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Abstract

In this paper we discuss energetic complexity aspects of k-Selection protocols for a single-
hop radio network (that is equivalent to Multiple Access Channel model). The aim is to grant
each of k activated stations exclusive access to the communication channel. We consider both
deterministic as well as randomized model. Our main goal is to investigate relations between
minimal time of execution (time complexity) and energy consumption (energetic complexity).
We present lower bound for energetic complexity for some classes of protocols for k-Selection
(both deteministic and randomized). We also present and analyse several randomized protocols
efficient in terms of both time and energetic complexity.

1 Introduction

This paper is devoted to energetic efficiency of protocols solving k-Selection problem. Let us re-
call that the problem is to grant each of k (out of n) activated stations exclusive access to the
communication channel.

It was originally formulated for MAC (Multiple Access Channel). However, this problem can
also be stated in an equivalent form for a single-hop radio network. In such a system, for practical
reasons, energy consumption is of critical importance. Indeed, while discussing radio networks we
often have in mind small battery-supplied sensing devices, that cannot be easily re-charged.

The problem is discussed in various settings. In all of cases there are n stations and some k
of them are activated and want to broadcast their messages to all other stations. The message
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is successfully transmitted only if exactly one station transmits at a given time. In the case of
simultaneous transmission of two or more stations a collision occurs and no message is delivered to
any recipient. If the collision is distinguishable from the background noise we call the model with
collision detection (CD). Otherwise, the model is described as no-collision detection (noCD). The
core of the problem is that the subset of activated stations is unknown in advance (except that its
cardinality is constrained) and stations have to communicate via a very restricted communication
channel.

Remarks about the model of energy usage In this paper we concentrate on energetic com-
plexity of k-Selection protocols understood as the maximal energetic effort over all stations. The
motivation for such setting comes from sensing networks, wherein it is not feasible to re-charge bat-
teries after deployment. The energy usage of a particular station is the number of rounds when the
station transmits, whether the message is delivered or not. In many applications it is required that
all (or almost all) devices have to be working for proper acting of network. That is, if the battery of
at least a single station runs out, we can assume that the network does not work properly. Therefore,
a lifespan of the system is determined by the most loaded station, which motivated us to consider
the maximal energy usage. Such approach is used in literature, however one can also find papers
where authors consider the average energetic effort of stations instead. It should be noted that in
most of the cases in the analysis of the algorithms, finding or even estimating the maximal effort
over all stations is technically more challenging. Indeed, in almost all models discussed so far the
stations are ubiquitous at the beginning of the protocol thus their effort is represented by random
variables from exactly the same distribution that makes the analysis much simpler.

Similarly, there are two common approaches to energetic expense of a station in listening mode.
The first one is to take into account both transmitting and listening rounds. In particular, it is the
case when all stations are located close to each other. The second approach assumes that energetic
cost of listening is dramatically smaller than transmitting and can be treated as negligible. Note
also that in the case of some of considered classes of protocols, both approaches are equivalent.
Indeed, for example in oblivious algorithms discussed in Section 7 receiving any transmission does
not influence the execution and stations can be switched-off instead of being in listening mode.

1.1 Previous work

The k-Selection problem is a classic issue in distributed computing. In recent years it has gained
additional interests motivated by expansion of radio (sensor) networks technologies. It is hard to
enumerate all important literature related to this topic, thus we mention only the most fundamental
papers we are aware of. Komlos and Greenberg considered the oblivious model (acting of stations in
one round does not depend on previous rounds) with collision detection. They showed in [19] that
k-Selection can be deterministically completed in time O(k log(nk )). This result can be adapted to
the model without collision detection. Moreover the lower bound for the time complexity Ω(k log(nk ))
which was obtained in [9] holds also for model without collision detection. In [9] the superimposed
codes method as well as selective families approach were used. Hayes presented in [13] an adaptive
solution which satisfies the same time complexity as for the oblivious model. In [12] the lower bound
Ω(k logk n) for the family of adaptive (acting of stations in one round may depend on previous
rounds) deterministic protocols was proved. In a similar model, Martel [23] showed an interesting
randomized approach for finding a maximal value among n stations, which succeeds in the expected
time O(k+log n). Kowalski noted in [20] that Martel’s expected time complexity can be improved to
O(k + log logn) by using the Willard algorithm as a subprocedure. Martel algorithm can be easily
adapted to k-Selection problem. Then the time complexity is O(k), because only active stations
transmit messages. Another important, recent paper is [2]. The randomized, adaptive solution
presented by Anta and Mosteiro guarantees that all of k stations successfully transmit a message in
time (e+1+ ξ)k+O(log2(1ǫ )) with a reasonably small error probability ǫ taken from a short interval
and a fixed negligible constant ξ. In [22] authors analyzed a problem (related to k-Selection) of
learning a subset of m stations out of k active ones. Work of Nakano and Olariu [25] can be easily
adapted to obtain an algorithm solving w.h.p. (with high probability) the k-Selection problem in
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O(k) expected time and O(log log k) expected energy usage over all stations. Some comprehensive
reference to related work can be found also in [14].

Energetic efficiency of algorithms for radio networks is considered in several papers, devoted to
initialization protocols [6], size approximation problem [15], alerts for weak devices [17] or routing
aspects [26]. However, to the best of our knowledge, except [25] there are no results about energetic
complexity issues of the k-Selection protocols or any other protocol that can be applied to our
problem in a straightforward manner.

1.2 Organization of this paper

Our paper presents different results about k-Selection problem in various models.

Section 2 presents the model in details and formulates the problem we investigate.

Section 3 contains a lower bound for the time/energy trade-off for so-called uniform randomized
algorithms.

Sections 4 introduces a new Monte Carlo algorithm for solving k-Selection problem in O(k1+ǫ)
rounds (for any given ǫ > 0) to solve k-Selection problem w.h.p., in such a manner so that no
station is awake for more than O(1) rounds.

Section 5 presents a Las Vegas approach for solving k-selection problem. The algorithm requires
in expectancy O

(

kmax{α(⌊ 1
α
⌋+1),2−α⌊ 1

α
⌋}) rounds. The expected number of the maximal energy

usage is constant. This protocol is an extension of the Massey algorithm.

Section 6 contains analysis of energetic complexity of some known, optimal (in terms of execution
time) protocols. We show that some well-known algorithms are not efficient in terms of energy
usage.

Section 7 presents a lower bound for all deterministic oblivious algorithms.

Section 8 contains simulations supporting analytic results and giving some insight into practical
perspective of investigated protocols. We give evidence that some of our protocols are practical
in terms of time of execution.

To the best of our knowledge, in principle all presented results are original except stated other-
wise.

2 Model

We consider a single-hop radio network with n stations. The set of all stations is denoted by V .
In the case of deterministic algorithms we assume that each station has a unique label from the
set {1, . . . , n}. Time is assumed to be slotted into rounds. We assume that stations are fully
synchronized as if they had access to a global clock. At the beginning of the protocol execution
a subset of k stations is activated and each of them has a message that has to be transmitted.
Using terminology from [20] we consider static k-Selection — all stations start the execution of their
algorithm in the same round.

Stations communicate via a single channel. In our paper we assume the collision detection
capability of the channel, i.e., the background noise that is received if no station transmits is distin-
guishable from the noise generated by two or more stations transmitting in the same round. Thus, in
each round the communication channel can be in one of three possible states — SILENCE, SINGLE
transmission or COLLISION. Note however, that all of the protocols except the GMO algorithm
described in Section 5 do not use CD capability .

We consider both deterministic as well as randomized algorithms. In the latter case we assume
that stations are indistinguishable and have access to a perfect source of random bits. Moreover,
sources of different stations are stochastically independent. Note that in the case of deterministic
model we assume that stations have unique identifiers. Otherwise solving k-Selection problem would
be impossible due to inherent symmetry.
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Problem statement Suppose there are n stations and some k of them are activated. Active
stations perform (synchronously and in parallel) some common algorithm A, which determines
whether to transmit in a given round or remain silent. We say that the algorithm A solves k-
Selection problem if and only if after the execution each active station successfully transmitted its
message at least once. That is, we require that for each active station there is a round in which it
has exclusive access to the communication channel.

In the deterministic model, each out of n stations has a unique (except trivial 1-Selection case)
transmission pattern assigned in advance, so the behavior of a given station is completely determined
by its label. Therefore, the deterministic algorithm solving k-Selection problem has to grant exclusive
access in case of any k-element subset of labels, denoting activated stations. For k = Ω(n) there is
a trivial solution in which station with label i transmits exactly in the i-th round. The solution is
asymptotically optimal, because any algorithm needs at least k rounds. Thus, the most interesting
case is for k ≪ n.

On the other hand, in case of the randomized model the total number of stations n is unimportant
and only the number k of active ones matters. In this model the stations are indistinguishable.
Therefore, we break the symmetry by means of randomization. We say that randomized algorithm
A solves with high probability (w.h.p.) the k-Selection problem if and only if the probability that
all active stations successfully transmit their messages is at least 1−O( 1k ).

Energy metrics One of the main practical problems in radio networks is the fact that all devices
have limited energy resources and moreover in some realistic cases it is very hard to replace their
batteries. Thus, the level of energy usage may really matter. In this paper we use the measure
of energetic complexity defined as follows. We define Ev, an energetic effort of a station v ∈ V ,
as the number of rounds when v transmitted. Note that both successful as well as unsuccessful
(due to collisions) transmissions count. The energetic complexity of the algorithm is defined as
E [maxv∈V Ev] for the worst case over all subsets of activated stations. Note that this value is well
defined also for deterministic algorithms. Let us stress that maxv∈V E [Ev] ≤ E [maxv∈V Ev], and
usually the inequality is strict. That is, we look for the expected energetic effort over all stations.
Let us note that such measure has been used among others in [17, 21]. On the other hand in some
remarkable papers different metrics have been used (e.g., [3, 4, 14]).

Let us note that energetic complexity is closely related to message complexity (e.g., [27], Sec. 2).
Nevertheless both notions are substantially different. We believe that energetic complexity described
above is more adequate for distributed system of battery-supplied devices if only short messages are
transmitted.

3 Lower Bound for Uniform Algorithms

In this section we present a lower bound for randomized uniform k-Selection protocols.

3.1 Uniform Algorithms

Definition 1. Algorithm A solving k-Selection is called uniform if, and only if, in round i every
station that has not yet transmitted successfully, transmits independently with probability pi (the
same for all active stations).

In particular for k active stations the probability that exactly j stations transmit in the i-th
round is1

(

k

j

)

(pi)
j(1− pi)

k−j .

Note that pi may depend on the state of the communication channel in previous rounds.
In general, pi can be even chosen randomly from some distribution during the execution of

the protocol (finally all stations have to use, however, the same value pi). Due to simplicity and

1We assume that the binomial coefficient is 0 for k < j or j < 0.
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robustness, uniform algorithms are commonly used. For example, algorithms proposed by Martel
in [23] and by Anta and Mosteiro in [2] are uniform ones. Such protocols are discussed also in the
general MAC settings and are related to ACK-based protocols in other cases (cf. [7]).

3.2 Lower Bound

Before we introduce the key technical lemma let us recall that selection resolution (see e.g., [30]) is
the problem of obtaining one SINGLE in possibly small number of rounds. More precisely, there are
k stations that want to transmit, and the protocol is successfully completed if exactly one station
transmits in a round. This problem is in fact equivalent to leader election in a Multiple Access
Channel. Let us stress, however, that 1-Selection is a trivial problem that is not an instance of a
leader election problem. That is, in 1-Selection only one station is active and does not have to
compete for the channel.

The lemma below shows a relation between time of execution and expected number of collisions.

Lemma 1. Let k > 1 be the number of active stations. If uniform algorithm A solves selection
resolution in the expected time t, then the expected number of rounds with COLLISION during the
execution of A is Ω( 1

t2 ).

Proof. Algorithm is uniform, thus in the i-th round each station transmits independently with the
same probability pi. Note however, that in every execution the probabilities {pi}i≥1 may differ and
depend for example on the state of the channel in previous rounds. Let Pi be the random variable
denoting the probability of transmission used by stations in the i-th round and let T denote run time
of the algorithm and E [T ] = t. Algorithm works until first SINGLE appears, thus Pi = 0 for every
i > T . Let B denote the event that there exists i such that Pi ≥ 1

2kt and let B̄ be its complement.
We want to show that P [B] ≥ 1

2 . Note that if for some i, Pi <
1

2kt , then

P [SINGLE in round i] = kPi (1− Pi)
k−1 ≤ kPi <

1

2t
,

P [SILENCE or COLLISION in round i] > 1− 1

2t
.

We want to bound the conditional expectation E[T |B̄]. The conditional expectation is well defined,
if P [B̄] > 0. But if P [B̄] = 0 the statement P [B] ≥ 1

2 holds trivially:

E[T |B̄] =
∑

t′≥1

t′P [T = t′|B̄] =
∑

t′≥1

P [T ≥ t′|B̄] >
∑

t′≥1

(

1− 1

2t

)t′

= 2t.

This implies that E[T ] = E[T |B̄]P [B̄] + E[T |B]P [B] > 2tP [B̄]. Since E[T ] = t, thus P [B̄] < 1
2 , and

P [B] ≥ 1
2 . Therefore, with probability more than 1

2 , during the execution of the algorithm there
exists a slot i0 with probability of transmission Pi0 ≥ 1

2kt .

Now we want to bound probability Pc of COLLISION occurrence in round i = i0. It is clear that
Pc = 1− (1− Pi)

k−1
(Pik + (1 − Pi)) . Let us prove the following auxiliary lemma

Lemma 2. For any n > 2 and 0 ≤ x ≤ 1

(1− x)
n ≤ 1− nx+

1

2
n(n− 1)x2 .

Proof. It is enough to prove that f(x) = (1− x)
n − 1 + nx − 1

2n(n − 1)x2 ≤ 0 for all x ∈ [0, 1].
Note that f ′(x) = n(1− (1− x)n−1 − (n− 1)x). From the Bernoulli inequality we instantly get that
f ′(x) ≤ 0. Since f(0) = 0 and f(x) is non-increasing on [0, 1] the proof is completed.
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Assume that Pi =
1

2kt . Then for k > 1,

Pc ≥ 1−
(

1− 1

2kt

)k−1(
1

2t
+

2kt− 1

2kt

)

≥ 1−
(

1− k − 1

2kt
+

(k − 1)(k − 2)

8k2t2

)(

k − 1

2kt
+ 1

)

=
(k − 1)2

4k2t2
− (k − 1)(k − 2)

8k2t2

(

k − 1

2kt
+ 1

)

≥ (k − 1)2

8k2t2

(

1− k − 1

2kt

)

≥ 1

64t2
.

Note that the second inequality is a consequence of Lemma 2. Since k > 1, thus k−1
k ≥ 1

2 . We can
also assume t ≥ 1, because any algorithm requires at least one step to solve the selection resolution.
We proved that if Pi =

1
2kt , then P [COLLISION in round i] ≥ 1

64t2 . Obviously, if Pi ≥ 1
2kt , then also

P [COLLISION in round i] ≥ 1
64t2 , because the probability of transmission for each station increases.

It follows that with probability at least 1
2 during any execution of the algorithm there exists a round

i0, where probability of COLLISION is at least 1
64t2 . This implies that the expected number of

COLLISIONs in the algorithm A is at least 1
128t2 = Ω( 1

t2 ).

Theorem 1. Any uniform k-Selection algorithm with expected time of execution O(k polylog(k))

has energetic complexity Ω
(

log k
log log k

)

.

Proof. Let us consider any k-Selection algorithm with expected time of execution O(k polylog(k)).

We show that the expected number of COLLISIONs during the execution is Ω
(

k
polylog(k)

)

.

By the i-th era we understand the number of rounds between the (i − 1)-st and i-th successful
transmissions for 1 < i ≤ k (including the round with the i-th transmission). The 1st era is
just the number of rounds before the first successful transmission. Let Ti be a random variable
denoting duration of i-th era and let T denote the run time of the algorithm. Moreover, let the
station that transmitted successfully in i-th era be called i-th transmitter. Clearly T =

∑k
i=1 Ti,

thus E [T ] =
∑k

i=1 E [Ti]. Since E [T ] = O(k polylog(k)), there are Ω(k) eras with the expected
duration being O(polylog(k)). From Lemma 1, we know that if era has the expected run time t,
the expected number of COLLISIONs is Ω

(

1
t2

)

. Finally, there are Ω(k) eras with the expected

number of COLLISIONs being Ω
(

1
polylog(k)

)

. Thus the expected number of COLLISIONs during

the execution of the algorithm is Ω
(

k
polylog(k)

)

. Similarly, during the first k−
√
k eras the expected

number of COLLISIONs is Ω
(

k−
√
k

polylog(k)

)

= Ω
(

k
polylog(k)

)

.

Since the protocol is uniform, each active station is equally likely to transmit in a round with
COLLISION. This can be represented in terms of balls and bins model. More precisely, stations are
represented by bins. If COLLISION occurs we throw one ball to the bin randomly chosen from bins
representing active stations. Clearly the number of balls in the most loaded bin is a lower bound for
the number of transmissions of station with maximal number of transmissions2.

Let us consider a group of the last
√
k transmitters. All those transmitters are exposed to

Ω
(

k
polylog(k)

)

COLLISIONs (in expectation). If there is Ω
(

k
polylog(k)

)

balls then with high proba-

bility Ω
( √

k
polylog(k)

)

balls are placed in bins representing the last
√
k transmitters.

From [28] we have that in case with m =
√
k

polylog(k) balls and n =
√
k bins, the maximum load is

Ω
(

log k
log log k

)

with probability at least 1−1/k. Thus the expected maximum number of transmissions

over last
√
k transmitters is Ω

(

log k
log log k

)

, which ends the proof.

2Note, that each collision affects always more than one station. For simplicity we use, however, only one ball.
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3.3 Uniform versus Non-uniform Algorithms

The result presented in the previous subsection implies that there is no uniform k-Selection algo-
rithm working in linear time with maximum energy usage being o

(

log k
log log k

)

. However, there are
non-uniform algorithms that are more efficient in terms of energy consumption. For example, the
initialization algorithm by Nakano and Olariu [25] can be modified in a straightforward manner to
obtain a k-Selection algorithm with linear time of execution and no station being awake for more
than O(log log k) rounds w.h.p. Thus the number of transmissions of each station is O(log log k) as
well. This is another argument showing that both uniform and non-uniform classes of algorithms
are substantially different.

4 Energy Efficient Algorithm

In this section we present a k-Selection algorithm with constant energy consumption and moderate
time of execution. The protocol requires O(k1+ǫ) rounds for an arbitrary ǫ > 0, after which w.h.p.
all k active stations successfully transmit their messages. More importantly, the energy usage of each
station can be bounded by a constant dependent only on ǫ. Therefore, the energetic complexity is
O(1), what was the main design goal. Last but not least, the algorithm is flexible in the sense that
one can obtain various energy-time trade-offs depending on the needs of particular system.

Our construction is based on the protocol described by Nakano and Olariu in [25]. The algorithm
consists of 3 + ⌊log2(1 + 1

ǫ )⌋ iterations. In each iteration, stations that have yet not transmitted
successfully try to transmit their messages in one out of ⌈2k1+ǫ⌉ rounds. The choice is independent
from other stations and uniform over all rounds of a particular iteration. The pseudocode of the
protocol is shown in Algorithm 1.

Algorithm 1 Energy Efficient k-Selection

1: maxiter ← 3 + ⌊log2(1 + 1
ǫ )⌋ ⊲ number of iterations

2: rounds← ⌈2k1+ǫ⌉ ⊲ number of rounds per iteration
3: iter← 1
4: status← COLLISION

5: while iter ≤ maxiter and status 6= SINGLE do

6: iter← iter + 1
7: i← uniform({1, . . . , rounds}) ⊲ when to transmit
8: for round← 1 to rounds do

9: if round = i then

10: status← transmit(packet) ⊲ try to transmit

4.1 Complexity Analysis

It should be clear that the energy usage of any station is at most maxiter = 3 + ⌊log2(1 + 1
ǫ )⌋ <

3+ log2(e)
1
ǫ = O(1). Similarly, one can see that the total time of the protocol is maxiter · rounds =

O(k1+ǫ). The presented algorithm is of Monte Carlo type, which means that with a certain proba-
bility, after its execution some stations may fail to transmit. We show that the probability of failure
is O( 1k ).

Lemma 3. Assume that n stations transmit uniformly and independently in one out of m rounds.
For l ≥ 1:

• if n(n−1)
6m ≥ l log(n), then with probability exceeding 1− 1

nl , fewer than 2n(n−1)
m stations fail to

transmit successfully,

• if n(n−1)
6m < l log(n), then with probability exceeding 1 − 1

nl , fewer than 20 log(n) stations fail
to transmit successfully.
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Proof. Note that this lemma is a modification of the result of Nakano and Olariu from [25]. Using

Corollary 4.2 in [25], if n(n−1)
6m ≥ log(nf(n)) for some positive real-valued function f(n), then with

probability at least 1 − 1
nf(n) , fewer than 2n(n−1)

m stations fail to transmit. Thus, it is sufficient to

take f(n) = nl−1 to prove the first case. The second case is proved by a simple application of the
Lemma 4.3 from [25].

Theorem 2. For any given ǫ > 0, after execution of Algorithm 1 by k stations, all of them transmit
successfully with probability at least 1−O( 1k ).

Proof. Let us consider what happens after the first iteration of Algorithm 1: there are n = k
participating stations and m = 2k1+ǫ rounds. If ǫ ≥ 1, then for sufficiently large k we have
n(n−1)

6m < log(n). Therefore, with probability at least 1− 1
k , after the first iteration there are at most

20 log(k) remaining stations, for which with probability exceeding 1− 1
k , two additional rounds are

sufficient for successful transmission of all remaining stations [25].

On the other hand, if 0 < ǫ < 1, then for sufficiently large k we have n(n−1)
6m > log(n), thus

with probability exceeding 1 − 1
k , the first iteration ends with fewer than 2n(n−1)

m < 2k2

2k1+ǫ = k1−ǫ

remaining stations. Inductively, if the i-th iteration starts with at most k1−(2i−1−1)ǫ stations and
(2i − 1)ǫ < 1, then by Lemma 3 with probability at least 1 − 1

k , after the i-th iteration fewer than

k1−(2i−1)ǫ stations pass to the (i+ 1)-st iteration. Thus, until i ≥ log2(1 + 1
ǫ ), with probability

1−O( 1k ) after the i-th iteration there are fewer than k1−(2i−1)ǫ stations that still need to transmit.
After iteration ⌊log2(1 + 1

ǫ )⌋ we use the second case of Lemma 3, thus w.h.p. the next iteration
ends with O(log k) stations. Therefore, again, two additional rounds are sufficient for successful
transmission of each station with probability at least 1− 1

k .

5 GMO: Generalized Massey Algorithm

In previous section we introduced an energy efficient algorithm solving the k-Selection problem. It is
of Monte Carlo type, i.e., the run time and the maximum energy usage are deterministic, but there
is some low yet positive probability of failure3. The GMO algorithm presented in this section is of
Las Vegas type. That is, the time and energy complexities are random variables but the execution
is always successful. The algorithm solves k-Selection problem effectively in polynomial time (with
respect to k) such that the expected maximum energy usage is constant.

Algorithm 2 GMO: Generalized Massey Algorithm

1: c← 0
2: status← COLLISION

3: repeat

4: if c = 0 then

5: i← uniform({0, . . . ,m− 1}) ⊲ round number to transmit in
6: else

7: i← m ⊲ sentinel value
8: for round← 0 to m− 1 do ⊲ rounds of current stage
9: if round = i then

10: status← transmit(packet) ⊲ try to transmit

11: if round ≤ i then

12: c← c+ collision(round) ⊲ increase c by 1 in case of collision

13: c← c− 1
14: until status = SINGLE

3One could overcome the issue by repeating the execution until the first success. However, the solution is not time
efficient, as even two colliding stations enforce a new execution.
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In order to ensure that the maximal number of transmissions by a single station is low, we propose
an algorithm based on “load balancing” approach. That is, we deviate from uniform-broadcasting
paradigm and force stations to broadcast in different rounds. This obviously has impact on time
complexity. Due to special construction this side-effect is strictly limited. More precisely, instead
of single independent rounds, the algorithm is performed in stages consisting of m rounds. Each
station that participates in a given stage transmits in exactly one out of m rounds, in order to gain
exclusive access to the channel. The parameter m may depend on k.

At the beginning all k stations are active. Stations which are active in a given stage choose
independently at random one out of m rounds in which they try to transmit. If there is a collision in
a round the algorithm is recursively repeated by only these stations that transmitted in this round
– that is, if there is a COLLISION in one round, then transmitting stations are thinned down in
consecutive stages. The recursion is stopped when there is no collision, i.e., there is either SILENCE
or SINGLE transmission.

It should be noted that the algorithm described above we call GMO since it can be seen as a
generalization of Massey algorithm (see [24]). That is, the Massey algorithm is GMO with parameter
m = 2. In practical settings GMO algorithm can be realized similarly to original Massey algorithm.
In particular, stations need to keep a local counter c based on feedback from the channel to determine
whether to participate in current stage (see Algorithm 2). Therefore, the execution of the algorithm
resembles a depth-first search performed on a dynamically created tree – every time a collision is
encountered, a new branch is added, which must be taken into account by subsequent (in DFS sense)
nodes. The pseudocode of the algorithm is presented in Algorithm 2.

5.1 Energy Usage and Run Time Analysis

We present here a formal analysis of the GMO properties. The key observation is that each execution
of the algorithm can be represented by some random labeled tree. Namely, we consider the so-called
trie (see [18, 29])) data structure. Let us recall that trie, or a prefix tree, is an ordered tree whose
primary purpose is to store a set of strings over some fixed alphabet Σ. Edges of the trie are labeled
by symbols from Σ and allow one to search for any words or prefixes, which are represented by leafs
or inner nodes, respectively. Figure 1a shows an example of a trie (for detailed introduction to tries
and its relevance to various algorithms, see [18]).

For a fixed m-element alphabet Σm = {r0, r1, . . . , rm−1} and a sequence S = (s1, s2, . . . , sk) ∈
(Σ∗

m)k of k words over Σm, we can construct the corresponding trie TS . We start with an empty root
node, which represents the S = ∅ case (k = 0). If S consists of exactly one word, then it is placed in
the root and the construction is done. Otherwise, for |S| ≥ 2, we partition S into Sr0 , Sr1 ,. . . ,Srm−1

by considering for each word its first symbol, which is then trimmed. Each non-empty set is used to
recursively construct subtries attached to the root. The trimmed symbols are used as labels for new
edges (see Figure 1a). As the construction is deterministic the correspondence between the sequence
of words S and its trie TS is one-to-one.

We show that for a given m, the execution of the GMO algorithm solving k-Selection problem
can be represented by some trie of k words over m-element alphabet. Moreover, the mapping is a
bijection. We proceed as follows. Every time a station participates in some stage, it chooses one
round out of m possible. We encode the choice by a symbol from Σm (for example, we can assume
that mi represents choosing ith round). The consecutive choices of the station are concatenated into
a single word. In this way, we can represent any particular pass of the GMO with k stations as a
sequence of k words S = (s1, s2, . . . , sk). Obviously, there exists a unique trie TS which represents
the execution.

We notice that the level of a specified leaf in the trie TS built from the words of S is equal to
the energy used by some station and as a result, height of the trie is the maximum energy used by
a station. Similarly, the number of stages of the algorithm is equal to the total number of inner
nodes in the trie (cf. Figures 1b and 1c). Of course, to make use of the above correspondence, we
need to consider tries constructed in a random fashion. Fortunately, the properties of random tries
have been extensively studied. Clement et al. [8] consider, among other parameters, height and size
expectation of tries embedded in a very general framework of dynamical sources. We make use of the
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Figure 1: (a) Exemplary trie, built from set of words {abc, acaca, acb, bab, cbac, cbcc} over alphabet
{a, b, c}. (b) Example run of GMO algorithm with k = 8 stations working for 4 stages, each consisting
of m = 8 rounds. Numbers in circles represent stations. (c) Trie representation of the same pass of
algorithm and its binary equivalent.

following fact presenting more classical results for symmetric tries4 (proofs and further references
can be found in [11] and [18]):

Fact 1. Let Tk,m denote a random symmetric m-ary trie built from k words. Then

1. the expected value of binary trie’s height is E [H(Tk,2)] = 2 log2 k +O (log log k),

2. the expected value of m-ary trie’s size, for constant m, is E [S(Tk,m)] = k
lnm (1 + δ(k)) +O(1),

where δ(k) is a function with small module.

While properties of random tries have been well studied, to the best of our knowledge there are
no results regarding the case when alphabet cardinality m may depend on the number of words k.
Therefore, we first show how to reduce an m-ary trie to a binary one, and then we make use of
Fact 1. This allows us to prove the following theorems.

Theorem 3. The expected maximum energy usage of GMO performed by k stations with stages of
length m satisfies

2 log2 k + δ(k)

⌈log2 m⌉
≤ E [Emax] ≤

2 log2 k + δ(k)

⌊log2 m⌋
+ 1,

4The symmetric trie is a trie constructed from random words, where each letter is sampled uniformly and inde-
pendently.
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where δ(k) is some O (log log k) function.

Proof. We will use coupling argument in order to show correspondence between m-ary and binary
tries. Let us assume that station i contains some random real number xi sampled uniformly (and
independently from other stations) from [0, 1). The number is used by ith station as a source of
randomness. That is, we represent xi in base m and for consecutive calls to uniform() function
by the ith station, the next digit of xi is returned. For a given k-element set of stations we run
simultaneously two stochastically dependent copies of the algorithm – the first one with m rounds
in a stage and the second one with exactly two rounds per stage. In addition, we require that in
both passes corresponding stations begin with the same random number. Obviously, the numbers
represented in base m are equivalent to the words from Σ∗

m. For any sequence of words we have
unique tries, both in m-ary and binary case. Let us assume that m = 2d for some integer d ∈ N

+.
Then, for tries Tk,m and Tk,2 representing respectively the first and the second run, we have:

H(Tk,m) =

⌊

H(Tk,2)− 1

d

⌋

+ 1, (1)

where H(·) denotes height of trie. Indeed, for k < 2 the equality is trivial to be checked, and for
k ≥ 2 there are at least two numbers (i.e., words of digits) in Tk,m having first H(Tk,m) − 1 digits
the same, so there are two words in Tk,2 with at least d · (H(Tk,m) − 1) bits of common prefix.
Conversely, there are two words in Tk,2 with the longest common prefix of length H(Tk,2)− 1. Thus,

the first d ·
⌊

H(Tk,2)−1
d

⌋

bits encode prefix of length
⌊

H(Tk,2)−1
d

⌋

digits of at least two words in Tk,m.

Therefore, we have
⌊

H(Tk,2)− 1

d

⌋

≤ H(Tk,m)− 1 ≤ H(Tk,2)− 1

d
.

By (1) and floor function property x− 1 < ⌊x⌋ ≤ x, we have

E [H(Tk,2)]− 1

d
< E [H(Tk,m)] ≤ E [H(Tk,2)]− 1

d
+ 1.

To get rid of m = 2d constraint, we make use of the fact that the expected value of height of trie is
non-increasing with respect to the cardinality of alphabet. Thus,

E
[

H(Tk,2⌈log2 m⌉)
]

≤ E [H(Tk,m)] ≤ E
[

H(Tk,2⌊log2 m⌋)
]

and both, lower and upper bounds apply to the already considered case. We use asymptotic formula
for height from Fact 1, which ends the proof.

Theorem 4. For m = kα, α > 0, GMO solves k-Selection with the expected number of rounds

E [Tk] = O
(

kmax{α(⌊ 1
α
⌋+1),2−α⌊ 1

α
⌋}).

Proof. In the GMO there is a one-to-one correspondence between stages and collisions of stations.
That is, each collision results in additional stage (extra m rounds) and, conversely, each stage (except
the first) is caused by exactly one collision. Therefore it suffices to count the number of collisions.
If two or more stations collide in a given round, then all of them have the same energy usage at
the moment of the collision. We partition collision rounds into disjoint levels by considering energy
usage of stations at the beginning of a round (the levels correspond to the levels of execution trie).
Let Xr be a random variable denoting the number of collisions in r-th level, so the total number
of collisions is X =

∑∞
r=0Xr and Tk = mX . There are mr possible rounds on the r-th level,

represented by words of length r over Σm. For a word σ ∈ Σr
m let Yσ be a random indicator variable

denoting whether in round represented by σ there is collision (Yσ = 1) or not5 (Yσ = 0). We have
Xr =

∑

σ Yσ where the sum is taken over all words σ ∈ Σr
m of length r. Moreover, as rounds are

chosen uniformly, for a given r, all Y ’s have the same distribution denoted by Yr. If some stations

5Particularly, in a given execution a round represented by σ may not physically exist.
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collide on the r-th level of the execution trie, they must have collided with each other on all of the
previous levels. At a given level all colliding stations sampled the same round number out of m
possible. Therefore,

E [Yσ] = Pr(Yσ = 1) = Pr(at least two stations sampled σ)

= 1− Pr(none of stations sampled σ)− Pr(exactly one station sample σ)

= 1−
(

1− 1

mr

)k

− k

mr

(

1− 1

mr

)k−1

.

By linearity of expectation,

E [Xr] =
∑

σ∈Σr
m

E [Yσ] = mr
E [Yr ]

= mr
(

1−
(

1− 1

mr

)k

− k

mr

(

1− 1

mr

)k−1)

= kαr − kαr
(

1− 1

kαr

)k

− k
(

1− 1

kαr

)k−1

.

Hence

E [X ] =
∞
∑

r=0

(

kαr − kαr
(

1− 1

kαr

)k

− k
(

1− 1

kαr

)k−1)

=

⌊ 1
α
⌋

∑

r=0

(

kαr − kαr
(

1− 1

kαr

)k

− k
(

1− 1

kαr

)k−1)

+

∞
∑

r=⌊ 1
α
⌋+1

(

kαr − kαr
(

1− 1

kαr

)k

− k
(

1− 1

kαr

)k−1)

≤
⌊ 1
α
⌋

∑

r=0

kαr +

∞
∑

r=⌊ 1
α
⌋+1

(

kαr − kαr
(

1− k1−αr
)

− k
(

1− k1−αr
))

= O(kα⌊
1
α
⌋) +O(k2−α(⌊ 1

α
⌋+1)) = O(kα⌊

1
α
⌋ + k2−α(⌊ 1

α
⌋+1)).

Multiplying the result by m = kα ends the proof.

Remark 1. If m is a constant, i.e, it does not depend on k, then by Fact 1 the expected run time
of GMO is

E [Tk,m] =
km

lnm
(1 + δ(k)) +O(1),

where δ(k) is a function with small module.

Finally, to summarize the analysis of the GMO we state the following corollary:

Corollary 1. For m = kα with α > 0 the GMO solves k-Selection problem in the expected number
of E [T ] = O

(

kmax{α(⌊ 1
α
⌋+1),2−α⌊ 1

α
⌋}) rounds with the expected maximum energy usage E [Emax] ≤

2
α + 1 + o (1).

6 Energetic Complexity of Martel Algorithm

One of the motivations for constructing more efficient algorithms in terms of energy usage was
the fact that common algorithms solving k-Selection neglected the problem of energy expenditure.
Moreover, our study shows that many time-efficient algorithms perform poorly in means of maximum
energy usage. As an example, we present in this section an analysis of the Martel algorithm that
has optimal expected run time in the considered model.
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In simple terms, the k-Selection algorithm by Martel [23] exploits the idea that the problem may
be solved by running k times a selection resolution algorithm. That is, we start with k stations,
which compete together in order to elect the leader. The selected station successfully broadcasts
its message. Next, the execution continues recursively with k − 1 stations until each one becomes
a leader. It is easily seen that by listening to the channel the stations are aware of the number of
stations that are still active. The knowledge is then used in a leader election subprocedure, where for
m active stations they try to transmit with the probability p = 1

m . Such p guarantees the optimal
probability of obtaining the single transmission. However, the approach proved not to be efficient
in terms of the energy usage.

Theorem 5. Algorithm solving k-Selection proposed by Martel has expected energetic complexity
Ω (log k).

Proof. Let us denote the time between the (i − 1)-st and i-th occurrence of SINGLE in Martel
algorithm, as i-th era. The first era is the time until the first SINGLE appears. Let Xi be a random
variable denoting duration of the i-th era. We need to show that in Martel algorithm, for all i > 1,
E[Xi] = O(1). But this fact is proved by Martel in [23],(Lemmas 2.1, 2.2 and 2.3). If for some i,
E [Xi] = O(1), then from Lemma 1, the expected number of COLLISIONs in the i-th era is Ω(1).
Consider energy consumption of the last transmitting station (i.e., the k-th one) denoted as Evlast

.
Station vlast has a chance to participate in COLLISION in each era. If the i-th era’s expected
number of COLLISIONs is δ, then, since the algorithm is uniform, each active station in this era has
equal chance to participate in COLLISION. Expected energy consumption of each active station in
this round is at least 2δ

k−i+1 . Thus

E [Evlast
] = Ω

(

k
∑

i=2

1

k − i+ 1

)

.

We note that
∑k

i=2
1

k−i+1 = Hk−1 is (k − 1)-st harmonic number. Let us recall that harmonic

number Hn = logn + γ + O( 1
n ), where γ = 0.57721 . . . is the Euler-Mascheroni constant. Finally,

E [Evlast
] = Ω (log k). It is clear that E [Evlast

] ≤ E [Emax].

7 Lower Bounds for Deterministic Oblivious Algorithms

In this section we investigate oblivious, deterministic k-Selection protocols. This means that schedule
of transmissions for each station is defined before execution of the algorithm. That is, each station
knows if it shall transmit in each round before the algorithm is started. In particular, decision about
transmission does not depend on the state of the communication channel in previous rounds. Thus
the algorithm can be viewed as an assignment of binary vectors to stations. Since the protocol
is executed in an environment common to all stations, i.e., single hop network, the message is
successfully received only if exactly one station is transmitting at a given time.

For every station v ∈ V we denote by w(v) the binary vector in the following way. Let w(v)i
denote i-th position in the vector w(v). If station v is transmitting in round i, then w(v)i = 1,
otherwise w(v)i = 0.
Let C = {c1, c2, . . . , cn} be a set of binary words (a code) of length t. The number of vectors n is
the size of the code. Given k words ci1 , ci2 , . . . , cik , we define the sum of vectors ci1 ∨ ci2 ∨ · · · ∨ cik
as a bitwise Boolean sum.

Definition 2. We say that binary vector v covers vector v′ if for every i

vi ≥ v′i .

In other words, v covers v′ if for each coordinate with value 1 in v′, the corresponding coordinate in
v is also 1. Below we recall the definition of superimposed codes introduced by Kautz and Singleton
in [16].
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Definition 3. Let r be a positive integer. We say that set of binary words C = {c1, c2, . . . , cn}
is r-superimposed code if for any distinct words ci0 , ci1 , ci2 , . . . , cir , the word ci0 is not covered by
ci1 ∨ ci2 ∨ · · · ∨ cir .

From the definition of the k-Selection protocol we have following fact:

Fact 2. Algorithm solves the k-Selection problem if and only if the corresponding set of vectors is a
(k − 1)-superimposed code.

Indeed, there is a 1−1 correspondence between the superimposed codes and oblivious k-Selection
algorithms pointed in [5]. In [10] Erdős, Frankl and Füredi proved a theorem about families of sets
which has direct application in superimposed codes.

Fact 3 (see [10, Proposition 2.1]). Let fk(t, ε) be the maximum size of the k-superimposed code of
length t, where each codeword has exactly ε ones, then fk(t, ε) ≤

(

t
⌈ ε

k⌉
)

/
( ε−1

⌈ ε
k⌉−1

)

.

Lower bound on length of k-superimposed codes implies lower bound on time complexity of any
oblivious, deterministic k-Selection algorithms. Using techniques similar to those in [10] we can
bound the size of any k-superimposed code with restricted number of ones in codewords. In effect
we can bound the time complexity of any oblivious k-Selection algorithm with energetic complexity
Emax.
Let us recall the following, well-known fact:

Fact 4. The binomial coefficient
(

n
k

)

satisfies

nk

kk
≤
(

n

k

)

≤ nk

k!
.

Theorem 6. Run time t of any deterministic, oblivious algorithm solving k-Selection with energetic
complexity Emax satisfies

t ∈ Ω

(

Emax

(

n

(k − 1)2

)
1

⌈ Emax
k−1 ⌉

)

.

Proof. We assume that k, t, Emax are functions of n, and n tends to infinity. First, we want to prove
that the relation n ≤∑Emax

E=1 fk−1(t, E), must hold for every deterministic, oblivious algorithm solving
k-Selection with run time t, and the maximum energy consumption Emax. We can partition vectors
into groups of the same Hamming weight W1,W2, . . ., i.e., w(v) ∈ Wi if h(w(v)) = i, where h(w) is
Hamming weight of the vector w. Clearly, the set W = {w(v) : v ∈ V } is a (k − 1)-superimposed
code, because algorithm solves k-Selection. Thus, each set Wi is also (k−1)-superimposed. From the

definition of the function fk, |Wi| ≤ fk−1(t, i). On the other hand n = |W | = |⋃Wi| =
∑Emax

i=1 |Wi|.
Thus, n ≤∑Emax

E=1 fk−1(t, E). From Fact 3 we obtain

fk−1(t, E) ≤
(

t
⌈

E
k−1

⌉

)

/

( E − 1
⌈

E
k−1

⌉

− 1

)

.

Using an identity for the binomial coefficient and applying Fact 4 we have:

( E − 1
⌈

E
k−1

⌉

− 1

)

=
E −

⌈

E
k−1

⌉

+ 1

E

( E
⌈

E
k−1

⌉

− 1

)

≥
(

1− 1

k − 1

)





E
⌈

E
k−1

⌉

− 1





⌈ E
k−1⌉−1

≥
(

1− 1

k − 1

)

(k − 1)⌈ E
k−1⌉−1

.
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Again we apply Fact 4 directly to the sum
∑Emax

E=1 fk−1(t, E) and we make use of the inequality
obtained above. It is easy to see that the following observations are satisfied:

n ≤
Emax
∑

E=1

(

t
⌈ E

k−1⌉
)

(

1− 1
k−1

)

(k − 1)⌈ E
k−1⌉−1

≤
(

1 +
1

k − 2

) Emax
∑

E=1

t⌈ E
k−1⌉

⌈

E
k−1

⌉

! (k − 1)⌈ E
k−1⌉−1

=

(

1 +
1

k − 2

)

(k − 1)

Emax
∑

E=1

(

t
k−1

)⌈ E
k−1⌉

⌈

E
k−1

⌉

!
.

Since E occurs in the above sum only in term
⌈

E
k−1

⌉

, we have the same (k − 1) summands. Thus,

n ≤
(

1 +
1

k − 2

)

(k − 1)2
⌈ Emax

k−1 ⌉
∑

s=1

(

t
k−1

)s

s!

≤
(

1 +
1

k − 2

)

(k − 1)
2
Γ
(⌈

Emax

k−1

⌉

+ 1, t
k−1

)

⌈

Emax

k−1

⌉

!e−
t

k−1

,

where Γ(s, x)
df
=
∫∞
x

ts−1 e−t dt is the incomplete gamma function. For s ∈ N+ the function Γ(s, x)

has the following expansion Γ(s, x) = (s − 1)! e−x
∑s−1

k=0
xk

k! . From [1] we know that Γ(s,x)
xs−1e−x → 1

as x → ∞. But it is proved in [10] that t = Ω(k logn), even without energy restriction. Thus
t
k = Ω(log n). From asymptotic behavior of Γ(s, x), we know that:

Γ

(⌈ Emax

k − 1

⌉

+ 1,
t

k − 1

)

=O

(

(

t

k − 1

)⌈ Emax
k−1 ⌉

e−
t

k−1

)

.

From the fact that n! ≥ (ne )
n after some simplifications we get:

(

t
k−1

)⌈ Emax
k−1 ⌉

e−
t

k−1

⌈

Emax

k−1

⌉

!e−
t

k−1

≤

(

t
k−1

)⌈ Emax
k−1 ⌉

(

⌈ Emax
k−1 ⌉
e

)⌈ Emax
k−1 ⌉

≤ e⌈ Emax
k−1 ⌉

(

t

Emax

)⌈Emax
k−1 ⌉

.

From calculations above we obtain the following facts

n = O

(

(k − 1)2
(

et

Emax

)⌈ Emax
k−1 ⌉)

,

(k − 1)2
(

et

Emax

)⌈ Emax
k−1 ⌉

= Ω(n),

and finally t = Ω

(

Emax

(

n
(k−1)2

)

1

⌈Emax
k−1 ⌉

)

.

The above theorem yields a spectrum of time–energy complexity trade-offs for oblivious, deter-
ministic k-Selection algorithms. For example, it implies the following corollary.
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Table 1: Simulation results of Protocol 1 for k = 10 stations.

ǫ 1 1/2 1/4 1/128
maxiter 4 4 5 10
time 800 256 180 210

iter1 0.44242 1.32249 2.24018 3.55332
iter2 0.00258 0.038901 0.153025 0.548462
iter3 0 0.000628 0.005062 0.038523
iter4 0 0.00002 0.000134 0.002036
iter5 0.000002 0.000096
iter6 0.000008
iter7 0
iter8 0
iter9 0
iter10 0
failed 0 10 1 0

Corollary 2. The run time t of any deterministic, oblivious algorithm solving k-Selection for k =

O
(

n1/4
)

with energetic complexity Emax = O
(

k logn
α log logn

)

satisfies, for any α > 0,

t = Ω

(

k
log1+

α
2 n

α log logn

)

.

8 Experimental Results

In addition to the analysis of the protocols presented for random model, we show empirical results
obtained by means of computer simulations. We have evaluated the performance of Protocol 1 for
networks consisting of k = 10 and k = 104 activated stations. The results allow us to speculate on
tightness of the analysis, as well as to see how the protocol behaves in the case of a small number
of activated stations. We have also run simulations of Martel algorithm to compare the difference
between maximum energy usage and the energetic effort of the last station.

8.1 Energy Efficient Protocol

Table 1 shows results of simulations of Protocol 1 solving 10-Selection problem for different values of
the ǫ parameter. The time = maxiter · ⌈2k1+ǫ⌉ is a total number of rounds needed by the protocol to
complete. The number of stations left activated after consecutive iterations, iteri, was obtained by
averaging outcomes of 106 simulation runs. The last row shows how many (out of 106) runs ended
with failure, which is a case when after maxiter iterations there are some stations that were unable
to broadcast their messages.

Results in Table 2 were obtained in a similar manner as for Table 1, but for k = 104 stations
and 105 simulation runs. It can be seen that the Protocol 1 behaves much better for larger number
of stations, as one could expect based on the results of the analysis.

8.2 GMO Algorithm

We simulated GMO for k = 104 stations and m = kα rounds per stage to compare our theoretical
result of Theorem 4. Figure 2 shows the exponent of run time. One can notice that for 0 < α < 1,
w.h.p. levels up to ⌈ 1α⌉ − 1 are full as there are significantly less rounds than stations. Therefore,
we consider a simple modification of GMO, such that stations skip the first ⌈ 1α⌉ − 1 levels. That is,
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Table 2: Simulation results of Protocol 1 for k = 104 stations.

ǫ 1 1/2 1/4 1/128
maxiter 4 4 5 10
time 800000000 8000000 1000000 214930

iter1 0.4965 49.8927 487.765 3720.12
iter2 0 0.0013 1.1899 591.196
iter3 0 0 0 16.0588
iter4 0 0 0 0.01214
iter5 0 0
iter6 0
iter7 0
iter8 0
iter9 0
iter10 0
failed 0 0 0 0
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Figure 2: Run time of GMO for m = kα rounds per stage. Solid line shows the exponent logk(Tk,m)
of the average run time for k = 104 stations and 104 simulations. Dotted line shows the theoretical
exponent max{α(⌊ 1α⌋+ 1), 2− α⌊ 1α⌋} established in Theorem 4.

instead of transmitting, stations may assume that there was collision. The result of this modification
is presented in Figure 3.

8.3 Martel Algorithm

In Section 6 we proved Ω(log k) lower bound on energy usage of the last station in the Martel
algorithm. While this result obviously translates to the lower bound of the energetic complexity
of the algorithm, one could ask how big is the difference between maximum energy usage and the
energetic effort of the last station. Figure 4 shows results of 105 simulations for different number of
stations (logarithmic scale).

9 Conclusions and Further Research

In our paper we presented several results about energetic aspects of k-Selection protocols in a single-
hop radio network. We believe that presented approach can be applied to more realistic scenarios. In
particular, it is clear that some results can be easily applied for dynamic counterparts of k-Selection
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Figure 3: The maximum energy usage of GMO for m = kα rounds per stage. Solid line shows the
average for k = 104 stations and 104 simulations. Dashed line shows the maximum energy usage of
modified algorithm, where we skip first ⌈ 1α⌉ − 1 levels.

24 25 26 27 28 29 210 211 212 213 214
0

4

8

12

16

20

24

k

en
er

g
y

Figure 4: Energy usage in Martel algorithm. • is an average maximum energy usage and × is an
average energy usage of the last station.
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problem (described, e.g., in [20]) at least for some models.
We believe that most interesting and most challenging task is to find a general relation between

energy consumption and time necessary for completion of k-Selection in randomized model, especially
when we take into account transmission as well as listening. We tried to obtain such result, without
effects, using information theory approach techniques.
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