟩ ⟨e4,3, F ⟩ ⟨e4,4, F ⟩

The output of the P system is denoted by the set of n objects given below.

OC = {⟨Vi, h⟩|1 ≤ i ≤ n, 1 ≤ h ≤ m(m ≤ n)}

Each object ⟨Vi, h⟩ means that vertex vi is labeled with color h, and OC denotes the minimum
color assignment for the input graph. For example, the following set of objects is the output of the
minimum graph coloring for the graph in Figure 1.

OC = {⟨V1, 1⟩, ⟨V2, 2⟩, ⟨V3, 3⟩, ⟨V4, 3⟩}

We assume that the set of input objects is given from the outside region into the skin membrane,
and the output object is sent out from the skin membrane to the outside region.
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3.2 Overview of the asynchronous P system

We now describe an overview of the asynchronous P system for the minimum graph coloring.
The P system for the minimum graph coloring problem consists of n + 1 membranes such that
[ [ ]1 [ ]2 · · · [ ]n ]0. For each inner membrane, labeled h, the input graph is checked to determine
whether the graph can be colored with h colors using the division of the membrane. (In the following,
a graph is called h-colorable if the graph can be colored with h colors. )

The computation in the asynchronous P system generally consists of the following five steps.

Step 1 Move modified copies of input objects into all inner membranes.

Step 2 In each inner membrane labeled h, create all possible color assignments with h colors by
dividing the inner membrane.

Step 3 Check whether each color assignment is h-coloring, and send out the result of the check to
the outer membrane.

Step 4 In the outer membrane, check the results of the inner membranes.

Step 5 Dissolve one of the inner membranes, which includes the minimum graph coloring, and send
out the result from the membrane.

3.3 Details of the asynchronous P system

We show each step of the asynchronous P system for the minimum graph coloring in the following.
In Step 1, modified copies of input objects are moved to all inner membranes. Step 1 is executed by
applying the following set of evolution rules. (In the following description, a set of evolution rules
Ri,j represents that the rules are used for membrane i in Step j.)
(Evolution rules for the outer membrane)

R0,1 = {⟨ei,j ,W ⟩ → ⟨ei,j ,W, 1⟩⟨fi,j ,W, 1⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}
∪{⟨fi,j ,W, h⟩ → ⟨ei,j ,W, h+ 1⟩⟨fi,j ,W, h+ 1⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,

1 ≤ h ≤ n− 2,W ∈ {T, F}}
∪{⟨fi,j ,W, n− 1⟩ → ⟨ei,j ,W, n⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}
∪{⟨e1,1, F, h⟩[ ]h → [⟨M2,1, h⟩⟨e1,1, F, h⟩]h | 1 ≤ h ≤ n}
∪{⟨Mi,j , h⟩⟨ei,j ,W, h⟩[ ]h → [⟨Mi+1,j , h⟩⟨ei,j ,W, h⟩]h | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}
∪{⟨Mn+1,j , h⟩ → ⟨M1,j+1, h⟩ | 1 ≤ h ≤ n, 1 ≤ j ≤ n}

(Evolution rules for the inner membrane)

Rh,1 = {[⟨Mi,j , h⟩]h → [ ]h⟨Mi,j , h⟩ | 1 ≤ h ≤ n, 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}
∪{⟨M1,n+1, h⟩ → ⟨S1, h⟩⟨h⟩|1 ≤ h ≤ n}

In the above evolution rules, two kinds of objects ⟨ei,j ,W, h⟩ and ⟨fi,j ,W, h⟩ are created from
input object ⟨ei,j ,W ⟩, and the created objects of the form ⟨ei,j ,W, h⟩ are moved into a membrane
labeled h by object ⟨Mi,j , h⟩. At the end of Step 1, object ⟨S1, h⟩ and object ⟨h⟩ are created in the
membrane labeled h, and the object triggers the computation of Step 2.

In Step 2, all possible color assignments are created with h colors. Step 2 is executed by applying
the following set of evolution rules.
(Evolution rules for the inner membrane)

Rh,2 = {⟨Si, 1⟩ → ⟨Di, 1⟩|1 ≤ i ≤ n}
∪{[⟨Si, k⟩]h → [⟨Si+1⟩⟨Vi, k⟩]h[⟨Di, k − 1⟩]k | 2 ≤ k ≤ n, 1 ≤ i ≤ n, 2 ≤ h ≤ n}
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∪{[⟨Di, k⟩]h → [⟨Si+1⟩⟨Vi, k⟩]h[⟨Di, k − 1⟩]k | 2 ≤ k ≤ n, 1 ≤ i ≤ n, 2 ≤ h ≤ n}
∪{⟨Di, 1⟩ → ⟨Si+1⟩⟨Vi, 1⟩ | 1 ≤ i ≤ n}
∪{⟨Si⟩⟨k⟩ → ⟨Si, k⟩⟨k⟩ | 1 ≤ i ≤ n, 1 ≤ k ≤ n}

In Step 2, subsets of vertices are created by dividing membrane with object ⟨Si, k⟩ repeatedly.
First, the color assignment for each vertex is executed by labeling an integer for the vertex. For
example, object ⟨V1, k⟩ denotes a vertex v1 colored with k. Then, the subsets of vertices are created
by dividing membrane with object ⟨Si, k⟩ and object ⟨Di, k− 1⟩. Object ⟨Si, k⟩, which is created by
object ⟨Si⟩ and object ⟨k⟩, starts labeling the next vertex vi+1. Object ⟨Di, k⟩ labels vertices as well
as object ⟨Si, k⟩ and vertex can be labeled different colors due to reducing color number k of object
⟨Di, k⟩. At the end of Step 2, object ⟨Sn+1⟩ is created, and the object triggers the computation of
Step 3.

In Step 3, the assignment is checked to determine whether each color assignment is h-coloring,
and a result of the check is sent out to the outer membrane. Step 3 is executed by applying the
following set of evolution rules.
(Evolution rules for the inner membrane)

Rh,3 = {⟨Sn+1⟩ → ⟨I1,1⟩}
∪{⟨Ii,j⟩⟨ei,j , F, h⟩ → ⟨Ii,j+1⟩⟨ei,j , F, h⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ h ≤ n}
∪{⟨Ii,j⟩⟨ei,j , T, h⟩⟨Vi, v⟩⟨Vj , v

′⟩ → ⟨Ii+1,j⟩⟨Vi, v⟩⟨Vj , v
′⟩⟨ei,j , T, h⟩

| 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ v ≤ n, 1 ≤ h ≤ n, 1 ≤ v′ ≤ n, v ̸= v′, i ̸= j}
∪{⟨Ii,j⟩⟨ei,j , T, h⟩⟨Vi, v⟩⟨Vj , v⟩⟨h⟩ → ⟨T1,1⟩⟨ei,j , T, h⟩⟨Vi, v⟩⟨Vj , v⟩

| 2 ≤ h ≤ n, 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ v ≤ n, i ̸= j}
∪{⟨Ii,n+1⟩ → ⟨Ii+1,j⟩|1 ≤ i ≤ n}
∪{[⟨In+1,1⟩⟨h⟩]h → ⟨TRUE, h⟩ | 1 ≤ h ≤ n}
∪{⟨Ti,j⟩⟨ei,j ,W, h⟩ → ⟨Ti+1,j⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ h ≤ n,W ∈ {T, F}}
∪{⟨Ti,n+1⟩⟨Vi, h⟩ → ⟨Ti+1,n+1⟩ | 1 ≤ i ≤ n, 1 ≤ h ≤ n}
∪{⟨Tn+1,j⟩ → ⟨T1,j+1⟩ | 1 ≤ j ≤ n+ 1}
∪{[⟨T1,n+2⟩]h → ⟨FALSE, 1, h⟩ | 1 ≤ h ≤ n}

In the above evolution rules, each color assignment is checked to determine whether the assign-
ment is h-coloring. Since the condition for h-coloring is that no two vertices with the same color are
connected, the check is executed in the following three cases.

• In the case that object ⟨ei,j , F ⟩ exists in the membrane: No edge exists between vi
and vj . Then, the check is omitted and next check is executed by ⟨Ii,j+1⟩.

• In the case that objects ⟨ei,j , T ⟩ exist in the membrane, and h1 ̸= h2 for objects
⟨Vi, h1⟩ and ⟨Vj , h2⟩:
An edge exists between vi and vj , and the two vertices are colored with different colors. Then,
the check is passed and the next check is executed by ⟨Ii+1,j⟩.

• In the other case:

An edge exists between vi and vj , and the two vertices are colored with the same color. Then,
the color assignment for the membrane is not h-coloring. Therefore, object ⟨T1,1⟩ is created,
and object ⟨T1,1⟩ starts the deletion of all objects in the membrane. Finally, object ⟨T1,n+2⟩
dissolves the inner membrane, and object ⟨FALSE, 1, h⟩ which denotes the failure of h-coloring
is created.

If object ⟨Ii,j⟩ checks all pairs of vertices, and object ⟨FALSE, 1, h⟩ is not created, object
⟨TRUE, h⟩, which denotes the success of h-coloring in the membrane, is sent out from the inner
membrane.
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In Step 4, the results of the inner membranes are checked in the outer membrane. Step 4 is
executed by applying the following set of evolution rules. (In the following description, ⟨α⟩h denotes
h copies of object ⟨α⟩. )
(Evolution rules for the outer membrane)

R0,4 = {⟨FALSE, hi, h⟩h → ⟨FALSE, hi+1, h⟩ | 0 ≤ i ≤ n− 1, 1 ≤ h ≤ n}
∪{⟨FALSE, hn, h⟩ → ⟨FALSE, h⟩ | 1 ≤ h ≤ n}
∪{⟨FALSE, 1⟩ → ⟨C2⟩ | 0 ≤ i ≤ n− 1}
∪{⟨FALSE, h⟩⟨Ch⟩ → ⟨Ch+1⟩ | 2 ≤ h ≤ n}
∪{⟨TRUE, 1⟩ → ⟨B1⟩}
∪{⟨TRUE, h⟩⟨Ch⟩ → ⟨Bh⟩ | 2 ≤ h ≤ n}

In the above evolution rules, object ⟨Ch⟩ is used to check whether the input graph is h-colorable.
In the case that the input graph is not h-colorable, hn objects, ⟨FALSE, 1, h⟩, are in the outer
membrane. The number of objects is checked by creating objects ⟨FALSE, hi+1, h⟩ from h copies of
⟨FALSE, h, h⟩. If object ⟨FALSE, hn, h⟩ is created, the object is evolved into ⟨FALSE, h⟩, which
is an output indicating that the input graph is not h-colorable. Since ⟨Ch⟩ is evolved into ⟨Ch+1⟩, if
object ⟨FALSE, h⟩ exists in the membrane, the object continues the evolution until the input graph
is h-colorable.

On the other hand, object ⟨TRUE, h⟩ is in the outer membrane in the case that the input graph
is h-colorable. In this case, object ⟨Bh⟩ is created by two objects1, ⟨TRUE, h⟩ and ⟨Ch⟩, and the
object triggers the computation of Step 5.

In Step 5, one of the inner membranes, which includes the minimum graph coloring, is dissolved,
and the result is sent out from the outer membrane. Step 5 is executed by applying the following
set of evolution rules.
(Evolution rules for the outer membrane)

R0,5 = {⟨Bh⟩[ ]h → [⟨Bh⟩]h|1 ≤ h ≤ n}
∪{⟨Oi⟩ → ⟨Oi+1⟩⟨Ai⟩|1 ≤ i ≤ n}
∪{[⟨Vi, h⟩⟨Ai⟩]0 → [ ]0⟨Vi, h⟩ | 1 ≤ i ≤ n, 1 ≤ h ≤ n}

(Evolution rules for the inner membrane)

Rh,5 = {[⟨Bh⟩⟨ei,1, F, h⟩]h → ⟨O1⟩ | 2 ≤ h ≤ n}

At the beginning of Step 5, object ⟨Bh⟩ is moved into the inner membrane labeled h. Then,
the membrane is dissolved by the object, and object ⟨O1⟩ is created by other objects in the inner
membrane. Next, a set of objects {⟨Vi, h⟩|1 ≤ i ≤ n} is sent out from the outer membrane to the
outside region by auxiliary objects ⟨Oi+1⟩ and ⟨Ai⟩.

We now summarize asynchronous P system Πmcg for the minimum graph coloring as follows. (In
the description of Πmcg, R1, R2 · · ·Rh are sets of evolution rules described in the above.)

Πmcg = (O,µ, ω1, ω2, · · · , ωn, R1, R2, · · · , Rn, iin, iout)

O = {⟨ei,j ,W ⟩|1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}
∪{⟨Vi,j , h⟩|1 ≤ i ≤ n, 1 ≤ h ≤ n}
∪{⟨h⟩ | 0 ≤ h ≤ n}
∪{⟨Mi,j , h⟩ | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1, 1 ≤ h ≤ n}
∪{⟨Ti,j⟩, ⟨Ii,j⟩ | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 2}
∪{⟨Bi⟩, ⟨Oi⟩, ⟨Ai⟩ | 1 ≤ i ≤ n+ 1}

1In the case that the input graph is 1-colorable, object ⟨Ch⟩ is not used.
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∪{⟨FALSE, hk, h⟩, ⟨FALSE, h⟩, ⟨TRUE, h⟩, | 1 ≤ h ≤ n, 1 ≤ k ≤ n}
∪{⟨Di, h⟩, ⟨Si, h⟩ | 1 ≤ i ≤ n, 1 ≤ h ≤ n}
∪{⟨ei,j ,W, h⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ h ≤ n,W ∈ {T, F}}

µ = [ [ ]1 [ ]2 · · · [ ]n ]0, ω1 = ω2 = · · · = ω3 = ϕ

3.4 Example execution of the P system

Figure 2 illustrates an example execution of the proposed P system Πmcg for the graph in Figure 1.
(The number at the upper left corner of each membrane represents a label of the membrane. )

At the beginning of the example, a set of objects, OE , is given from the outside region into
the outer membrane. Then, sets of evolution rules R0,1 ∪ R1,1 ∪ R2,1 ∪ R3,1 ∪ R4,1 are applied,
and four sets of objects OE 1, OE 2, OE 3, OE 4 are created. Each set of objects is moved into each
corresponding inner membrane.

In the next step, sets of evolution rules R1,2 ∪ R2,2 ∪ R3,2 ∪ R4,2 ∪ R1,3 ∪ R2,3 ∪ R3,3 ∪ R4,3 are
applied, and objects ⟨Vi,W ⟩(1 ≤ i ≤ n), which denote a color assignment with h colors, are created
in each inner membrane labeled h. Then, each color assignment is checked to determine whether the
assignment is h-coloring. In the case that the assignment is not h-coloring, all objects are removed
in the membrane, and object ⟨FALSE, 1, h⟩ is sent out to the outer membrane. In this example,
objects ⟨FALSE, 1, 1, ⟩, ⟨FALSE, 1, 2⟩, ⟨FALSE, 1, 3⟩ and ⟨FALSE, 1, 4⟩ are sent out to the
outer membrane.

In the other case, object ⟨TRUE, h⟩ is sent out to the outer membrane. In this example,
⟨TRUE, 3⟩ are⟨TRUE, 4⟩ are sent out to the outer membrane.

Finally, the sets of evolution rules R0,5 ∪ R1,4 ∪ R2,4 ∪ R3,4 and ∪R4,4 are applied, and one of
the membranes containing the minimum graph coloring is dissolved, and the output objects are sent
out from the outer membrane. In this example, ⟨V1, 1⟩, ⟨V2, 2⟩, ⟨V3, 3⟩ and ⟨V4, 2⟩ are sent out from
the outer membrane.

3.5 Complexity

The complexity of asynchronous P system Πmcg is as follows. Since O(n3) objects are moved into n
membranes sequentially in Step 1, the numbers of sequential and parallel steps in Step 1 are O(n3)
and O(n2), respectively. In Step 2, O(nn) membranes are created, and evolution rules are applied
sequentially in each membrane. Therefore, the numbers of sequential and parallel steps of Step 2 are
O(nn) and O(n), respectively. In Step 3, each subset is checked sequentially, and both the numbers
of sequential and parallel steps in Step 3 are O(nn+2) and O(n2) by using evolution rules of size
O(n5). In Step 4, the numbers of sequential and parallel steps are O(nn) and O(n), respectively,
since O(nn) objects are merged in the case that no assignment is n-coloring. In Step 5, both the
numbers of sequential and parallel steps are O(n) because n objects are outputted from the outer
membrane sequentially.

Since the number of types of objects in P system Πmcg is O(n2), and O(n5) kinds of evolution
rules are used in Step 3, we obtain the following theorem for Πmcg.

Theorem 1 The asynchronous P system Πmcg, which computes the minimum graph coloring with
n vertices, works in O(nn+2) sequential steps or O(n2) parallel steps by using O(n2) types of objects
and evolution rules of size O(n5). 2

4 Maximum independent set

4.1 Input and output

Given a graph G = (V,E) such that V = {v1, v2, · · · vn}, an independent set is defined as a subset
V ′ ⊆ V such that no two vertices in V ′ are bridged by an arbitrary edge e ∈ E. In addition,
the maximum independent set for a graph is a problem that finds the largest independent set for
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Figure 2: An example execution of Πmcg

the graph. For example, given the graph in Figure 1, the set of vertices {v3, v4} is the maximum
independent set for the graph.

In the present paper, the input of the maximum independent set is the following set of objects
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OE , which is the same input set used for the minimum graph coloring in Section 3.

OE = {⟨ei,j ,W ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}

The output of the P system is denoted by the set of n objects given below.

OS = {⟨Vi, A⟩ | 1 ≤ i ≤ n,A ∈ {0, 1}}

Each object ⟨Vi, A⟩ in OS denotes the output for vertex vi, and A is set to 1 if vi is in the
maximum independent set; otherwise, A is set to 0.

We also assume that a set of input objects is given from the outside region into the skin membrane,
and the output object is sent out from the skin membrane to the outside region.

4.2 Overview of the asynchronous P system

We now describe an overview of the asynchronous P system for the maximum independent set. The
P system consists of inner and outer membranes, i.e., the membrane structure of the P system is
[ [ ]2 ]1. The computation in the asynchronous P system generally consists of the following six steps.

Step 1 Move all input objects in the outer membrane into the inner membrane.

Step 2 Create all possible subsets of vertices by dividing the inner membrane repeatedly.

Step 3 Check each subset to determine if it is an independent set and sent out all independent
subset from all inner membranes and compute the size of the maximum independent set in the
outer membrane.

Step 4 By using the computed size of the maximum independent set, create all possible subsets
of vertices again by dividing the inner membrane repeatedly.

Step 5 In each divided membrane, check whether each subset of vertices is the maximum inde-
pendent set and dissolve all inner membranes if the membrane contains a subset that is not
the maximum independent set.

Step 6 Dissolve one of the inner membranes that includes the maximum independent set and send
out the result from the outer membrane.

4.3 Details of the asynchronous P system

We now show details of each step of the asynchronous P system for the maximum independent set.
In Step 1, all input objects in the outer membrane are moved into the inner membrane. Step 1

is executed by applying the following set of evolution rules.
(Evolution rules for the outer membrane)

R1,1 = {⟨e1,1, F ⟩[ ]2 → [⟨M2,1⟩⟨e1,1, F ⟩]2}
∪{⟨Mi,j⟩⟨ei,j ,W ⟩[ ]2 → [⟨Mi+1,j⟩⟨ei,j ,W ⟩]2 | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}
∪{⟨Mn+1,j⟩ → ⟨M1,j+1⟩ | 1 ≤ j ≤ n}
∪{⟨M1,n+1⟩[ ]2 → [⟨M1,n+2⟩]2}

(Evolution rules for the inner membrane)

R2,1 = {[⟨Mi,j⟩]2 → [ ]2⟨Mi,j⟩ | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}
∪{[⟨M1,n+2⟩]2 → [⟨S1⟩]2[⟨D⟩]2}

In the above evolution rules, object ⟨e1,1, F ⟩ starts the computation, and input objects, ⟨ei,j ,W ⟩,
are moved into the inner membrane by object ⟨Mi,j⟩. After all input objects, ⟨ei,j ,W ⟩, are moved
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into the inner membrane, object ⟨Mi,j⟩ is changed into object ⟨M1,n+1⟩. At the end of Step 1, object
⟨D⟩ and object ⟨S1⟩ are created by division rules. The object ⟨D⟩ is used for the computation of
Step 5, and object ⟨S1⟩ triggers the computation of Step 2.

In Step 2, all possible subsets of vertices are created by dividing the inner membrane repeatedly.
Step 2 is executed by applying the following set of evolution rules. In the evolution rules, ⟨Vi, 1⟩
denotes that vi is contained in the subset of vertices.
(Evolution rules for inner membrane)

R2,2 = {[Si]2 → [⟨Si+1⟩⟨Vi, 0⟩]2[⟨Si+1⟩⟨Vi, 1⟩]2 | 1 ≤ i ≤ n}

At the end of Step 2, 2n membranes are created. In addition, object ⟨Sn+1⟩ is created in each
divided membrane, and the object triggers the computation of Step 3.

In Step 3, in each divided membrane, each subset of vertices is checked to determine whether
the subset is an independent set, and the number of vertices is sent out to the outer membrane in
the case that the subset is an independent set. Then, the size of the maximum independent set is
computed in the outer membrane.

Step 3 is executed by applying the following set of evolution rules.
(Evolution rules for the outer membrane)

R1,3 = {⟨l, 2k⟩⟨m, 2k⟩ → ⟨m, 2k+1⟩ | 0 ≤ l ≤ m ≤ n, 0 ≤ k ≤ n− 1}
∪{⟨k, 2n⟩ → ⟨k⟩⟨T ⟩ | 0 ≤ k ≤ n}

(Evolution rules for the inner membrane)

R2,3 = {⟨Sn+1⟩ → ⟨I1,1⟩}
∪{⟨Ii,j⟩⟨ei,j , F ⟩ → ⟨Ii,j+1⟩⟨ei,j , F ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
∪{⟨Ii,j⟩⟨ei,j , T ⟩⟨Vi, 0⟩ → ⟨Ii+1,1⟩⟨ei,j , T ⟩⟨Vi, 0⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
∪{⟨Ii,j⟩⟨ei,j , T ⟩⟨Vj , 0⟩ → ⟨Ii,j+1⟩⟨ei,j , T ⟩⟨Vj , 0⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
∪{⟨Ii,j⟩⟨ei,j , T ⟩⟨Vi, 1⟩⟨Vj , 1⟩ → ⟨ei,j , T ⟩⟨Vi, 1⟩⟨Vj , 1⟩⟨T1,1⟩⟨0, 1⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
∪{⟨Ii,n+1⟩ → ⟨Ii+1,1⟩ | 1 ≤ i ≤ n}
∪{⟨In+1,1⟩ → ⟨0⟩⟨V1⟩}
∪{⟨Vi, 0⟩⟨Vi⟩ → ⟨Vi, 0⟩⟨Vi+1⟩ | 1 ≤ i ≤ n}
∪{⟨Vi, 1⟩⟨Vi⟩⟨k⟩ → ⟨Vi, 1⟩⟨Vi+1⟩⟨k + 1⟩ | 1 ≤ i ≤ n, 0 ≤ k ≤ n}
∪{⟨Vn+1⟩⟨k⟩ → ⟨T1,1⟩⟨k, 1⟩ | 1 ≤ k ≤ n}
∪{⟨Ti,j⟩⟨ei,j , V ⟩ → ⟨Ti+1,j⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n, V ∈ {T, F}}
∪{⟨Ti,n+1⟩⟨Vi, A⟩ → ⟨Ti+1,n+1⟩ | 1 ≤ i ≤ n,A ∈ {0, 1}}
∪{⟨Tn+1,j⟩ → ⟨T1,j+1⟩ | 1 ≤ j ≤ n+ 1}
∪{[⟨T1,n+2⟩⟨k, 1⟩]2 → ⟨k, 1⟩ | 0 ≤ k ≤ n}

In the above evolution rules for the inner membrane, each subset of vertices is checked to de-
termine whether the subset is an independent set. Since the subset is an independent set if no two
vertices are connected in the subset, the check is executed in the following four cases for each pair
of vertices vi and vj .

• In the case that object ⟨ei,j , F ⟩ is in the membrane:

No edge exists between vi and vj , and the next check is executed for a pair of vertices vi and
vj+1 by object ⟨Ii,j+1⟩.

• In the case that objects ⟨ei,j , T ⟩ and ⟨Vi, 0⟩ are in the membrane:

An edge exists between vi and vj , but vertex vi is not in the subset. The check is passed in
this case, and the next check is executed for vi+1 and v1 by object ⟨Ii+1,1⟩.
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• In the case that object ⟨ei,j , T ⟩ and object ⟨Vj , 0⟩ are in the membrane:

An edge exists between vi and vj , but vertex vj is not in the subset. The check is passed, and
the next check is executed for a pair of vertices vi and vj+1 by ⟨Ii,j+1⟩.

• In the other case:

An edge exists between vi and vj , and the two vertices are in the subset. Then, the subset
of vertices is not an independent set. Therefore, object ⟨T1,1⟩ and object ⟨0, 1⟩ are created.
(The object ⟨T1,1⟩ denotes that the check for the membrane is finished, and the object ⟨0, 1⟩
denotes the size of the subset is 0 because the subset is not an independent set.) Then, object
⟨T1,1⟩ starts the deletion of all objects in the membrane except for object ⟨0, 1⟩. Finally, object
⟨T1,n+2⟩ dissolves the inner membrane.

If all pairs of vertices are checked, unless object ⟨Ti,j⟩ is created, objects ⟨Vi⟩ and ⟨0⟩ are created.
Then, the number of vertices in the subset is counted by object ⟨k⟩ in the membrane. When counting
the number of vertices is finished, object ⟨T1,1⟩ and object ⟨k, 1⟩ are created. The ⟨T1,1⟩ denotes that
the check for the membrane is finished, and ⟨k, 1⟩ denotes the size of the subset in the membrane.
Then, object ⟨T1,1⟩ starts the deletion of all objects in the membrane except for object ⟨k, 1⟩, and
object ⟨Tn+2,1⟩ dissolves the inner membrane.

In the above evolution rules for the outer membrane, the maximum size of independent sets is
decided by 2n objects ⟨k, 1⟩ to denote the size of the independent set. In the evolution rules, pairs
of objects, ⟨l, 2k⟩ and ⟨m, 2k⟩, are compared, and object ⟨m, 2k+1⟩, which denotes m ≥ l and the
number of objects is 2k+1, is created. At the end of Step 3, objects ⟨k, 1⟩ and ⟨T ⟩ are created. The
object ⟨k, 1⟩ denotes that the maximum size of independent sets is k, and object ⟨T ⟩ triggers the
computation of Step 4.

In Step 4, all possible subsets of vertices subsets are created again by dividing the inner membrane
repeatedly. Step 4 is executed by applying the following set of evolution rules.
(Evolution rules for the outer membrane)

R1,4 = {⟨T ⟩⟨k⟩[ ]2 → [⟨T ⟩⟨k⟩]2 | 0 ≤ k ≤ n}

(Evolution rules for the inner membrane)

R2,4 = {⟨T ⟩⟨D⟩ → ⟨S′
1⟩}

∪{[S′
i]2 → [⟨S′

i+1⟩⟨Vi, 0⟩]2[⟨S′
i+1⟩⟨Vi, 1⟩]2 | 1 ≤ i ≤ n}

In the above evolution rules for the outer membrane, objects ⟨T ⟩ and ⟨k⟩, which are created in
Step 3, are moved into the inner membrane. On the other hand, in the above evolution rules for
the inner membrane, object ⟨S′

n+1⟩ is created, and the object triggers the division rules. Then, 2n

membranes are created as in Step 2, and object ⟨S′

n+1⟩, which triggers the computation of Step 5,
is created in each divided membrane.

In Step 5, each divided membrane is checked to determine whether a subset of vertices in the
membrane is the maximum independent set, and the membrane is dissolved if the membrane contains
a subset that is not the maximum independent set. Step 5 is executed by applying the following set
of evolution rules.
(Evolution rules for the outer membrane)

R1,5 = {⟨D, 2k⟩⟨D, 2k⟩ → ⟨D, 2k+1⟩ | 0 ≤ k ≤ n− 1}
∪{⟨D, 2n⟩ → ⟨B⟩}

(Evolution rules for the inner membrane)

R2,5 = {⟨S′
n+1⟩ → ⟨C1⟩}

∪{⟨Ci⟩⟨Vi, 0⟩ → ⟨Ci+1⟩⟨Vi, 0⟩}
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∪{⟨Ci⟩⟨Vi, 1⟩⟨k⟩ → ⟨Ci+1⟩⟨Vi, 1⟩⟨k − 1⟩ | 1 ≤ k ≤ n}
∪{⟨Cn+1⟩⟨0⟩ → ⟨I ′1,1⟩}
∪{⟨Cn+1⟩⟨k⟩ → ⟨E1,1⟩ | 1 ≤ k ≤ n}
∪{⟨Ci⟩⟨Vi, 1⟩⟨0⟩ → ⟨Vi, 1⟩⟨E1,1⟩}
∪{⟨Ei,j⟩⟨ei,j , V ⟩[ ]2 → [⟨Ei+1,j⟩⟨ei,j , V ⟩]2 | 1 ≤ i ≤ n, 1 ≤ j ≤ n, V ∈ {T, F}}
∪{⟨Ei,n+1⟩⟨Vi, A⟩ → ⟨Ei+1,n+1⟩ | 1 ≤ i ≤ n,A ∈ {0, 1}}
∪{⟨En+1,j⟩ → ⟨E1,j+1⟩ | 1 ≤ j ≤ n+ 1}
∪{[⟨E1,n+2⟩]2 → ⟨D, 1⟩}
∪{⟨I ′i,j⟩⟨ei,j , F ⟩ → ⟨I ′i,j+1⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
∪{⟨I ′i,j⟩⟨ei,j , T ⟩⟨Vi, 0⟩ → ⟨I ′i+1,1⟩⟨Vi, 0⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
∪{⟨I ′i,j⟩⟨ei,j , T ⟩⟨Vj , 0⟩ → ⟨I ′i,j + 1⟩⟨Vj , 0⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
∪{⟨I ′i,j⟩⟨ei,j , T ⟩⟨Vi, 1⟩⟨Vj , 1⟩ → ⟨Vi, 1⟩⟨Vj , 1⟩⟨E1,1⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
∪{⟨I ′i,n+1⟩ → ⟨I ′i+1,1⟩}
∪{[⟨I ′n+1,1⟩]2 → [ ]2⟨D, 1⟩}

In the above evolution rules for the inner membrane, object ⟨Ci⟩ is created from object ⟨S′

n+1⟩
and used for counting down the size of the subset in the membrane. According to the three conditions
for the two objects, ⟨Ci⟩ and ⟨k⟩ created in Step 3, one of the following three procedures is executed
when the counting is finished.

• In the case that objects ⟨Cn+1⟩ and ⟨0⟩ are in the membrane:

The size of the subset in the membrane is the same as that of the maximum independent set.
Therefore, object ⟨I ′

1,1⟩ is created to check whether the subset of vertices is an independent

set, as in Step 3. In the case that the object ⟨I ′

i,j⟩ becomes object ⟨I ′

n+1,1⟩, the subset in
the membrane is the maximum independent set. Then, object ⟨D, 1⟩ is sent out to the outer
membrane. In the other case, object ⟨E1,1⟩ is created to delete all objects in the membrane.

• In the case that objects ⟨Cn+1⟩ and ⟨k⟩ (k ≥ 0) are in the membrane:

The size of the subset in the membrane is more than that of the maximum independent set,
and the subset is not the maximum independent set. Then, object ⟨E1,1⟩ is created to delete
all objects in the membrane.

• In the other case:

The size of the subset in the membrane is less than that of the maximum independent set, so
the subset is not the maximum independent set. Therefore, object ⟨E1,1⟩ is created to delete
all objects in the membrane.

Object ⟨E1,1⟩ is created in the membrane when one of the above three procedures is finished.
Object ⟨E1,1⟩ deletes all objects in the membrane as well as the object ⟨T1,1⟩ in Step 3. When the
deletion is finished, object ⟨D, 1⟩ is created for each deleted membrane, and the inner membrane
is dissolved in the case that the subset in the membrane is not the maximum independent set.
Therefore, 2n objects, ⟨D, 1⟩, are created in the outer membrane after checking all inner membranes.
Since object ⟨D, ki+1⟩ is created with two ⟨D, ki⟩s according to the above evolution rules, ⟨D, kn⟩
is evolved into object ⟨B⟩, which triggers the computation of Step 6, at the end of Step 5.

In Step 6, one of the inner membranes, which includes the maximum independent set, is dissolved,
and the result is sent out from the outer membrane. Step 6 is executed by applying the following
set of evolution rules.
(Evolution rules for the outer membrane)

R1,6 = {⟨B⟩[ ]2 → [⟨B⟩]2}
∪{⟨Oi⟩⟨Vi,W ⟩ → ⟨Oi+1⟩⟨Ai⟩⟨Vi,W ⟩ | 1 ≤ i ≤ n,W ∈ {0, 1}}
∪{[⟨Vi,W ⟩⟨Ai⟩]1 → [ ]1⟨Vi,W ⟩ | 1 ≤ i ≤ n,W ∈ {0, 1}}
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(Evolution rules for the inner membrane)

R2,6 = {[⟨B⟩⟨e1,1, F ⟩]2 → ⟨O1⟩}

At the beginning of Step 6, object ⟨B⟩ is moved into one of the inner membranes, which is selected
non-deterministically. Then, the membrane is dissolved by the object, and object ⟨O1⟩ is created
with other objects in the inner membrane. Next, a set of output objects {⟨Vi,W ⟩ | W ∈ {0, 1}} is
sent out from the outer membrane to the outside region by auxiliary objects ⟨Oi+1⟩ and ⟨Ai⟩.

We now summarize the asynchronous P system ΠMIS for the maximum independent set as
follows. (In the description of the P system, R1 and R2 are set of evolution rules in the above.)

ΠMIS = (O,µ, ω1, ω2, , R1, R2, iin, iout)

• O = {⟨ei,j ,W ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}
∪{⟨k⟩ | 0 ≤ k ≤ n}
∪OS = {⟨Vi, A⟩ | 1 ≤ i ≤ n,A ∈ {0, 1}}
∪{⟨Mi,j⟩, ⟨Ti,j⟩, ⟨Ei,j⟩ | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 2}
∪{⟨Si⟩, ⟨S

′

i⟩, ⟨Ci⟩, ⟨Oi⟩, ⟨Ai⟩ | 1 ≤ i ≤ n+ 1}
∪{⟨D, 2k⟩ | 0 ≤ k ≤ n}
∪{⟨Ii,j⟩, ⟨I

′

i,j⟩ | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}
∪{⟨T ⟩, ⟨B⟩}
∪{⟨Vi, A⟩ | 1 ≤ i ≤ n,A ∈ {0, 1}}
∪{⟨l, 2k⟩ | 0 ≤ l ≤ n, 0 ≤ k ≤ n}

µ = [ [ ]2 ]1, ω1 = ω2 = ϕ

4.4 Example execution of the P system

Figures 3 and 4 illustrate an example execution of the proposed P system ΠMIS for the graph in
Figure 1.

Figure 3 illustrates Steps 1, 2 and 3. In the first step, a set of objects OE is given from the
outside region into the outer membrane. Then, two sets of evolution rules, R1,1 ∪R2,1, are applied,
and all objects are moved into the inner membrane.

In the next step, each inner membrane is repeatedly divided to create objects denoting all possible
subsets of vertices by applying R2,2.

In Step 3, each inner membrane is checked to determine whether the subset of vertices is an
independent set. In the case that the subset is not an independent set, all objects are deleted in
the membrane, and object ⟨0, 1⟩ is sent out from the membrane. Otherwise, object ⟨k, 1⟩ is sent out
from the membrane. In this example, two kinds of objects, ⟨2, 1⟩ and ⟨1, 1⟩, are sent out from the
inner membrane, and the objects are merged into object ⟨2⟩ by applying R1,3.

Figure 4 illustrates Steps 4, 5 and 6. In Step 4, object ⟨2⟩ is sent into the remaining membrane
by applying R1.4. Then, each inner membrane with ⟨2⟩ is repeatedly divided again to create objects
denoting all possible subsets of vertices by applying R2,4.

In Step 5, each inner membrane is checked to determine whether the subset of vertices is the
maximum independent set. In the case that the subset is not the maximum independent set whose
size is two, all objects are deleted in the membrane.

In the final step, one of the inner membranes is dissolved by applying R1,6. A set of output
objects {⟨V1, 0⟩, ⟨V2, 1⟩, ⟨V3, 0⟩, ⟨V4, 1⟩} is sent out to the outside region by applying R1,6.
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Figure 3: An example execution of ΠMIS (Steps 1 – 3)

4.5 Complexity

We now consider the complexity of asynchronous P system ΠMIS . Since O(n2) objects are moved
sequentially in Step 1, both the numbers of sequential and parallel steps in Step 1 are O(n2). In
Step 2, O(2n) membranes are created, and the numbers of sequential and parallel steps of Step
2 are O(2n) and O(n), respectively. In Step 3, the numbers of sequential and parallel steps are
O(n2 · 2n) and O(n2), respectively, since each subset is checked sequentially. In Step 4 and Step 5,
the procedure is almost the same as that of Step 2 and Step 3. Therefore, the numbers of sequential
and parallel steps of Step 4 are O(2n) and O(n), respectively, and the numbers of sequential and
parallel steps of Step 5 are O(n2 · 2n) and O(n2), respectively. Since O(n) objects are sent out as
the output sequentially in Step 6, both the numbers of sequential and parallel steps in Step 6 are
O(n).

Since the number of types of objects in P system ΠMIS is O(n2), and O(n3) kinds of evolution
rules are used in Step 3, we obtain the following theorem for ΠMIS .

Theorem 2 The asynchronous P system ΠMIS, which computes the maximum independent set for
a graph with n vertices, works in O(n2 · 2n) sequential steps or O(n2) parallel steps by using O(n2)
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Figure 4: An example execution of ΠMIS (Steps 4 – 6)

types of objects and evolution rules of size O(n3). 2

5 Minimum vertex cover and maximum clique

5.1 Input and output

Given a graph G = (V,E) such that V = {v1, v2, · · · vn}, a vertex cover is defined as the subset
V ′ ⊆ V such that each edge of the graph is incident to at least one vertex in V ′. In addition, the
minimum vertex cover is a problem that finds the smallest vertex cover for the graph. For example,
given the graph in Figure 1, the set of vertices {v1, v2} is the minimum vertex cover for the graph.

On the other hand, a clique for a graph is defined as the subset V ′ ⊆ V such that any pair of
two vertices in V ′ has an edge in E. In addition, the maximum clique is a problem that finds the

18



International Journal of Networking and Computing

largest clique for the graph. For example, given the graph in Figure 1, the set of vertices {v1, v2, v3}
is the maximum clique for the graph.

The minimum vertex cover and the maximum clique are well known to be reducible to the
maximum independent set in a polynomial number of steps from the following two properties.

• A subset V ′ ⊆ V is the minimum vertex cover if and only if a complement of vertices V − V ′

is the maximum independent set.

• A subset V ′ ⊆ V of vertices is the maximum clique if and only if V ′ is the maximum indepen-
dent set for a complement graph G′ = (V,E′) such that e ∈ E′ if and only if e ̸∈ E.

Using the above properties, we consider two asynchronous P systems ΠMVC and ΠMC for the
minimum vertex cover and the maximum clique by using reduction to the asynchronous P system
ΠMIS , which is proposed in the previous section.

The input OE is the same set of objects used for the maximum independent set.

OE = {⟨ei,j ,W ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}

The output of the P system is denoted by using the set of n objects given below as well as the
output of the maximum independent set.

OS = {⟨Vi, A⟩ | 1 ≤ i ≤ n,A ∈ {0, 1}}

We also assume that a set of input objects is given from the outside region into the skin membrane,
and the output object is sent out from the skin membrane to the outside region.

5.2 Overview of the asynchronous P system

We now describe an overview of the asynchronous P systems ΠMVC and ΠMC , which are for the
minimum vertex cover and the maximum clique, respectively. Both of P systems forms membrane
structure [ [ ]MIS ]1. The membrane [ ]MIS is the P system ΠMIS , which is described in the previous
section.

The reductions in the asynchronous P systems ΠMVC and ΠMC are executed as follows.

ΠMVC :

Step 1 Compute the maximum independent set for the instance and send out the result to the
outer membrane.

Step 2 Reduce the output and send out the reduced output from the outer membrane.

ΠMC :

Step 1 Reduce input objects of the maximum clique to an instance of the maximum independent
set.

Step 2 Compute the maximum independent set for the instance and send out the result from the
outer membrane.

We next show details of the reduction in the asynchronous P systems ΠMVC and ΠMC .

Details of ΠMVC :
In Step 1, the maximum independent set is computed for the input in the inner P system, and

the result is sent out to the outer membrane. The set of evolution rules are almost 2 the same as
those for P system ΠMIS .

2The different part is the only label of membrane whose evolution rules are applied.
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In Step 2, the output is reduced and the reduced output is sent out from the out-most membrane.
Step 2 is executed by applying the following set of evolution rules.
(Evolution rules for the outer membrane)

R1,2 = {⟨O1⟩⟨V1,W ⟩ → ⟨RO2⟩⟨RA1⟩⟨V1,W ⟩|W ∈ {0, 1}}
∪{⟨ROi⟩⟨Vi,W ⟩ → ⟨ROi+1⟩⟨RAi⟩⟨Vi,W ⟩ | 2 ≤ i ≤ n,W ∈ {0, 1}}
∪{[⟨Vi,W ⟩⟨RAi⟩]1 → [ ]1⟨Vi,W

′⟩ | 0 ≤ i ≤ n,W ∈ {0, 1},W ′ ∈ {0, 1},W ̸= W ′}

In the above evolution rules, the output objects are reduced for the minimum vertex cover. In
the case, a set of output objects {⟨Vi,W ⟩|W ∈ {0, 1}} must be changed into a complement of the
vertices. Therefore, auxiliary objects, ⟨ROi+1⟩ and ⟨RAi⟩, are used for creating a complement of
⟨Vi,W ⟩, and the object is sent out from the outer membrane to the outside region.

Details of ΠMC :
In Step 1, input objects are reduced to an instance of the maximum independent set. Step 1 is

executed by applying the following set of evolution rules.
(Evolution rules for the outer membrane)

R1,1 = ∪{⟨REi,j⟩⟨ei,j , T ⟩ → ⟨REi,j+1⟩⟨ei,j , F ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ̸= j}
∪{REi,j⟩⟨ei,j , F ⟩ → ⟨REi,j+1⟩⟨ei,j , T ⟩ | 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ̸= j}
∪{⟨REi,i⟩ → ⟨REi,i+1⟩ | 1 ≤ i ≤ n}
∪{⟨REi,n+1⟩ → ⟨REi+1,1⟩ | 1 ≤ i ≤ n}
∪{⟨REn+1,1⟩ → ⟨M ′

1,1⟩}
∪{⟨M ′

1,1⟩[ ]MIS → [⟨M ′
2,1⟩]MIS}

∪{⟨e1,1, F ⟩[ ]MIS → [⟨e1,1, F ⟩⟨RE1,1⟩]MIS}
∪{⟨M ′

i,j⟩⟨ei,j ,W ⟩[ ]MIS → [⟨M ′
i+1,j⟩⟨ei,j ,W ⟩]MIS | 2 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}

∪{⟨M ′
n+1,j⟩ → ⟨M ′

1,j+1⟩ | 1 ≤ j ≤ n}

(Evolution rules for the membrane [ ]MIS)

RMIS,1 = {[⟨M ′
i,j⟩]MIS → [ ]MIS⟨M ′

i,j⟩ | 2 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}
∪{[⟨RE1,1⟩]MIS → [ ]MIS⟨RE1,2⟩}

In the above evolution rules, input objects for the maximum clique are reduced into input objects
for the maximum independent set. The input graph must be changed into a complement graph in
the case of the maximum clique. First, object ⟨RE1,1⟩ is created for starting the procedure, and
then each ⟨REi,j⟩ is used for creating a complement of the edge ei,j .

After creating the reduced input objects for the maximum independent set, object ⟨M ′
1,1⟩ is

created, and the object starts movement of the reduced object from the outer membrane into the
membrane [ ]MIS . Object ⟨M ′

i,j⟩ brings the reduced input objects ⟨ei,j ,W ⟩ into the membrane
[ ]MIS .

In Step 2, the maximum independent set is computed for the reduced input, and the result is
sent out from the outer membrane. The set of evolution rules are almost 3 the same as those for P
system ΠMIS .

5.3 Complexity

Since the numbers of sequential and parallel steps of the reductions in are O(n2), we obtain the
following theorems for ΠMVC and ΠMC from Theorem 2.

3The different parts are the label of membrane whose evolution rules are applied and the set of evolution rules
RMIS,1.
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Theorem 3 The asynchronous P system ΠMVC , which computes the minimum vertex cover for a
graph with n vertices, works in O(n2 · 2n) sequential steps or O(n2) parallel steps by using O(n2)
types of objects and evolution rules of size O(n3). 2

Theorem 4 The asynchronous P system ΠMC , which computes the maximum clique for a graph
with n vertices, works in O(n2 · 2n) sequential steps or O(n2) parallel steps by using O(n2) types of
objects and evolution rules of size O(n3). 2

6 Conclusions

In the present paper, we proposed P systems that solve four graph problems. The proposed P
systems are fully asynchronous, i.e., any number of applicable rules may be applied in one step of
the P system. The first and second P systems solve the minimum graph coloring and the maximum
independent set. The third and fourth P systems solve the minimum vertex cover and the maximum
clique by reduction to the maximum independent set.

We showed that the proposed P systems work in a polynomial number of steps in the maximal
parallel manner and also showed that the P systems work sequentially. Although the number
of sequential steps is exponential, the result means that the proposed P systems work for any
combinations of sequential and asynchronous applications of evolution rules, and guarantees that
the P systems can output a correct solution in the case that any number of evolution rules are
synchronized.

As future work, we are considering an asynchronous P system using a fewer number of membranes
and evolution rules. In addition, we are considering a general reduction from a conventional P system
to an asynchronous P systems.
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