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Abstract

Token circulation is a fundamental task in the distributed systems. In this paper, we propose
a constant space randomized self-stabilizing master-slave token circulation algorithm that works
for undirected rings and undirected unicyclic graphs of arbitrary size. We consider the recently
introduced and studied master-slave model where a single node is designated to be a master
node and other nodes are anonymous slave nodes. The expected stabilization time is O(n logn)
steps, and the space requirement at each node is 4 bits for any undirected ring (or unicyclic
graph) of size n under an unfair distributed daemon; the nodes do not need the knowledge of
the size of the ring and hence the protocol is suited for dynamic graphs. The proposed token
circulation algorithm is further extended to achieve orientation in the ring and the unicyclic
graph. Disregarding the time for stabilization, the orientation can be done in at most O(n)
steps with 1 bit extra storage at each node for the ring and the unicyclic graph.

Keywords: Self-stabilization, Master-slave Model, Token Circulation, Orientation, Undirected
Ring, Undirected Unicyclic Graph

1 Introduction

Self-stabilization has been widely used to build various fault tolerant distributed systems since it
was introduced by Dijkstra in 1974 [9]. An algorithm is self-stabilizing iff it reaches some legitimate
state starting from an arbitrary state. Without any external intervention, a self-stabilizing system
can recover from an unlimited number of transient faults (transient fault is an event of corrupting
the data but not the program code). The self-stabilizing algorithm can be either uniform or semi-
uniform. An algorithm is uniform if all nodes use the same program, and is semi uniform if there
exist a single “special” node that behaves differently from the rest of the nodes [5].

Token circulation is a fundamental task in the distributed systems. It has many applications
such as mutual exclusion, size computation of system, etc [6]. It has been shown that no uniform
deterministic self-stabilizing algorithm for token circulation exists for an undirected ring of even size
[5]. Recently, a self-stabilizing algorithm for token circulation in a unidirectional ring of arbitrary
size is proposed, which breaks symmetry by using the master-slave model [21] and employing ran-
domization. The ring has a designated node called master node, and other nodes are uniform and
anonymous, called slave nodes. The master-slave model is especially suitable for sensor network
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or ad hoc networks based on cluster architecture, where a base station or a cluster head has more
memory, and is more powerful than other ordinary nodes [8].

In this paper, we propose a new randomized self-stabilizing algorithm for token circulation in an
undirected ring of arbitrary size. The proposed algorithm is based on the master-slave model, and
thus is a semi-uniform algorithm. The ring is undirected, i.e., each node has two neighbors but does
not have specified predecessor or successor. Intuitively, the approach is to impose a unidirectional
Eulerian cycle (starting and ending at one end of the master node) on the undirected ring, and then
single token traverses the nodes along the directed unidirectional cycle. The expected stabilization
time is O(n log n) steps, and the space requirement at each node is 4 bits, i.e., the space complexity
at each node is constant for an undirected ring of size n. The token circulation algorithm is then
extended to achieve ring orientation such that each node in the ring have a consistent notion of its
predecessor and successor (consider an edge (i, j): if node i considers node j as its successor, node
j regards node i as its predecessor). Disregarding the time for stabilization, the ring orientation is
completed in at most 3n−1 steps with 1 extra bit storage at each node. The proposed algorithms do
not need to know the size of the ring and hence can tolerate dynamic addition and removal of nodes
as long as the ring topology is preserved. The protocol works under both central daemon (only one
privileged node is selected to move at each step) and distributed daemon (an arbitrary non-empty
subset of privileged nodes is selected to move at each step).

We further show that the token circulation algorithm also works for unicyclic graphs using the
same principle and extend the token circulation algorithm to orient the unicyclic graph in the sense
that each node in the graph has a consistent notion of its predecessor and successor.

2 Related Works

Self-stabilizing token circulation in a unidirectional ring was first introduced in [9], where one al-
gorithm used one distinguished node and n states at each node while the other two used 3 and
4 states at each node but with two distinguished nodes. Subsequently, both deterministic [2] and
randomized [13, 19, 11, 20, 3, 7, 4] algorithms for unidirectional rings are proposed. The algorithms
in [13, 19, 20, 3, 7, 4] are uniform, while the ones in [11, 2] are semi-uniform. All of the above
algorithms except [13] can accommodate rings of arbitrary size, while [13] is limited to rings of odd
size. The best reported stabilization time is O(n2) and the space requirement at each node varies
from 2n to 2 states. To the best of our knowledge, there is no known self-stabilizing token circulation
algorithm in undirected rings.

Another related problem is ring orientation. A ring is oriented if all nodes in the ring have
a consistent notion of their predecessors and successors. Authors in [18] show that no uniform
deterministic self-stabilizing orientation algorithm exists for rings of arbitrary size and provide a
randomized solution. Under distributed daemon, it stabilizes in O(n2) expected time, and requires
5 bits of storage at each node (each node has 18 local states), where n is the size of ring. A similar
randomized solution is presented in [17] which has the same performance as [18]. For rings of odd
size, there exist several deterministic self-stabilizing algorithms [15, 22, 16] for ring orientation.

3 Model and Terminology

We consider an undirected ring of size n with a designated node labeled as the master node, node 0,
and the other nodes are labeled 1 through n−1. These node labels are arbitrary and are not used by
the algorithms; they are used for reference purposes only. The master node is unique, it knows it’s
the master and the other nodes are anonymous; we call them slave nodes. Each node i, 0 ≤ i ≤ n−1
in the undirected ring R has two neighbors; for each node i, there is some fixed but arbitrary local
ordering of the neighbors of node i numbered 0 and 1; the local ordering of neighbors of a node is
independent of such local ordering of neighbors at any other node in the ring. Figure 1(a) shows an
example ring with arbitrary neighbor ordering at the nodes of a ring (the nodes are numbered from
0 through n− 1 consecutively for notational convenience only).
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Figure 1: A Ring R and the Directed Eulerian Cycle

As is traditional with many self-stabilizing algorithms, we use the shared-memory model : a node
communicates with its neighbor(s) by reading and writing on a shared pair of registers; a node reads
the states of all its neighbors and write on its state variables, all in one atomic step using composite
atomicity [14]. The proposed algorithm does not need to know the size of the ring, it tolerates
dynamic additions and removals of nodes as long as the ring topology is preserved. We assume that
the behavior of nodes are managed by an adversarial daemon: the daemon selects node(s) from
among the privileged nodes to perform local actions. The daemon is called fair if it prevents a node
being continuously privileged without performing local actions. Otherwise, the daemon is called
unfair. The proposed algorithm works under both the unfair central daemon (only one privileged
node is selected to perform local action at each step) as well as the unfair distributed daemon (a
non-empty subset of privileged nodes can be selected to perform local actions at each step). We
focus on central daemon in order to analyze the time complexity of the algorithm and then show
how to extend the analysis for a distributed daemon as well.

4 Token Circulation in Undirected Rings

We generalize the concept of master–slave token circulation algorithm in a unidirectional (directed)
ring given in [12] and generalize it for adoption in an undirected (bidirectional) ring; we call the
result the TC algorithm.

In algorithm TC, each node i has two t-variables t0i and t1i , each of which can be in one of three
states, say X,Y, or Z; we use notations ski , k ∈ {0, 1} to denote the state of the k-neighbor of node
i as sensed (read) at node i. We observe:

• Consider an edge (i, j) in the ring between nodes i and j: we view this undirected edge as two
parallel directed edges: i→ j and j → i. Assume node j is the k-neighbor of node i, k ∈ {0, 1}
(according to the unique ordering of neighbors at node i) and node i is the k′-neighbor of node
j (according to the unique numbering of neighbors at node j), where k, k′ ∈ {0, 1}; then, ski
is the value of tk

′

j (stored variable at node j) as read by node i; similarly sk
′

j is the value of

tki (stored variable at node i) as read by node j. The s-variables are used only for ease of
notation.

• Pairs of corresponding token variables at neighboring nodes simulate directed edges in the ring
and essentially impose a directed Eulerian cycle on the ring starting at the 0-neighbor of the
master node using a directed walk along the ring starting and ending at the 0-th neighbor of
the master node. Note that the length of the Eulerian cycle is 2n and each node of the ring is
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Rule for the Master Node (i = 0):
if (t00 = s00)

then set t00 to {X,Y,Z} − {t00} uniformly at random;
if (t10 6= s10)

then set t10 = s10;

Rule for a Slave Node (i > 0):
if (t0i 6= s1i )

then set t0i = s1i ;
if (t1i 6= s0i )

then set t1i = s0i ;

Figure 2: Algorithm TC for Token Circulation in An Undirected Ring

visited twice in the complete Eulerian cycle. The Eulerian cycle corresponding to the ring in
Figure 1(a) is shown in Figure 1(b).

The rules for a slave node i, 0 < i < n is as follows: For any k, k ∈ {0, 1}, if tki 6= sk
′

i , then

tki = sk
′

i , where k′ = 1−k. When a node senses that the token variable at one of its two neighbors is
different from its own token reserved for its other neighbor, we say that node i has received a token
from its neighbor (the node i is privileged) and it changes its own token for the next neighbor
to match with the sensed token; we say node i passes the received token to its next neighbor.

The rule for the master node is somewhat different: The master node (i = 0) treats its two
neighbors differently: (1) we say the master node receives a token (node 0 is privileged) from its
1-neighbor when it senses that the token variable at its 1-neighbor is different from its its own token
reserved for its 1-neighbor (i.e., t10 6= s10); it then passes the token to its 1-neighbor by executing
t10 = s10; (2) the master node receives a token (node 0 is privileged) from its 0-neighbor when it
senses that the token variable at its 0-neighbor is same as its own token reserved for its 0-neighbor
(i.e., t00 = s00); it passes the token to its 0-neighbor by updating its token by randomly choosing one
of the two remaining token values. The resulting algorithm TC is shown in Figure 2.

Remark 1

1. When a privileged node i, 0 6= i < n, is tapped by the central daemon, it becomes unprivileged,
i.e., does not hold any token in the next system state (the central daemon taps only one node
at a time).

2. A slave node receives a token from one neighbor and moves it to its other neighbor along the
directed Eulerian cycle.

3. The master node also receives a token from one neighbor and moves the token to its neighbor
along the directed Eulerian cycle; but, since the master node behaves differently, it always
passes the token to the same neighbor from which it receives the token (see Figure 1(b) for
the Eulerian cycle of our example ring).

4. Any token in the system will move along the directed Eulerian cycle, if it does not die along
the way and will eventually reach the master node via its 0-neighbor.

The desired goal behavior is that the master node changes its t00 value, this token then circulates
the entire directed Eulerian cycle, and then the master node changes its value again. Thus, we have
a legitimate state (final configuration) iff the number of tokens in the system is 1.

Definition 1 A global system state is legitimate or stable if and only if there is exactly one token
in the unidirectional Eulerian cycle; in a legitimate state, the number of privileged nodes (the master
or a slave) is exactly one.
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Lemma 1 In any arbitrary system state, each node has at most two tokens; thus the total number
of tokens in the ring is at most 2n.

Proof: Each node has exactly two neighbors and a node can have at most one token corresponding
to a neighbor. The proof follows. 2

Lemma 2 The number of tokens in the system cannot increase.

Proof: When a slave node i (0 < i < n) is privileged, i.e., it has a token, say from its k-th neighbor,
k ∈ {0, 1} and it is chosen by the daemon to move, it becomes unprivileged, i.e., it loses its token(s);
each such token either dies or is received only by one neighbor of node i (the unique k′-neighbor,
k′ = 1 − k, i.e., the successor of node i in the unidirectional Eulerian cycle), thus making that
neighbor privileged. Thus the number of tokens can never go up. Similarly, when the master node
has only one token from its 1-neighbor, and is chosen by the daemon to move, the token either dies
or the neighbor receives the token; when the master node has a token from its 0-neighbor and is
chosen to move, the token dies and its 0-neighbor receives a token. Thus, the number of tokens can
never go up. 2

Lemma 3 The TC algorithm cannot terminate, i.e., in any system state at least one node will be
privileged.

Proof: Consider the case when no slave node is privileged (by either of its neighbors) and the
master node is not privileged by its 1-neighbor. [Consider our example in Figure 1(b); when no slave
node is privileged we must have t01 = t02 = t03 = · · · t0n−1 = t10 and t1n−1 = t1n−2 = · · · t11 = t00; since
the master node 0 is not privileged by its 1-neighbor, we must have t10 = t1n−1] Then, both token
variables at each slave node and the master node are identical. Thus, t00 = s00, i.e., the master node
is privileged by its 0-neighbor; when it moves, the 0-neighbor of the master node will be privileged.
2

Lemma 4 Starting from an arbitrary system state, the master node is forced to send a new token
to its 0-neighbor after finitely many (actually O(n)) moves.

Proof: After a privileged node i (0 ≤ i < n) performs its local actions, it becomes unprivileged,
and does not hold any token under central daemon. Any token in the system takes at most 2n steps
to reach the 0-neighbor of the master node (along the directed Eulerian cycle) or it dies along the
way. 2

Thus, in order to reach a legitimate state starting from an arbitrary system state, we need to
show that the number of privileged nodes decreases. It has been shown in [1, 12] that it is possible to
enter into an infinite loop if what enters the master node must continually be the same what leaves
it; thus for converging to a legitimate state, it is necessary and sufficient to choose a sequence for the
t00 such that the sequence of tokens is aperiodic. The randomization incorporated in the protocol for
the master node provides the necessary aperiodicity of the sequence of tokens at the master node
for convergence of the global state to a legitimate one starting from an arbitrary state. It is to be
noted that if the sequence of distinct values of t00 is periodic, there always exists some initial global
system state in an undirected ring such that the protocol does not converge to a legitimate final
state; This can be easily proved using a similar theorem given in [12] by replacing an unidirectional
ring with the unidirectional Eulerian cycle imposed on the undirected ring. We omit the details for
lack of space.

Definition 2 A round is defined as the time taken by a token to circulate around the unidirectional
cycle (of size 2n) imposed on the given ring. Thus each round is equivalent to 2n steps using central
daemon.

Theorem 1 The algorithm TC stabilizes in O(n log n) expected time using central daemon, i.e., the
expected time to converge to one circulating token is O(n log n) steps regardless of the behavior of
the daemon.
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Proof: The goal of the daemon is to maintain multiple tokens in circulation. Most moves simply
advance a token from one node to the next without changing the set of tokens. The moves that can
potentially destroy a token are (a) tapping the master node; or (b) advancing one token to overwrite
the next (for example, if three consecutive slave nodes have X, Y, Z and the daemon taps the middle
node then the Y token dies.

Consider a situation where the daemon performs (a). Say the first token in circulation is X and
the daemon and its predecessor are in Y. Then there is a 50% chance that the token generated by
the daemon is the same as that, and hence the token dies. Thus, if the daemon never does (b), then
the expected number of tokens generated by the master node before we get to one token is at most
2n. Thus, approximately, if we start with 2n tokens, after all have passed through the master we
should expect to have about n tokens, and so on, and so after O(log n) rounds we would have only
one token. To make the previous sentence more mathematically accurate, if we consider that there
is a 50% chance that the token dies when it passes through the master, then the number of rounds
that a token lives is a geometric random variable with mean 2. Since the coin tosses (randomization)
at the master node are independent of each other, the expected number of rounds for all tokens to
die is then the expected value of the maximum of n IID geometric random variables, and this is
known to be O(log n) [10].

To conclude the proof, we must consider that in our case convergence occurs when the penultimate
token dies (see Lemma 3). Second, the daemon can destroy any token at any time. But this can
only decrease the expected running time. 2

Remark 2 While it is possible that all nodes are privileged in an initial arbitrary system state,
this state cannot continue indefinitely due to the randomization introduced to generate the new
token for the 0-th neighbor of the master node in TC algorithm.

Remark 3 The TC algorithm operates correctly under a distributed daemon. If the distributed
daemon does not choose all the nodes simultaneously, then in any unidirectional cycle algorithm
(the tokens in the algorithm always move along the unidirectional Eulerian cycle imposed on the
undirected ring), this is equivalent to a sequence of individual moves (move the frontmost node
first, then the second and so on). So the only issue with considering a distributed daemon is what
happens if the daemon selects all nodes simultaneously. This can, of course, only happen if every
node is privileged. And we have just argued that that state cannot continue indefinitely.

5 Ring Orientation

In this section, we extend the token circulation algorithm TC to orient the original undirected ring.
After the TC algorithm reaches a legitimate state, ring orientation stabilizes in at most 3n− 1 steps,
i.e., all nodes in the ring have a consistent notion of their predecessors and successors.

The idea is simple: each node in the ring R has an extra orientation bit indicating its predecessor:
if the orientation bit of node i is k, k ∈ {0, 1}, node i considers its k-neighbor as its predecessor. The
master node behaves differently; it unilaterally decides to consider its 1-neighbor as its predecessor.
When the system stabilizes (the system has only one token), the master node broadcasts its own
orientation preference to the slave nodes via the unique token so that the predecessor and successor
relationships at each node become consistent.

5.1 Algorithm ORIENT

The integrated token circulation and the orientation algorithm ORIENT for the ring is shown in
Figure 3. In the ORIENT algorithm, each node i maintains the data structure:

• Two 2-bit t-variables t0i and t1i , each of which can have a value from {X,Y, Z}, as before.

• A 1-bit boolean flag orienti, which indicates the predecessor of node i.
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Rule for the Master Node (i = 0):
if (t00 = s00) then{

set t00 to {X,Y,Z} − {t00} uniformly at random;
orient0 = 1;

if (t10 6= s10) then
set t10 = s10;

Rule for a Slave Node (i > 0):
for k = 0 to 1 do

if (tki 6= s1−ki ){
if (t0i = t1i ) then orienti = 1− k;
set tki = s1−ki ;

Figure 3: Algorithm Orient for Orientation of An Undirected Ring

The master node 0, when it is privileged by its 0-neighbor and is tapped by the daemon, sets
orient0 = 1. Any slave node i > 0, when it is privileged by its k-neighbor, k ∈ {0, 1} and t0i = t1i ,
i.e., when both resident tokens at node i are equal, it sets orienti = k.

5.2 Analysis

Theorem 2 After the system reaches a legitimate state, all nodes in the ring have a consistent
notion of their predecessors and successors in at most 3n− 1 steps.

Proof: The master node i = 0 will be privileged in at most 2n steps after the system stabilizes
(reaches a state when there is only one token in the system). Thus, t0i = s0i and all t-variables at all
nodes in the system are equal by Lemma 3 (none of the slave nodes is privileged). The master node
sends a new token to its 0-neighbor, say node j; node j becomes privileged by the token received
from one of its neighbor; at this point, the two resident tokens at node j are equal; it then adjusts
its orientj bit and passes the token to its other neighbor. The process continues until the unique
token in the system reaches the 1-neighbor of the master node in n − 1 steps and all slave nodes
have adjusted their orient bits in a consistent way since the token moves along the directed Eulerian
cycle. The token then moves along the other half of the Eulerian cycle visiting the slave nodes in the
opposite sequence; during this traversal, when the token visits any slave node the resident tokens
at that node are not equal and hence the orient bit is not adjusted again. It is obvious that orient
bits are not changed ever again as long the system is in a legitimate state. 2

6 Unicyclic Graph Orientation

We extend our token circulation algorithm and subsequent orientation of an undirected ring to a
larger class of graphs, e.g., that of undirected unicyclic graphs. An undirected graph is unicyclic
when there is a single cycle in the graph. We consider a subclass of the general unicyclic graphs
where there is at least one node in the cycle with two neighbors, i.e., the node has no subtree rooted
at it. Figure 4(a) shows an example of such a unicyclic graph. Orientation of such a unicyclic graph
is defined to be a consistent orientation of the edges in the unique cycle (each node in the cycle will
know its unique predecessor) and the subtree of a node in the cycle will be rooted at that node (each
node in the subtree will know its unique predecessor in the rooted subtree).

In a unicyclic graph with n nodes, an arbitrary node on the unique cycle with two neighbors is
designated as the master node, labeled 0 and the other nodes are labeled 1 through n− 1; they are
called slave nodes as before. These node labels are arbitrary and are not used in the algorithms;
they are used for reference purposes only. Each node i has δi many neighbors (note that δ0 = 2, and
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Figure 4: A Unicyclic Graph and Its Orientation

for node i, 1 < i < n, δi ≥ 2 if node i belongs to the cycle and δi ≥ 1 otherwise. For each node i,
there is some fixed but arbitrary ordering of the neighbors of node i numbered 0, 1, ..., δi − 1. The
neighbor ordering scheme is the same as in the previous section.

Each undirected edge (i, j) between nodes i and j is viewed as two parallel directed edges in
the opposite directions. Given the neighbor orderings at the nodes in the unicyclic graph, one can
impose a directed Eulerian cycle using a depth first walk along the unicyclic graph starting and
ending at the master node. Note that the length of the Eulerian cycle is 2n and each edge of the
unicyclic graph is visited twice in the complete Eulerian cycle.

Remark 4 The directed Eulerian cycle is different for different choices of neighbor orderings at
slave nodes in the unicyclic graph, but the resulting orientation remains the same as long as the
neighbor ordering at the master node is fixed.

Figure 4(a) shows an example unicyclic graph with arbitrary neighbor orderings at the nodes of
the unicyclic graph. The Eulerian cycle imposed on the unicyclic graph is given by 0, 1, 2, 3, 2, 4, 0,
4, 2, 1, 0. If the ordering of neighbors of node 2 such that neighboring nodes 1, 4, 3 are numbered 0,
1, 2 respectively, then the imposed Eulerian cycle is given by 0, 1, 2, 4, 0, 4, 2, 3, 2, 1, 0. Although
the imposed Eulerian cycles are different for different choices of neighbor orderings at slave nodes,
the resulting orientation of the unicyclic graph remains the same as shown in Figure 4(b) (if (i, j) is
a tree edge, the arrow i→ j indicates i is a predecessor of node j).

The underlying concept in token circulation and subsequent orientation of the unicyclic graph is
similar to token circulation and orientation of the ring:

(a) Impose a directed Eulerian cycle on the unicyclic graph starting at the designated master
node, visiting each edge of the graph and coming back to the master node using a depth first
walk. The previous token circulation algorithm in a ring can be readily adapted to a slightly
restrictive class of unicyclic graphs where the unique cycle has at least one node with exactly
degree two.

(b) When the system stabilizes to the legitimate state with a single token, the unique token travels
along the imposed directed Eulerian cycle repeatedly.

(c) Each node has an extra orientation bit indicating its predecessor: if the orientation bit of node
i is k, 0 ≤ k < δi, node i considers its k-neighbor as its predecessor.

(d) The master node behaves differently; it unilaterally decides to consider its 1-neighbor as its
predecessor. The master node broadcasts its own orientation preference to the slave nodes
via the unique token so that the predecessor and successor relationships at each node become
consistent.
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Rule for the Master Node (i = 0):
if (t00 = s00) then{

set t00 to {X,Y,Z} − {t00} uniformly at random;
orient0 = 1;

if (t10 6= s10) then
set t10 = s10;

Rule for a Slave Node (i > 0):
for k = 0 to δi − 1 do

if (tki 6= s
(k−1) mod δi
i ){

if (tki = t
(k−1) mod δi
i ) then orienti = (k − 1) mod δi;

set tki = s
(k−1) mod δi
i ;

Figure 5: Algorithm Orient2 for Orientation of A Unicyclic Graph

6.1 Algorithm ORIENT2

The integrated token circulation and the orientation algorithm ORIENT2 for the undirected unicyclic
graph is show in Figure 5. In the ORIENT2 algorithm, each node i maintains the following data
structure:

• 2-bit t-variables t0i , t
1
i , ..., t

δi−1
i , each of which can have a value from {X,Y, Z}, as before.

• A 1-bit boolean flag orienti, which indicates the predecessor of node i.

The master node 0, when it is privileged by its 0-neighbor and is tapped by the daemon, sets

orient0 = 1. Any slave node i > 0, when it is privileged by its k-neighbor and t
(k+1) mod δi
i = tki , it

sets orienti = k. The complete pseudo code of the algorithm is shown in Figure 5.

6.2 Analysis

Theorem 3 Remarks 1-3, Lemmas 1-4 and Theorem 1 hold for Algorithm ORIENT2.

Proof: The proofs are similar to those for Algorithm TC. The only difference is that the directed
Eulerian cycle imposed on the ring by Algorithm TC is replaced by the directed Eulerian cycle
imposed on the unicyclic graph by Algorithm ORIENT2. 2

Remark 5 Any edge (i, j) of the unicyclic graph is visited exactly twice in the complete Eulerian
cycle: (1) first time as i → j when the edge is from the predecessor to the successor (with respect
to the master node); and (2) second time as j → i when the edge is from the successor to the
predecessor.

Lemma 5 When a slave node j receives a token from its k-neighbor, say node i after the system

reaches a legitimate state. If t
(k+1) mod δj
j = tkj , then the edge (i, j) is visited by the token for the

first time in the complete Eulerian cycle, i.e., node i is the predecessor of node j with respect to the
master node (see Remark 5).

Proof: When a slave node j receives a token from its k-neighbor, node j must have t
(k+1) mod δj
j 6=

skj (see the rule for a slave node), where the value of skj is matched with the circulating token (either
type X, Y or Z). If the edge (i, j) has been visited by the token before from node j to i, then the value

of tkj must be matched with the unique t-token, it follows that tkj = skj , further, t
(k+1) mod δj
j 6= tkj .

2
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Theorem 4 After the system reaches a legitimate state, all nodes in the unicyclic graph have a
consistent notion of their predecessors and successors in at most 4n− 1 steps.

Proof: The master node i = 0 will be privileged in at most 2n steps after the system stabilizes to
a state when there is only one token in the system. Thus, t0i = s0i and all t-variables at all nodes in
the system are equal by Lemma 3 (none of the slave nodes is privileged). The master node sends a
new token to its 0-neighbor, say node j; node j becomes privileged by the token received from the
master node (without loss of generality, the master node is assumed to be the k-neighbor of node j,
0 ≤ k < δj); at this point, node j checks to see: (1) if the master node is the predecessor of node

j with respect to the master node (i.e., t
(k+1) mod δj
j = tkj based on Lemma 5), it then adjusts its

orientj bit to k; otherwise (2) it does not change its orientj bit. Then, node j passes the token
to its next neighbor (using the neighbor ordering). The process continues until the unique token
in the system comes back to the 0-neighbor of the master node in 2n − 1 steps and all slave nodes
have adjusted their orient bits in a consistent way since the token moves along the directed Eulerian
cycle. 2

7 Conclusion

In this paper, we propose a randomized self-stabilizing master-slave token circulation algorithm for
an undirected ring of arbitrary size. The expected stabilization time is O(n log n) steps, and the space
requirement at each node is 4 bits for any undirected ring of size n. The proposed token circulation
algorithm is then extended to achieve ring orientation. Disregarding the time for stabilization, the
ring orientation is completed in at most 3n−1 steps with 1 bit additional storage at each node. The
proposed algorithms do not need to know the size of the ring, and thus tolerate dynamic additions
and removals of the nodes as long as the ring topology is preserved. We also showed that the token
circulation algorithm also works for undirected unicyclic graph of arbitrary size with similar expected
stabilization time and space requirement at each node. We developed an orientation algorithm for
an undirected unicyclic graph that completes in at most 4n−1 steps with 1 bit of additional storage
at each node.
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