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Abstract

Sharing the Semantic Web data encoded in Resource Description Framework (RDF) triples
from proprietary datasets scattered around the Internet, calls for efficient support from dis-
tributed computing technologies. The highly dynamic ad-hoc settings that would be pervasive
for Semantic Web data sharing among personal users in the future, however, pose even more
demanding challenges for the enabling technologies. We extend previous work on a hybrid
peer-to-peer (P2P) architecture for an ad-hoc Semantic Web data sharing system which better
models the data sharing scenario by allowing data to be maintained by its own providers and
exhibits satisfactory scalability owing to the adoption of a two-level distributed index and hash-
ing techniques. Additionally, we propose efficient, scalable decentralized processing of SPARQL
Protocol and RDF Query Language (SPARQL) queries in such a context and explore optimiza-
tion techniques that build upon distributed query processing for database systems and relational
algebra optimization. The effectiveness and efficiency of the SPARQL query processing mech-
anism we proposed for a decentralized settings were verified through a series of experiments.
We anticipate that our work will become an indispensable, complementary approach to mak-
ing the Semantic Web a reality by delivering efficient data sharing and reusing in an ad-hoc
environment.

Keywords: ad-hoc, decentralized SPRQL query processing, hybrid P2P, query optimization,
Semantic Web data sharing
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1 Introduction

The Resource Description Framework (RDF) [14] is a standard model for data interchange on
the Web as well as a language for describing any Web-identifiable resources. The basic idea be-
hind the RDF data model is about making statements about resources in the form of subject-
predicate-object expressions, that is, triples in the RDF terminology. For instance, the triple <id1,
rdf:type, foaf:Person> indicates that “id1” has a property “rdf:type” and the value for the property
is “foaf:Person”. By encoding information (on resources) in RDF with well-defined meaning, the
Semantic Web can transform heterogeneous and distributed data into the form that automated soft-
ware can directly process and manipulate, thus facilitating sharing and reusing of data with great
efficiency.

We observed in recent years that more RDF converters have become available for the public
that translate files between a number of formats, for example, the Extensible Markup Language
(XML) to RDF converter, BibTex to RDF converter, Excel to RDF converter, relational database
to RDF converter, and etc. We anticipate that larger amounts of such RDF data, being part of
the Semantic Web and therefore termed as the Semantic Web data in the context of interest, is
bound to be generated in personal computers. One would be able to carry the data around and
share it with others just like what we could currently do with the document, music, or video files
in our computers. In most cases, Semantic Web data sharing among personal computers will occur
in an ad-hoc environment1 where querying becomes much more complicated in the absence of a
central directory node. We argue that providing powerful support to enable such activities is an
indispensable and complementary approach to making the Semantic Web a reality [30].

In an ad-hoc Semantic Web data sharing system that comprises an array of distributed nodes,
each node may act as both a data provider and a data consumer. Moreover, nodes in such a system
typically make their local decisions and share data with others directly instead of relying on central-
ized intermediaries. The inherent decentralized nature of the scenario fits well with the peer-to-peer
(P2P) paradigm and therefore makes the P2P computing an ideal candidate for facilitating Semantic
Web data sharing in an ad-hoc manner. It should be noted that the term “decentralized” is, by no
means, synonymous for “distributed”. For instance, Khare and Taylor defined a decentralized sys-
tem as “one which requires multiple parties to make their own independent decisions” [13]. As made
clear in [12], a decentralized system features decisions made independently by separate components
at different nodes while a distributed system is characterized by having its components located at
different nodes. This clear distinction can also be applied to differentiate decentralized environments,
processing methods, and etc. from their distributed counterparts2 under most circumstances.

Furthermore, most Semantic Web query mechanisms assume the target data is within two hops
away, while P2P computing, as we know, is proficient in offering efficient and scalable approaches
when data sharing occurs in a much more complex manner; for instance, the target data may reside
on a node more than two hops away. In such a scenario, P2P computing will primarily deal with
query forwarding in a decentralized environment, that is, in the absence of any central directory
node.

Put simply, P2P systems come in three kinds: centralized, unstructured, and structured P2P3.
Unstructured P2P (e.g. Gnutella) is most used in a context in which each node, or peer, stores
locally and manipulates data items of its own and no central lookup service is available. This
feature corresponds to the typical scenario of ad-hoc Semantic Web data sharing. There exists no
such function that can directly map the (hashed) name of a data item directly onto its location, as

1This is very much like the way that Internet users share music and video files in a peer-to-peer fashion.
2Extensive research efforts (for instance, [22], [9], and [23]) have been devoted to investigating distributed query

processing in Semantic Web applications, aiming to provide effective and efficient techniques for querying RDF data.
Most of the querying mechanisms will cease to function well unless a declarative description of the datasets is known
or the disparate, distributed RDF datasets accessible to the applications can be specified. It is, however, not always
feasible for one to make such an assumption in an ad-hoc settings. And not surprisingly, decentralized query processing
is able to address the issue by capitalizing on local interactions between nodes to gain a better picture of the whole
system.

3We are aware that the simplified categorization is apparently not accurate enough to cover the recent advances
and developments in the field of P2P computing. However, it is only intended to facilitate our discussion that follows.
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in distributed hash table (DHT)-based structured P2P systems, leading to unsatisfactory scalability
in unstructured P2P systems. Against this background, Peng et al. presented a two-layer hybrid
network, called HP2P [19], that builds a Chord ring on top of an unstructured P2P lower layer
in order to achieve satisfactory scalability, efficiency, and stability that would otherwise only be
obtainable in two separate paradigms.

Inspired by [19], we proposed a similar architecture that is based upon the hybrid P2P paradigm [30].
On the upper level, some nodes self-organize and form a ring topology while on the lower level other
nodes choose to attach to one of the nodes on the ring, forming a locally centralized architecture4.
We identified that, to locate RDF data in such a hybrid P2P paradigm, a decentralized query mech-
anism that resolves queries for RDF data, SPARQL Protocol and RDF Query Language (SPARQL,
see Sect. 4.1) queries for example5, is essential to facilitate efficient and scalable data sharing in the
ad-hoc context of interest.

Cai and Frank dealt with distributed (and decentralized) query processing in a scalable RDF
repository based on Chord, called RDFPeers [4]. RDFPeers was intended to act as an RDF data
storage and management system in which RDF data is assigned to and stored by one (or more for
robustness purposes) of the Chord nodes on the ring and that node may not necessarily be the data
provider. Techniques such as locality preserving hashing and range ordering algorithms can be used
to efficiently resolve disjunctive and range queries in RDFPeers, see Sect. 2. Our work presented
here differs mainly in the following ways.

• Our system is anticipated to serve Semantic Web data sharing in ad-hoc environments, which
implies that data providers store and manipulate their own data locally. Obviously, this
excludes the direct application of distributed query processing techniques, as in [4], to solve
our problem.

• The distributed index in our system adopts a two-level structure for efficient location of RDF
data, see Sect. 3.3.1. This allows RDF data to be maintained by their providers (unobtainable
by DHT-based P2P techniques alone) while still helps the system to achieve desirable scalability
comparable to that of the DHT-based P2P systems.

• We explore the solution to processing queries of a richer set than those that can be handled
by RDFPeers (see Sect. 4) and are particularly keen on SPARQL queries within the current
scope of our work.

In this work, we set out to explore a decentralized query mechanism that deals with SPARQL
query processing and related optimization issues in the context of a hybrid P2P architecture. The
remainder of the paper is organized as follows. Related work is reviewed in Section 2. In Section 3,
we give a brief introduction to the hybrid P2P architecture for ad-hoc Semantic Web data sharing
systems. We provide the details of a decentralized querying mechanism in Section 4. This is followed
by a preliminary performance study of the mechanism in Section 5. Finally, a summary and open
research issues are presented in Section 6.

2 Related Work

In this section, we review related work from P2P computing, the Semantic Web, and distributed
database systems that either offers the most inspiration to us or provides important theoretical
foundations to our work.

Our work was much motivated by [4] that presented a distributed and scalable RDF repository
called RDFPeers. The work extended Chord [26] by applying hash functions to the subject (s),
predicate (p), and object (o) values of an RDF triple in the form of (s, p, o). Each triple is therefore
stored at three places in a multi-attribute addressable network. RDFPeers can efficiently resolve

4An unstructured P2P architecture as in [19] is also feasible.
5However, we make no restrictions on the type of prospective queries submitted to or processed by the proposed

system in a more generic settings.
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conjunctive multi-attribute queries (all triple patterns6 sharing the same subject) by a recursive al-
gorithm that seeks the candidate subjects for each predicate recursively and intersects the candidate
subjects within the network, that is, on the Chord ring. In addition, RDFPeers is able to resolve a
range query for ?o7 efficiently by using a uniform locality preserving hashing function and a range
ordering algorithm that sorts the query ranges in ascending order. Thanks to its roots in Chord,
RDFPeers demonstrated very good scalability and fault resilience.

Liarou et al. further extended the way that indices to RDF triples are created and triples are
replicated in RDFPeers [16]. In the spread by value (SBV) algorithm, a hash function Hash(⋅) is
applied to the following seven values of a given RDF triple t : subject (s), predicate (p), object
(o), subject and predict (s+p), subject and object (s+o), predicate and object (p+o), and subject,
predicate, and object (s+p+o), where the operator + denotes a concatenation of the associated string
operands. The triple t will be stored at the successor8 nodes of the identifiers Hash(s), Hash(p),
Hash(o), Hash(s+p), Hash(s+o), Hash(p+o), and Hash(s+p+o). We utilize a similar approach
that inserts indices to a given RDF triple, rather than the replicas of the triple, to various positions
on the Chord ring (see Sect. 3.3), trading storage for a better distribution of query processing load.

Peng et al. proposed a hybrid hierarchical P2P network, HP2P, which combines both the un-
structured P2P and structured P2P paradigms [19]. At the lower unstructured P2P layer, nodes are
organized into clusters which are managed by supernodes and messages are propagated by flooding
within individual clusters. At the upper structured P2P layer, supernodes from each cluster are
further organized into a Chord ring. By adopting a hybrid P2P model, HP2P achieves desirable
properties including stability, scalability, reduced storage load on Chord nodes, and limited number
of flooding. This hybrid model better fits with the Semantic Web data sharing scenario in which
data is maintained by its own provider and is also able to deliver satisfactory scalability by adopting
Chord as the substrate. Inspired by HP2P, we introduce a similar hybrid architecture (see Sect. 3.1)
in our work and investigate specific issues that arise when such an architecture is employed in an
ad-hoc Semantic Web data sharing system.

Another piece of work that couples the structured P2P with unstructured P2P models can be
seen in [3] in which Asaduzzaman et al. exploited the properties of a clique-based clustered overlay
network, named eQuus [17], to build an efficient and resilient transport overlay for live multimedia
streaming. In eQuus, nodes close to each other in terms of proximity in the underlying physical
network make up a clique and the DHT overlay is formed among cliques. An id assignment process
gives each clique a unique id so that cliques with numerically adjacent ids occupy adjacent segments
of the proximity space. Nodes in a clique maintain an all-to-all neighborhood. Stable nodes with
high capacity are introduced into each clique in eQuus. For each channel9, a dissemination tree
is formed by stable nodes, each from a participating clique and the source at the root of the tree.
Apart from the tree structure, the stable nodes in each clique also maintain data structures that
reflect the mesh-structured transport overlay inside the clique.

The semantics and complexity of SPARQL is extensively discussed in [20]. Particularly, we
are keen on this work because it carries out a formal study of the semantics of SPARQL for its
graph pattern matching facility. The study provides not only help for evaluation of all kinds of
graph pattern expressions in SPARQL queries but also help in SPARQL query optimization that we
intend to address in our own work.

Schmidt et al. identify a large set of algebraic equivalences for the SPARQL algebra which can
serve as rewriting rules for query optimization [25]. These include basic rules that hold with respect
to common algebraic laws (such as the rules for associativity, commutativity, and distributivity),
general-purpose rules from the relational context (such as those for projection and filter pushing),
and SPARQL-specific rewriting rules.

To achieve satisfactory overall system performance, the designers of distributed database systems
are concerned about the issue of join site selection [6] that revolves around choosing the “right” site to
perform each join operation [28]. The well-known approaches include Move-Small, Query-Site, and

6A triple pattern resembles an RDF triple except that its subject, predicate and/or object may be a variable [21].
7In RDFPeers, the only attribute that can have numeric values are the object.
8The successor of an identifier k was defined in Chord as its immediate successor on the Chord identifier circle [26].
9A channel refers to a live stream of content from a single source to multiple destination nodes.
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Third-Site. In the move-small strategy [5], if a join operation involves data fragments on two different
sites, then the smaller data segment should be shipped to the site of the larger data segment. The
query-site strategy allows a join to be performed at the site where the query was submitted. Ye et al.
presented a third-site strategy for join site selection that takes into account the dynamic properties
of the system obtained from QoS monitoring tools [29]. For optimization purposes, we will apply
these strategies to better perform SPARQL queries in our system in response to various application
environments, for instance, static or dynamic. Readers interested in classic algorithms, models, and
techniques for query processing and optimization in distributed database and information systems
may refer to [15].

3 A Hybrid P2P Architecture for Ad-Hoc Semantic Web
Data Sharing

3.1 A Hybrid P2P Architecture

We proposed a hybrid architecture for Semantic Web data sharing systems in an ad-hoc settings in
[30]. The hybrid P2P network consists of a number of nodes and extends Chord [26] with RDF-
specific retrieval techniques. Some nodes willing to host indices (for DHT-based query forwarding)
for other nodes self-organize and form a ring topology; and we refer to them as index nodes. Other
nodes that are reluctant to do so will need to attach to one of the nodes on the ring, that is, to an
index node, and we simply call them storage nodes. Each node has an IP address by which it may
be contacted.

 N7 N4 N1  
   N12 N15      D1 D2 D3 D4 

Figure 1: A peer network of 9 nodes in a 4-bit identifier space

In Figure 1, we show a peer network of 9 nodes in a 4-bit identifier space. The node identifiers
N1, N4, N7, N12, and N15 correspond to index nodes. In the meantime, the node identifiers D1,
D2, D3, and D4 represent four storage nodes to which index nodes have a pointer (represented by
a single-ended arrow with a dotted line) in their indices.

3.2 The Finger Table

As in Chord, we allow each node in the data sharing network to maintain a routing table, also known
as the finger table, with (at most) m entries, where m denotes the number of bits in the key/node
identifiers. The primary goal of using finger tables is to provide the successor information for a given
key, or a hash value, which, in the proposed system, is a function that will be frequently accessed,
when either the indices for a newly-added RDF triple are created (see Sect. 3.3.2) or the RDF triples
of interest are retrieved (see Sect. 3.3.1).

Figure 2 presents the finger table of the index node N4 from the network in Figure 1. The
node identifiers range from [0, 2m − 1], where m = 4, and we label their correponding nodes with a
preceding letter N, as in Figure 1. For instance, the node identifier 12 refers to the index node N12.
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finger table 

start        end        successor 

   5         6         7 (N7) 

   6         8         7 (N7) 

   8        12        12 (N12) 

  12         4        12 (N12) 

Figure 2: The finger table of index node N4

Suppose the index node N4 wants to find the successor of key identifier 9. Because 9 belongs to the
circular interval [8, 12), N4 checks the third entry in its finger table, the successor information of
which is 12 or N12. N4 will ask N12 to find the successor of key 9. In turn, N12 will discover that
the successor of key 9 is itself10 and return related information to N4. Details on how to use finger
tables to find a succesor of a given key in more complicated scenarios can be found in [26].

3.3 A Two-Level Distributed Index Structure

Our system features a two-level distributed index structure11, see Figure 3, which can be employed
to locate target RDF triples as follows.

3.3.1 Example Usage of Distributed Index in Query Processing

Whenever a query initiator issues a primitive SPARQL query (see Sect. 4.3) containing a triple
pattern <si, pi, ?o>12, it will first consult the finger table to find an index node that has the
information about related storage nodes based on Hash(si, pi). Note that the index node is supposed
to be the successor of Hash(si, pi) and therefore can be determined by searching the finger tables
of the query initiator and (possibly) other index nodes.

If the target index node is N7, then using Kj= Hash(si, pi) as the index, the related storage nodes
D1, D3, and D4 can be further located in the location table of N7 (as we will soon explain). Several
reformulated queries, derived from the original query, may subsequently be sent to D1, D3, and D4
for target RDF triples simultaneously or sequentially, according to the specified query processing
protocol.

3.3.2 Construction of Distributed Index

The overall index is spread across the index nodes when it is constructed and we explain the process
of index construction as follows. Recall that RDFPeers stores each RDF triple at three places in
a multi-attribute addressable network by applying globally known hash functions to its subject,
predicate, and object values [4]. We extend such practice by applying hash functions to the subject
<s>, predicate <p>, object <o>, and also to subject and predicate <s, p>, predicate and object
<p, o>, and subject and object <s, o> of each triple shared by a node and store the mapping
between the hash value (i.e. the key) and the information about the nodes that share corresponding
triples at six places (in the location table of possibly different index nodes as illustrated in Table 1)
on the Chord ring.

10According to Chord, when the key 9 was added to the network, it was supposed to be stored at the node that
was its immediate successor on the cirle, which happened to be the index node N12 in this case.

11The distributed index adopted in our work is not limited to any specific technique, such as Chord. Many other
P2P networks based on DHTs may be used. However, we will use the Chord ring to explain some of the issues for
ease of understanding.

12We indicate the variables in an RDF triple pattern by a preceding ? sign throughout the paper.
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Location Table Index Nodes 

<si, pi, ?o> Kj=Hash(si,pi) D1(10), D3(20),D4(15) D1 D3 D4 
N7 

Location Table N15 
Location Table N1 

… 
… … 

SPARQL Query Interface 
Query Initiator Storage Nodes 

Figure 3: A Two-Level Distributed Index Structure

For instance, when a storage node wants to join the network, say N4 in Figure 1, and it has a
triple of the form (si, pi, oi), an index on its subject <si> and predicate <pi> will be stored in
the location table at the successor node of Hash(si, pi). To this end, a message of the following
form needs to be sent from N4, which is intended to instruct the recipient, that is, the successor of
key=Hash(si, pi) to insert the information in the pair (key = Hash(si, pi), IP address of N4) into
its location table.

STORE { key, IP address of N4) } at the successor of key WHERE key = Hash(si, pi).
The remaining five indices on <si>, <pi>, <oi>, <pi, oi>, and <si, oi> are created and stored

in the same manner. If N4 possesses other triples for sharing, six indices for each of the triples need
to be established and maintained.

3.3.3 Construction of Location Table

The location table is mainly used for determining which storage node(s) can satisfy an incoming
query for RDF triples. It is initially built up when the distributed index is established and keeps
updated when the Semantic Web data is added to or removed from the data sharing system.

Table 1: A Location Table for the Index Node N7

Key Storage node (frequency)
K1 D1 (15), D3 (10)
K2 D1 (10), D3 (20), D4 (15)
K3 D1 (30)

An example location table for a given index node N7 is depicted by Table 1. In each row of the
table, the Key Ki (1 ≤ i ≤ M , where M is the total number of the keys currently maintained in the
location table by N7) is the hash value of a single attribute or a pair of attributes of triples that
are maintained by a list of storage nodes indicated by Storage node. The frequency number in
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parentheses indicates the number of triples that share the same hash value for their attribute(s), and
this frequency number plays an important role in the optimization of distributed SPARQL query
processing as described in Sect. 4. Whenever an index node receives a query with a single triple
pattern (si, ?p, ?o) for RDF data (see Sect. 4.3), N7 for instance, and the hash value of the subject
si happens to be K3, N7 will then forward the query to the storage node D1.

3.4 Index Node Join

The join of an index node is more complicated than the join of a storage node because index nodes
are responsible for locating a node that shares the RDF triples of interest and this ability should be
preserved during node arrival (as well as departure). Apart from the tasks13 necessary for existing
index nodes to maintain their data structures up-to-date for lookups upon the arrival of a node,
the index node join involves the transfer of a portion of the location table to the new node from its
predecessor node.

A newly arriving index node, Ni for instance, becomes the successor node only for keys that were
previously maintained by the node immediately following it. Hence, Ni can simply request that node
to transfer a portion of its location table.

3.5 Node Departure and Failure

When a storage node leaves the whole system or it crashes unexpectedly, the impact on the rest of
the whole system is not significant. The location table of related index nodes that have pointers to
such a storage node may remain inconsistent for a while. It will, however, soon become up-to-date
once no acknowledgement for receipt of query messages from the failed storage node is received after
a timeout period and related entries are removed.

The graceful departure of an index node requires its immediate successor node to take over its
location table and other related data structures such as the finger table and predecessor as in Chord.
In case that an index node ceases to function properly and fails, two mechanisms need to be applied
to warrant that the whole system can eventually recover from such failures: the successor-list and a
replication policy. By replicating data at succeeding nodes, the system will continue serving queries
in a successful and efficient fashion.

3.6 Workflow for Resolving a Query

The workflow for resolving a query in the proposed network is depicted in Figure 4 in which the typ-
ical components for distributed query processing in distributed database systems [18] are included.

For a query string from the external application, the Query Parser translates it into an abstract
syntax tree composed of the query forms, graph patterns, and solution sequence modifiers that we will
soon describe in Sect. 4.1. Different parts of the syntax tree will be further converted into SPARQL
algebra expressions during the Query Transformation process. The Global Query Optimizer decides
the details of how to execute the operations of the query and creates a global query plan that best
satisfies the optimization criteria. According to the plan, the query initiator may send sub-queries to
other nodes. These nodes execute sub-queries locally, which may further involve sub-query shipping
and data shipping, see the following Sect. 4. Intermediate results of sub-queries are sent to the
query initiator which carries out some post-processing before returning the result to the external
application.

Owing to the many parallels between relational algebra (RA) operators and SPARQL algebra
(SA) operators [25], and the same expressive power of RA and SA as revealed in [2], distributed
query processing techniques from distributed database systems can be employed in our work and we
will discuss related issues in the context of interest in the following section.

13In Chord, for example, such operations would include initializing the finger tables and predecessor of the new
node, updating the finger tables and predecessors of existing nodes so as to reflect the arrival of a new node, and
moving keys that the new node is now responsible for from its predecessor [26].
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Global Query Optimization Query Transformation  Query Parsing 

RDF Data Repository 
Query 

  Local Query Execution Post- Processing Result 
Figure 4: A decentralized query processing workflow

4 Decentralized Query Processing

4.1 The SPARQL Query Language

SPARQL is a predominant query language for RDF graphs as well as an official W3C recommenda-
tion. The query language is equipped with a powerful graph matching capability and can be used to
express queries against, and retrieve and manipulate data across disparate RDF data sources [21].
A solution, or solution mapping, to a SPARQL query µ from V to U is defined in [20] as a partial
function µ: V → U , where V is an infinite set of variables and U is a set of RDF terms (including
all IRIs14, RDF literals, and blank nodes15). Such a solution typically consists of a set of tuples
that contain variables and their corresponding values in RDF terms. Two solutions µ1 and µ2 are
compatible if any variable that they share has the same value.

The operations including the join of, the union of, and the set difference between two sets of
solution mappings Ω1 and Ω2 are defined in [20] as follows.

• Ω1 &Ω2 = {µ1 ∪ µ2 ∣ µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are compatible mappings},
• Ω1 ∪Ω2 = {µ ∣ µ ∈ Ω1 or µ ∈ Ω2},
• Ω1 - Ω2 = {µ ∈ Ω1 ∣ for all µ

′ ∈ Ω2, µ and µ
′

are not compatible}.
A SPARQL query comprises four main building blocks. The query form (including SELECT,

CONSTRUCT, ASK, and DESCRIBE) uses solutions from graph pattern matching to form the
result sets. The dataset (specified by leading keywords FROM and FROM NAMED) refers to the
collection of RDF graphs [11] that are interrogated by a SPARQL query. In particular, the IRI
following each FROM indicates a graph to be used to form the default graph, and each IRI in the
FROM NAMED clause is employed to specify named graphs in the RDF dataset. The graph pattern
part specifies the features of graph pattern matching and the possibility of matching a pattern
against named graphs. The solution sequence modifiers (Order By, Projection, Distinct, Reduced,
Offset, and Limit) are applied to create a different sequence of the unordered collection of solutions
generated by graph pattern matching. Figure 5 shows a SPARQL query that needs to find three
persons ?x (whose name contains “Smith”), ?y, and ?z from the given default graph formed by

14The Internationalized Resource Identifiers [7] are a subset of RDF URI References that omits spaces and include
URIs and URLs.

15A blank nodes in RDF is not a URI reference or a literal and is just a unique node with an unbound value that
can be used in RDF triples.
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PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX ns: <http://example.org/ns#>
SELECT ?x ?y ?z
FROM <http://example.org/foaf/xyzFoaf>
WHERE {

?x <foaf:name>?name.
?x <foaf:knows>?z.
?x <ns:knowsNothingAbout>?y.
?y <foaf:knows>?z.
FILTER regex(?name, “Smith”)
ORDER BY DESC(?x)

}

Figure 5: A SPARQL Query

<http://example.org/foaf/xyzFoaf>. In particular, both ?x and ?y know ?z but ?x and ?y do not
know anything about each other. The resulting triples <?x, ?y, ?z>are sorted in descending order
of the value of ?x.

Note that in the ad-hoc Semantic Web data sharing system that we intend to support, SPARQL
queries may include no FROM (as in Figure 5) and FROM NAMED keywords to specify an RDF
dataset by reference. In this case, the dataset of the query will be the union of all triples stored
in all the nodes in the system. This is because the system allows RDF triples to be maintained
by individual data providers instead of at a source that can be easily identified by some reference
already known. This makes processing of decentralized queries in this context more difficult to
tackle. We will primarily focus on how to resolve such queries in this paper.

4.2 SPARQL Graph Pattern Expressions

The body of a SPARQL query that follows the keyword WHERE, as shown in Figure 5, can be a
complex RDF graph pattern expression that may contain RDF triples with variables, conjunctions,
disjunctions, optional parts, and constraints that impose restrictions on the solution to the query.
According to the official specification of SPARQL [21], graph pattern expressions can be constructed
via operators including concatenation via a point symbol (.), UNION, OPTIONAL, and FILTER.
For clarity reasons, we follow the practice in [20] by replacing the point symbol (.) and OPTIONAL
with AND and OPT when presenting the syntax of SPARQL queries.

During the Query Transformation process, AND is typically mapped to a join operation, UNION
to a set union operation, OPT to a left outer join, and FILTER to a selection [25]. An important
property of the operators AND and UNION, as discoursed in [20], is the fact that they are both
associative and commutative, thus making it possible to optimize distributed SPARQL query pro-
cessing using the optimization techniques for relational algebra queries in the proposed hybrid P2P
architecture.

To obtain the solution to a SPARQL query, one should evaluate the graph pattern that is included
in the query. The evaluation of a graph pattern P over an RDF dataset D, denoted by ⟦P ⟧D, is a
set of mappings defined in [20] as follows:

• If P is a triple pattern t, then ⟦P ⟧D = {µ ∣ dom(µ) = var(t) and µ(t) ∈ D}16.

• If P is (P1 AND P2), then ⟦P ⟧D = ⟦P1⟧D & ⟦P2⟧D.

• If P is (P1 UNION P2), then ⟦P ⟧D = ⟦P1⟧D ∪ ⟦P2⟧D.

16We argue that the definition here can be better described in the following way based on our own understanding
of the problem. If P is a triple pattern t, then ⟦P ⟧D = {µ ∣ dom(µ) = var(t) and for the values of µ for the variables
in var(t), there is a triple in the dataset D that contains the same values in corresponding positions.}
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• If P is (P1 OPT P2), then ⟦P ⟧D = ⟦P1⟧D ⟦P2⟧D17.

• If P is (P1 FILTER R), then ⟦P ⟧D = {µ ∈ ⟦P1⟧D ∣ µ satisfies R}.

where dom(µ), the domain of a solution µ, is a subset of V in which µ is defined, var(t) denotes
the set of variables occurring in pattern t, µ(t) refers to the triple that is obtained by replacing the
variables in t according to µ, and R is a built-in filter condition. Each evaluation function above
takes a graph pattern expression as input and returns a set of mappings.

4.3 Primitive SPARQL Queries

The very basic building block for graph patterns is the triple pattern. The Basic Graph Pattern
(BGP) comprises sets of triple patterns. To start with, we focus on the primitive SPARQL queries
by which we mean SPARQL queries with a Basic Graph Pattern (BGP) consisting of only one single
triple pattern. As listed in [4], all the eight possible triple patterns are: (?s, ?p, ?o), (?s, ?p, oi),
(?s, pi, ?o), (?s, pi, oi), (si, ?p, ?o), (si, ?p, oi), (si, pi, ?o), and (si, pi, oi), where si, pi, and oi
denote the given subject, predicate, and object of a triple and ?s, ?p, and ?o represent variables at
the corresponding positions in the triple.

SELECT ?x
WHERE { ?x <foaf:knows>ns:me. } (P )

Figure 6: A Primitive SPARQL Query

Consider the primitive SPARQL query in Figure 6 in which the single triple pattern P will be
translated into a SPARQL algebra expression first: BGP(P ). To evaluate such a SPARQL abstract
query on the RDF dataset that is formed by all RDF triples in the data sharing system, the following
steps occur.

Basic query processing : If, for example, N1 issues the query in Figure 6, we can hash on
<foaf:knows>and<http://example.org/ns/#me>and get a hash value that corresponds to the index
node N7 in Figure 1. Then N1 routes the query to N7. N7 checks its location table, finds all the
target nodes, and sends a query that contains the single triple pattern to each target node. These
storage nodes perform pattern matching, collect all possible solution mappings, and return them to
N7, that is, the assembly site. Finally, N7 sends the union of the solutions to N1. Alternatively, the
target nodes can forward local solution mappings to N1 directly at which a union operation is carried
out on the mappings to generate the final query result. Parallelism is exploited, but nonetheless,
high transmission overhead may be incurred in such a straightforward approach [27].

4.4 SPARQL Queries with Conjunction Graph Pattern

In SPARQL, more complex graph patterns can be formed by combining smaller graph patterns. For
instance, the SPARQL query in Figure 7 has a BGP comprising a set of triple patterns connected
by the AND (.) operator. A BGP of this kind is termed a conjunction graph pattern in [20].

SELECT ?x ?y ?z
WHERE {

?x <foaf:knows>?z. (P1)
?x <ns:knowsNothingAbout>?y. (P2)

}

Figure 7: A SPARQL query with a Conjunction Graph Pattern

17 is the operator for left outer join.
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Let us assume that N1 in Figure 1 issues such a query. During query transformation, an abstract
SPARQL query that contains the following algebra expression will be obtained: BGP(P1. P2).

Basic query processing : We can hash on <foaf:knows>and get a hash value that corresponds
to N4. Similarly, we hash on <ns:knowsNothingAbout>and obtain another hash value that indicates
the index node N15. Subsequently, N1 routes the query to N4. Following the same process for
primitive SPARQL queries as we introduced in Sect. 4.3, N4 is able to obtain sets of solutions, say
Ω1, to a sub-query that comprises P1.

Let P be (P1 AND P2). To perform ⟦P ⟧D = ⟦P1⟧D & ⟦P2⟧D, the final solution mappings will be
obtained as follows. N4 forwards Ω1 and the query to N15 which acquires its solution mappings, say
Ω2, to a sub-query that contains P2, and a local join is carried out between Ω1 and Ω2. The final
solutions are sent back to N1.

Optimization: Minimizing the amount of network traffic involved has always been among the
most important optimization criteria for distributed query processing. In this and those following
optimization techniques, we are primarily concerned about minimizing the total amount of inter-site
data transmission. In essence, we can possibly reduce the number of intermediate results that may
not necessarily appear in the final query answer by combining data that comes from different sources
but is directed to the same destination18.

To this end, we present an alternative approach. Information on the size of both Ω1 and Ω2 is
obtainable by consulting the frequency information of the location table of N4 and N15. Therefore,
it makes sense to use the move-small strategy (see Sect. 2) if the size of Ω2 is far less than that
of Ω1. After moving Ω2 to the site at which Ω1 resides, a local join operation is performed with
unnecessary intermediate results pruned off. The final solution mappings will be returned to the
query initiator N1.

As mentioned earlier, the operator AND is both associative and commutative. In a SPARQL
query containing AND only, the operations can be re-ordered in an arbitrary manner. It is generally
accepted in the distributed query processing field that different orders of operators will lead to
difference sizes of intermediate results and the smaller the intermediate results the more efficient the
query processing. For query optimization purposes, we intend to come up with not only a “good”
ordering of the execution of operators but also a “right” set of sites at which each involved operation
should take place during query evaluation. When dealing with a SPARQL query that contains more
than two conjunction graph patterns, we should apply the move-small strategy as described here to
resolve the query in an optimized fashion by using the frequency information offered by the location
table of related index nodes.

Further optimization: Let us consider another related scenario. Assume that, to evaluate P1
in Figure 7 N4 finds a set of target node S1, and to evaluate P2 in the same figure N15 locates another
set of target nodes S2. If S1 and S2 share nodes in common, then the query with a conjunction
query pattern P could be processed differently from what has been described.

To better explain this, we assume that S1 = {D1,D3,D4} and S2 = {D1,D2}. When N1 routes
one sub-query that contains P1 to N4 and another that contains P2 to N15 simultaneously, N4 will
forward the incoming sub-query to D1, D3 and D4. After solution mappings T1 at D3 and T2 at D4
are obtained, they are further transferred to D1. Meanwhile, D1 carries out pattern matching and
generates solution mappings T3. A union operation is performed on T1, T2, and T3 and the solution
mappings for P1, say Ω1, is now in place.

Upon the receipt of the sub-query from N1, N15 fowards it to D1 and D2 which then obtain
solution mappings T4 and T5, respectively. Both solution mappings are merged via a union operation
to produce solution mappings for P2, say Ω2. Up to this point, the sets of solution mappings for both
⟦P1⟧D and ⟦P2⟧D are available and ⟦P ⟧D can be done at D1. We illustrate the complete process in
Figure 8 in which a rectangular shape refers to nodes, a square shape refers to a solution mapping,
an oval shape refers to an operation on the related solution mappings, and a label attached to a
directed arc refers to a triple pattern.

If the overlap between S1 and S2 is more than one node, for instance, S1 = {D1, D2, D4} and
S2 = {D1, D2}, either D1 or D2 can be selected as the node at which the final result for ⟦P ⟧D

18This is similar to the in-network data aggregation techniques that are widely used in the sensor network research,
trading off communication for computational complexity [8].
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Figure 8: Further optimization for SPARQL queries with conjunction graph pattern

is generated. Alternatively, the optimization technique that involves the ordering of the execution
sites in response to the number of the target data these sites provide (as presented in the previous
section) could be combined to enable a more efficient query processing.

4.5 SPARQL Queries with Optional Graph Pattern

The optional graph pattern is meant to allow information to be added to a solution mapping if
the information is available. Even if some part of the pattern does not match, the mapping will
not be rejected. In a Semantic Web data sharing system, we assume that participating nodes only
possess partial knowledge about resources their RDF data is describing. Consequently, optional
graph matching is a key feature for such (and similar) applications.

A SPARQL query with an optional graph pattern P= (P1 OPTIONAL P2) is depicted in Figure 9.
This query will find the subject (?x) of a triple with predicate <foaf:name>and object “Smith”.
In the meantime, the query needs to find the object (?y) of a triple with the same subject and
predicate <foaf:knows>. If there is a triple with ?y as the subject, predicate <foaf:nick>, and
object ?nickname, a solution will contain the subject (?y) and object (?nickname) of that triple
as well. The optional graph pattern will be initially converted into LeftJoin(BGP(P1), BGP(P2),
true)19 during query transformation.

According to the semantics of optional graph pattern expressions (see Sect. 4.2), ⟦P ⟧D = ⟦P1⟧D
⟦P2⟧D. Let Ω1 and Ω2 be sets of solution mappings of ⟦P1⟧D and ⟦P2⟧D, and Ω1 - Ω2 is their set

difference20. The left outer join of Ω1 and Ω2 is defined in [20] as Ω1 Ω2 = (Ω1 & Ω2) ∪ (Ω1 -
Ω2).

Basic query processing : To evaluate a SPARQL query with an optional pattern P = P1 OPT
P2, we consider the use of the move-small strategy (see Sect. 2) if the size of Ω1 is far less than

19According to the rules in [21] for converting graph patterns in a SPARQL query string into a SPARQL algebra
expression, if no filter graph pattern is embedded in the optional graph pattern, the third argument of LeftJoin(Pattern,
Pattern, expression) should be set to true.

20Operations on solution mappings can be referred to in Sect. 4.1.
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SELECT ?x ?y ?nickname
WHERE {

{ ?x <foaf:name>“Smith”.
?x <foaf:knows>?y. } (P1)

OPTIONAL
{ ?y <foaf:nick>?nickname. } (P2)

}

Figure 9: A SPARQL Query with an Optional Graph Pattern

that of Ω2. After moving Ω1 to a node at which Ω2 is collected, (Ω1 & Ω2) and (Ω1 - Ω2) can be
performed on the same node, and the union of the two operation results is then directly returned to
the query initiator as the final solution mappings.

If the size of Ω1 is far greater than that of Ω2, both sets of solutions should be sent back to
the query initiator simultaneously at which the left outer join of Ω1 and Ω2 will then occur. This
is because all the tuples in Ω1 are bound to appear in the final solution mappings. Moving Ω2 to
the node at which Ω1 is collected will not necessarily lead to a significantly reduced size of the final
solution mappings.

Otherwise, if the size of Ω1 is comparable to that of Ω2, it is difficult to predict how many
compatible mappings in Ω2 will be used to extend the mappings in Ω1. Hence, the query processing
follows the one in the previous scenario, that is, both Ω1 and Ω2 should be sent back to the query
initiator in parallel at which the left outer join of Ω1 and Ω2 will then occur.

The techniques described above can be easily extended to apply to the query scenario with multi-
ple optional (only) graph patterns. Note that the OPTIONAL operator in SPARQL is left-associative
but not commutative. Therefore, if P is (P1 OPT P2 OPT P3), then ⟦P ⟧D = ⟦P1⟧D ⟦P2⟧D ⟦P3⟧D.
To optimize the evaluation of such queries, we should focus on seeking a “right” sequence of sites
at which each involved operation should occur instead of a “good” ordering of the execution of
operators.

4.6 SPARQL Queries with Union Graph Pattern

SPARQL allows more than one alternative graph patterns to match and therefore all of the possible
pattern solutions will be found. Figure 10 shows a SPARQL query with a union graph pattern P =
P1 UNION P2, where both P1 and P2 are conjunction graph patterns. During query transformation,
the union graph pattern is translated into Union(BGP(P1), BGP(P2)).

SELECT ?x ?y ?z
WHERE {

{ ?x <foaf:name>“Smith”.
?x <foaf:knows>?y. } (P1)

UNION
{ ?x <foaf:mbox><mailto:abc@example.org>.

?x <foaf:knows>?z. } (P2)
}

Figure 10: A SPARQL Query with a Union Graph Pattern

Basic query processing : In response to the semantics of union graph pattern expressions (see
Sect. IV-B), ⟦P ⟧D = ⟦P1⟧D ∪ ⟦P2⟧D. In addition, if Ω1 and Ω2 are sets of solution mappings of
⟦P1⟧D and ⟦P2⟧D, the union of Ω1 and Ω2 is defined as Ω1 ∪ Ω2 = {µ ∣ µ ∈ Ω1 or µ ∈ Ω2}. Therefore,
⟦P1⟧D and ⟦P2⟧D can be carried out in parallel as described in the generic query execution plan
for SPARQL queries with a conjunction graph pattern (see Sect. 4.4). After the solution mappings
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for ⟦P1⟧D and ⟦P2⟧D are collected at possibly two different nodes, they both are sent to the query
requester at which these two solutions will then be combined via the union operation.

4.7 SPARQL Queries with Filter Graph Pattern

The FILTER operator in SPARQL is used to impose a restriction on the solutions over the group
in which the operator itself appears. Pérez et al. define that the expression (P FILTER R) is a
filter graph pattern if P is a graph pattern and R is a SPARQL built-in condition [20]. We present
a SPARQL query with a filter graph pattern (as well as an optional graph pattern) in Figure 11,
which will be transformed into Filter(C1, LeftJoin(BGP(P1. P2), BGP(P3), true)) in the first place.

SELECT ?x ?y ?z
WHERE {

?x <foaf:name>?name; (P1)
<ns:knowsNothingAbout>?y. (P2)

FILTER regex(?name, “Smith”) (C1)
OPTIONAL
{ ?y <foaf:knows> ?z. } (P3)

}

Figure 11: A SPARQL Query with a Filter Graph Pattern

Basic query processing: Rules of filter pushing in the context of SPARQL are presented in
[25] for query optimization purposes. According to these rules, the evaluation process of the query
in Figure 11 will be slightly different from the one we described above. Since the condition C1

only involves the variable ?name in P1, the filter can be pushed into the BGP(P1) and the query is
transformed into LeftJoin(BGP(Filter(C1, P1).P2), BGP(P3), true) instead.

5 Evaluation

We report in this section a preliminary performance study on the proposed decentralized SPARQL
querying mechanism and associated optimization techniques by carrying out a series of simulation
experiments. To this end, a discrete event simulator21 was developed and deployed on a single
machine. Building up such a simulator and performing experiments with it give us insights into
devising an effective and efficient query engine that caters for Semantic Web data sharing systems
of a decentralized nature.

5.1 The Simulator

We developed an application-level simulator written in C++, which models the operation of the
system as a discrete sequence of events in time. All events are instantaneous and all the activities
that extend over time are simulated as a sequence of events. For example, if we consider resolving a
SPARQL query as an activity, then this activity might consist of (and therefore could be simulated
by) the following events: a peer node submitting a query, potential data sources being discovered via
location tables, sub-queries being answered at individual sources, and the final result being merged
and returned. With the current version of the simulator we tested the processing capability of the
system when only one SPARQL query was dealt with at any single instant in time, that is, there is
always one current activity. All constituent events, if any, of the current activity are synchronized.
Pending events that have yet to be simulated are organized and processed in an event queue in which
they are sorted and removed (i.e. processed) in order of generation time.

As the primary system entity, each node, whether it is an index node or storage node, was
implemented as an object and communicated with one another through message passing mechanisms.

21The simulator of its current version has some limitations. For instance, it does not model the transport layer.
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The simulator provided a message queue to host the incoming messages of all nodes to be processed
and a simulator clock to keep track of the advance of simulation time at each node. A message
queue manager was intended to ensure that all the messages should be stored and processed in
non-decreasing order of generation time.

The simulator implemented the Chord protocol in a recursive way in which a node resolving a
lookup for information on target nodes will ask each intermediate node to forward a request for the
next node until the request reaches the successor.

5.2 Metrics

We identify the following metrics that would help quantify the querying capability of the proposed
system.

Response time (RT) : The response time of a SPARQL query refers to the length of the time
interval between its origination and completion. In its simplest form, the response time consists
of the transformation time, location time, and processing time to be defined below.

Transformation time (TT) : The time interval spent in constructing the sub-queries from the
original query is the transformation time.

Location time (LT) : The location time starts from the origination of all sub-queries derived from
the same original query and ends when all target nodes are located via the distributed index
for answering them.

Processing time (PT) : The processing time corresponds to the length of the time interval be-
tween an index node submitting the transformed sub-queries to individual target nodes and
the query requester obtaining the final answer.

Inter-site data transmission (IDT) : The inter-site data transmission refers to the total amount
of data that needs to be transmitted among nodes for resolving a given query and is measured
in the size of the RDF triples being sent.

5.3 Experimental Methodology

SP2Bench [24] is a SPARQL performance benchmark and comprises both a data generator for
creating arbitrarily large DBLP-like documents22 and a set of benchmark queries that implement
meaningful requests for such data. The SP2Bench has demonstrated to model many aspects of the
original DBLP data set in faithful detail when data of various scales are generated, and therefore
we used it to generate RDF data of various sizes so as to measure the scalability of the proposed
system23.

The RDF data from the dataset generated by SP2Bench is in the form of N-Triples24. We utilized
the Raptor RDF Syntax Library 1.4.8 to parse the N-Triples into RDF triples. The ensemble of the
RDF triples was divided into multiple groups by randomly assigning each RDF triple to a node.
Subsequently, a multiplicative hash function was applied to the triple and six indices on the different
combinations of the attributes in the triple were created and inserted into an appropriate location
table at some index node (see Sect. 3.3). Meanwhile, the finger tables, which are essential for efficient
lookup operations in Chord, are also constructed at index nodes. We also employed the Rasqal RDF

22The DBLP Computer Science Bibliography, see http://www.informatik.uni-trier.de/∼ley/db/.
23Although RDF datasets are currently available from a number of domains, the range of the benchmarks for

testing RDF query engines that are efficient for such domains is rather limited. The popular benchmarks include
the Lehigh University Benchmark (LUBM) [10] and the Barton Library benchmark [1]. However, they only provide
limited support for testing SPARQL engines. On the one hand, LUBM was designed to test the inference and
reasoning capabilities of RDF engines and the central SPARQL operators including UNION and OPTIONAL were
not supported. On the other hand, the Barton Library benchmark is application-oriented and does not support
SPARQL features such as OPTIONAL and solution modifiers.

24RDF Test Cases, W3C Recommendation 10 February 2004, see http://www.w3.org/TR/rdf-testcases/#ntriples.
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Query Library 0.9.11 to handle RDF language syntaxes, query construction, and query execution
which returns query results in a variety of forms.

In current implementations, a distributed SPARQL query engine would typically load all RDF
graphs involved in a query to the local machine for processing [22] and we hereafter refer to it as
simply “the general practice”.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX bench: <http://localhost/vocabulary/bench/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?homepage
WHERE {

?article rdf:type bench:Article.
?article dc:title “ostinato safest signiory”ˆˆxsd:string.
?article foaf:homepage ?homepage.

}

Figure 12: Query Q1 with a conjunction graph pattern

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX bench: <http://localhost/vocabulary/bench/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema# >

SELECT ?person ?article ?predicate
WHERE {

?article dc:creator ?person.
?article dcterms:references ?references.
?person foaf:name “Adamanta Schlitt”ˆˆxsd:string.
?references ?predicate <http://localhost/misc/UnknownDocument>
OPTIONAL {

?article bench:abstract ?abstract
}

}

Figure 13: Query Q2 with an optional graph pattern

We picked up a set of queries, which were very much like the select benchmark queries provided
by SP2Bench, and evaluated the querying performance of the Semantic Web data sharing system
with the proposed query processing and optimization techniques using these queries. During each
run of the experiments, a randomly chosen node issued one of the queries Q1 with a conjunction
graph pattern (see Figure 12), Q2 with an optional graph pattern (see Figure 13), Q3 with a union
graph pattern (see Figure 14), and Q4 with a filter graph pattern (see Figure 15). These queries
were processed following the general practice, the basic processing, and the optimization processing
as described earlier in Sect. 4.4, Sect. 4.5, Sect. 4.6, and Sect. 4.7, respectively.

According to the definition of query processing time (PT), the communication delay that occurs
when messages are transmitted from one node to another should be taken into account. We calculate
the communication delay between any pair of adjacent nodes in an approximate manner as follows25:

communication delay = transmission delay + propagation delay
The results presented in Sect. 5.5 were averaged over 20 runs.

25Given the fact that we observed both transmission delay and propagation delay in this case make up a major
portion of the communication delay, we did not count the processing delay and queuing delay towards the total
communication delay.
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PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX bench: <http://localhost/vocabulary/bench/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema# >

SELECT ?person ?article ?predicate
WHERE {

?article dc:creator ?person.
?article dcterms:references ?references.
?person foaf:name “Adamanta Schlitt”ˆˆxsd:string.
?references ?predicate <http://localhost/misc/UnknownDocument>

} UNION {
?article dc:creator ?person.
?article dcterms:references ?references.
?person foaf:name “Michizane Krips”ˆˆxsd:string.
?references ?predicate <http://localhost/misc/UnknownDocument>

}
}

Figure 14: Query Q3 with a union graph pattern

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

SELECT ?name ?document
WHERE {

?document dc:creator ?author.
?author foaf:name ?name
FILTER (?name=“Paul Erdoes”ˆˆ<http://www.w3.org/2001/XMLSchema#string>)

}

Figure 15: Query Q4 with a filter graph pattern

5.4 Experimental Setup

We conducted the simulation on a desktop PC running Windows 7 32-bit, with Intel Core i3-550
@3.20GHz 3.19GHz processor and 4GB physical memory. The simulator was compiled and ran using
Visual Studio 2010 SP1 C++ and the MFC library.

The network in the simulation consisted of 500 nodes, 100 of which were index nodes and 400
storage nodes. We set the transmission rate to 2Mbps and the node-to-node propagation delay to
20ms.

The RDF data provided by all nodes for sharing in the network comprised 100,000 RDF triples
in 10,583KB. Figure 16 depicts the distribution characteristics of the RDF dataset scattered around
all (index and storage) nodes.

5.5 Results

The processing time (PT) in resolving queries Q1, Q2, Q3, and Q4 is presented in Figure 17. It
is rather obvious that in all the cases, the basic processing, as well as the optimization processing,
leads to less PT than the general practice.

Thanks to the need to load all relevant RDF graphs to the local machine for processing, the gen-
eral practice typically involves a very large amount of inter-site data transmission (as demonstrated
in Figure 18) and longer elapsed times to resolve a SPARQL query. The basic processing in our
decentralized query mechanism and the optimization processing, on the contrary, always manage
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to prune those intermediate results which may not be necessarily useful for resolving the query by
drawing on and improving the basic distributed query processing techniques.

We listed in Table 2 the transformation time (TT) and location time (LT) (both in milliseconds)
in query processing of various graph patterns. Both account for a very tiny portion of the entire
response time (RT, which is not shown and can be easily derived by adding together the values of
TT, LT, and PT). Due to its roots in Chord, the two-level distributed index structure, coupling
with the use of hash techniques in location tables, would warrant that the LT should increase in
logarithmic time.

Figure 18 shows the amount of inter-site data transmission incurred when queries Q1, Q2, Q3,
and Q4 were resolved. In the general practice, processing of all the queries incurs (more or less) the
same amount of IDT, whereas in the basic processing and optimization processing supported by the
proposed decentralized query mechanism, the amount of IDT can be significantly reduced.

It is noteworthy that, when resolving a query, the prominent reduction in PT and IDT that
the proposed decentralized query mechanism can achieve is mainly owing to the optimization of the
conjunction graph patterns that the query contains (applicable to Q1, Q2, Q3, and Q4). As a result,
in both Figure 17 and Figure 18, there are no results for optimization in query processing of either
optional, union, or filter graph patterns. For Q4 with a filter graph pattern, the reduction in PT and
IDT is also attributed to the use of filter pushing. Since we consider the practice of filter pushing for
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Table 2: Transformation time (TT) and location time (LT) (millisecond) in query processing of
various graph patterns

conjunction conjunction optional union filter
(basic processing) (optimization) (basic processing) (basic processing) (basic processing)

TT 0.50 3.10 3.45 4.60 3.00
LT 129.95 122.35 117.35 161.50 85.50
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Figure 18: Inter-site data transmission (IDT) in query processing of various graph patterns

queries with filter graph patterns as basic query processing other than optimization (see Sect. 4.7),
this explains why there is still no optimization result for Q4 in both figures.

5.6 Discussion

We have to admit that the queries used in the simulation represent a range of typical but still
rather limited scenarios. Under certain circumstances, vastly different performance behavior might
be observed from that in Figure 17 and Figure 18.

For instance, resolving Q5 with an optional graph pattern as in Figure 19 incurs 19440.77 KB
of IDT in the basic processing, which is almost twice as much as that (11050.79 KB) in the general
practice. In addition, it takes 268297.75 ms of PT in the basic processing and 273074.30 ms of PT
in the general practice to submit transformed (sub-)queries and obtain the final results.

By checking the dataset related to the solution mappings for Q5, we found that there are a
lot of tuples sharing the predicates rdf:type, dc:creator, bench:booktitle, dc:title, dcterms:partOf,
rdfs:seeAlso, and foaf:homepage. In the proposed query mechanism, a solution mapping for the
triple pattern <?inproc rdf:type bench:Inproceedings>, say Ω1, will be forwarded to a node, which
acquires its solution mappings Ω2 to the triple pattern <?inproc dc:creator ?author>, and a local
join is carried out between Ω1 and Ω2. Because of the reason mentioned earlier, the result of the local
join, instead of shrinking its size, will become even larger than any of the two solution mappings,
thus being unable to enjoy the benefits of using join operations to reduce the size of intermediate
query results.

Ideally, more statistical information on the RDF data should be available for better query plan-
ning when resolving such queries. However, it is rarely achievable in practice given the ad-hoc nature
of the supported data sharing system. We also encountered similar issues when carrying out exper-
iments on queries with other (more complex) graph patterns and plan to report on our findings and
solutions in a forthcoming paper.
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SELECT ?inproc ?author ?booktitle ?title
?proc ?ee ?url ?abstract

WHERE {
?inproc rdf:type bench:Inproceedings.
?inproc dc:creator ?author.
?inproc bench:booktitle ?booktitle.
?inproc dc:title ?title.
?inproc dcterms:partOf ?proc.
?inproc rdfs:seeAlso ?ee.
?inproc foaf:homepage ?url
OPTIONAL {

?inproc bench:abstract ?abstract
}

}

Figure 19: Query Q5 with an optional graph pattern

6 Conclusions and Future Work

The ad-hoc Semantic Web data sharing system that we intend to support poses two major challenges:
(1) the system should allow data to be maintained and shared by its own providers in a P2P paradigm
and provide satisfactory scalability, and (2) in such a decentralized context, queries encoded in
popular query languages for Semantic Web data should be processed efficiently and successfully. We
extended previous work on a hybrid P2P architecture in which index nodes self-organize into a ring
topology while any storage node is attached to one of these index nodes. A two-layer distributed
index structure was introduced to facilitate a fast and efficient lookup of storage nodes that share the
target data. We investigated decentralized query processing for SPARQL queries of various forms
and discussed potential SPARQL-specific query optimization techniques. By testing the system
using both the data and example queries from SP2Bench, we proved that the system has met its
design objectives.

In general, the optimization criteria for distributed query processing include minimizing the costs
(both computational and communication) and minimizing the response time. These optimization
goals may sometimes be conflicting. For instance, the optimization technique for query processing
in Sect. 4.4 trades response time for reduced transmission costs. We have yet to investigate, in a
decentralized context, how to process and optimize SPARQL queries in the face of a mixture of such
objectives and come up with “good” query plans. We intend to explore these issues in future work.
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