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Abstract

Embedded multicore processors represented by FPGAs and GPUs have lately attracted
considerable attention for their potential computation ability and power consumption. Recent
FPGAs have hundreds of embedded DSP slices and block RAMs. For example, Xilinx Virtex-6
Family FPGAs have a DSP48E1 slice, which is a configurable logic block equipped with fast mul-
tipliers, adders, pipeline registers, and so on. They also have a dual-port memory with 18Kbits
as a block RAM. Meanwhile, recent GPUs can be used for general purpose computation. Users
can develop parallel programs running on GPUs using programming architecture called CUDA
provided by NVIDIA. The main contribution of this paper is to present two implementations of
the Hough transform on the FPGA and the GPU. The first idea of the implementations is an
efficient usage of DSP slices and block RAMs for FPGAs, and the shared memory for GPUs.
The second idea is to partition the voting space in the Hough transform and the voting oper-
ation is performed in parallel. The implementation results show that the Hough transform for
a 512×512 image with 33232 edge points can be done in 135.75µs and 637.88µs on the FPGA
and the GPU, respectively. On the other hand, a conventional CPU implementation runs in
37.10ms. Thus, both implementations achieve a sufficient speed-up.
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1 Introduction

Multicore processors are widely used in many application domains such as general purpose comput-
ing, digital signal processing, and image processing. In multicore processors, especially embedded
multicore processors represented by Field Programmable Arrays (FPGAs) and Graphics Processing
Units (GPUs) have lately attracted considerable attention for their potential computation ability
and power consumption [2, 5, 31].

An FPGA is a programmable logic device designed to be configured by the customer or designer
by hardware description language after manufacturing. The most common FPGA architecture
consists of an array of logic blocks, I/O pads, block RAMs and routing channels. Furthermore,
recent FPGAs have embedded DSP slices that make a higher performance and a broader application.

The Xilinx Virtex-6 series FPGAs have DSP48E1 slices that are equipped with a multiplier,
adders, logic operators, etc [35]. More specifically, the DSP48E1 slice has a two-input multiplier
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followed by multiplexers and a three input adder/subtractor/accumulator. The DSP48E1 multiplier
can perform multiplication of an 18bit and a 25bit two’s complement numbers and produces one 48bit
two’s complement production. Programmable pipelining of input operands, intermediate products,
and accumulator outputs enhances throughput and improves frequency. The DSP48E1 also has
pipeline registers between operators to reduce the delay. The block RAM in the Virtex-6 FPGA is
an embedded memory supporting synchronized read and write operations. In the Virtex-6 FPGA,
it can configured as 36Kbit dual port block RAMs, FIFOs, or two 18Kbit dual port RAMs. In our
architecture, it is used as a 1K×18bit dual port RAM.

Since FPGA chips maintain relatively low price and its programmable features, it is widely used
in those fields which need to update architecture or functions frequently such as communication
and education areas. They are widely used in consumer and industrial products for accelerating
processor intensive algorithms [1, 6, 14, 16, 17, 18, 19, 29].

On the other hand, recent GPUs, which have many processing units, can be used for general
purpose parallel computation. To utilize the powerful computing ability, GPUs are widely used.
CUDA (Common Unified Device Architecture) [25] is the architecture for general purpose parallel
computation on GPUs. Before the appearance of CUDA, GPUs could only be programmed through
graphics API. However, CUDA comes with a software environment that allows developers to use
C-like high-level programming language. Using CUDA, we can develop parallel algorithms to be
implemented in GPUs. Therefore, many studies have been devoted to implement parallel algorithm
using CUDA [7, 8, 13, 20, 24, 28, 32].

Hough transform is a technique to find shapes in images [15]. In particular, it has been utilized to
extract lines, circles, ellipses and arbitrary shapes. The Hough transform defines a mapping from an
image into a parameter space represented by an accumulate array. The parameter space is defined
by parameterizing detected shapes. Based on each edge point of the image, the mapping adds a
vote to corresponding elements in the accumulate array. The elements that are increased represent
associated parameters based on detected shapes. Therefore, the elements that are voted intensively
correspond to the parameters of shapes in the image space.

The Hough transform can be used to extract straight lines in a binary image [11]. The idea of
this method is to exploit the duality between points of a line and parameters of that line. A point
in the image is represented by a curve in the parameter space and lines of collinear points intersect
in the parameter space at one point. These intersections are counted in an array of accumulators
that quantizes the parameter space appropriately. In the followings, we call this counting to the
accumulators voting. More specifically, for each edge point (x, y) in a 2-dimentional image, the
voting is performed along a curve ρ = x cos θ + y sin θ (0 ≤ θ < 180). Possible lines can be detected
by searching points that are voted intensively. Figure 1 shows an example of straight line detection
using the Hough transform. For an input image (Figure 1(a)), its binary edge image (Figure 1(b))
is obtained by the edge detector such as Sobel filter. The result of voting to the parameter space
is shown in Figure 2. In this figure, darker points show points that are voted intensively, that
is, represent probable lines. According to the result of voting, the principal lines are detected
(Figure 1(c)).

The main contribution of this paper is to present two implementations of the Hough transform
on the FPGA and the GPU. Generally, to achieve high performance on the FPGA we have to
design in the detailed circuit level considering the features of FPGAs. On the other hand, in
the GPU implementation, we can use C-like high-level programming language. We propose two
implementations of the Hough transform on the above two devices and their performances are
compared. The first idea of the implementations is an efficient usage of DSP slices and block RAMs
for FPGAs, and the shared memory for GPUs. The second idea is to partition the voting space in
the Hough transform and the voting operation is performed in parallel. We describe the ideas of our
FPGA and GPU implementations, as follows.

Our new FPGA architecture for the Hough transform fully utilizes embedded DSP slices and
block RAMs. Our new idea includes:

Voting Space Partitioning:
Polar coordinate voting space (θ, ρ) is partitioned and arranged into block RAMs. This enables
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(a) Input image (b) Binary edge image by Sobel filter

(c) Line detection using the Hough transform

Figure 1: Example of straight line detection using the Hough transform

Figure 2: Hough parameter space
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us to perform voting operations in parallel. Also, the function of dual-port of block RAMs are
fully used to accumulate the voting value instantly.

Efficient Usage of DSP slices:
DSP slices are used to compute x cos θ and y sin θ in parallel for each edge pixel (x, y). We
compute x cos θ and y sin θ for θ such that 0 ≤ θ < 90 instead of computing them for θ such
that 0 ≤ θ < 180. Also, we avoid the computation of the values of cos θ and sin θ by pre-loading
them in the DSP slices.

Fully Pipelined Architecture:
We take into account a layout of DSP slices and block RAMs in Virtex-6 FPGA architecture,
and design our Hough transform architecture as a fully pipelined one. For example, in the
Virtex-6 FPGA XC6VLX240T has 768 DSP48E1 slices arranged in 8 columns of 96 adjacent
DSP48E1 slices. Neighboring DSP48E1 slices are connected directly through pipeline registers.
Our Hough transform architecture uses 2 columns to compute x cos θ and y sin θ each, and uses
a pipeline technique to maximize the clock frequency.

Using these ideas, our new architecture for the Hough transform uses 178 DSP48E1 slices and
180 block RAMs with 18Kbits that work in parallel. One of the most important key techniques
for accelerating computation using FPGAs is an efficient usage of DSP slices and block RAMs.
Nevertheless, as far as we know, there is no previously published work that fully utilizes DSP
slices and block RAMs for the Hough transform. Roughly speaking, a conventional sequential
implementation performs 180m voting operations for m edge points. Our architecture performs
voting operations in parallel, and outputs identified straight lines in m + 97 clock cycles. Since
180m voting operations are performed using 178 DSP48E1 slices, the lower bound of the computing
time is m clock cycles. Hence our implementation is close to optimal. We have implemented our
new architecture on a Virtex-6 family FPGA XC6VLX240T-1. The circuit runs in 245.519MHz and
outputs identified straight lines in m+97 cycles. For example, Figure 1 includes 33232 edge points.
Therefore, the circuit can perform the Hough transform in 135.75µs.

In our new GPU implementation, we also partition the voting space and voting operation is
performed in parallel. Additionally, we have considered shared memory bank conflict that is one of
the important programming issues of the GPU system. We have implemented our new GPU imple-
mentation in the NVIDIA GeForce GTX680. For Figure 1, our GPU implementation can perform
the Hough transform in 637.88µs. According to the above results, the FPGA implementation can
run about 4 times faster than the GPU implementation. However, the GPU implementation attains
a speed-up factor of more than 68 over the sequential implementation on the CPU. That is, both
our FPGA and GPU implementations achieve a sufficient speed-up.

Many hardware algorithms for FPGA implementation of the Hough transform for lines have
been proposed in past. As far as we know, however, there is no published hardware algorithm using
embedded DSP slices or multipliers in the FPGA. In the existing researches, instead of circuits of
multiplication with DSP slices or multipliers, they introduced incremental Hough transform [4, 10,
30], CORDIC [9, 22], and hybrid-log arithmetic [23] to the computation of the Hough transform.
Since most of recent FPGAs produced by principal vendors equip embedded DSP slices [3, 33, 34],
one of the most important key techniques for accelerating computation using FPGAs is an efficient
usage of DSP slices and block RAMs.

Meanwhile, GPU implementations for the Hough transform have also been proposed. In [12],
an initial GPU implementation written by OpenGL is proposed. In this implementation, the com-
putation of the Hough transform is transformed to matrix calculation that can be performed on
the GPU. Jošth et al proposed a GPU implementation of the Hough transform by CUDA [21]. In
this implementation as well as our GPU implementation, the voting space is partitioned into small
spaces and they are arranged to the shared memory. However, the shared memory bank conflict has
not been considered.

This paper is organized as follows. Section 2 introduces the Hough transform algorithms for
lines. We show the FPGA architecture for the Hough transform in Section 3. In Section 4, we
briefly explain modern GPU architecture and describe our GPU implementation for the Hough
transform. Section 5 shows the experimental results. Finally, Section 6 concludes the paper.
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Figure 3: Two dimensional Spaces xy and θρ used in the Hough transform

2 Hough Transform

The main purpose of this section is to review the Hough transform algorithms for straight lines.
Suppose that we have an image of size n × n. We assume that n × n pixels are arranged in two
dimensional xy-space such that the origin is in the center of the image as illustrated in Figure 3.
Hence, both coordinates x and y take integers in the range [−n

2 + 1, n
2 ].

A pixel (x, y) (−n
2 +1 ≤ x, y ≤ n

2 ) in the xy-space is converted to a curve in the θρ-space by the
following formula:

ρ = x cos θ + y sin θ (0 ≤ θ < 180) (1)

Clearly, the double inequality − n√
2
< ρ ≤ − n√

2
is satisfied. The values of θ and ρ can also be

obtained geometrically. Suppose that we draw a line going through the origin with angle θ as
illustrated in Figure 3. For such a line, we can draw the orthogonal line going through a pixel (x, y).
The value of ρ corresponds to the distance to the line. In other words, a point (θ, ρ) of θρ-space
corresponds to a line of xy-space.

The key idea of the Hough transform is to vote in θρ-space for every pixel in the xy-space. Let
(x0, y0), (x1, y1), . . . , (xk−1, yk−1) be the k pixels in xy-space. The Hough transform is spelled out
as follows:

[Straight Forward Hough Transform]
for i← 0 to k − 1

for θ ← 0 to 179
begin

ρ← xk cos θ + yk sin θ
v[θ][ρ]← v[θ][ρ] + 1

end
for θ ← 0 to 179 do in parallel

for ρ← − n√
2
to n√

2
do in parallel

output (θ, ρ) if v[θ][ρ] ≥ threshold

For simplicity, we assume that the value of ρ is automatically rounded to an integer. In the Straight
Forward Hough Transform, for each point (xk, yk), the values of xk cos θ and yk sin θ are computed
for θ = 0, 1, . . . , 179. If v[θ][ρ] is storing a large value, many points in the k input pixels lie in the
line in xy-space corresponds to a point (θ, ρ) in θρ-space.
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We will show that, it is sufficient to compute these values for θ = 0, 1, . . . , 90. From the addition
theorem of trigonometric functions, we have

ρ = xk cos(180− θ) + yk sin(180− θ)

= −xk cos(θ) + yk sin(θ). (2)

Using Formula (2), the Hough transform can also be done by partitioning the range [0, 179] of θ into
two ranges [0, 89] and [90, 179]. Also, we avoid going through array v for finding elements larger
than a threshold. Thus, our new Hough transform, called the Circuit-oriented Hough Transform is
be spelled out as follows:

[Circuit-oriented Hough Transform]
for i← 0 to k − 1 do

begin
for θ ← 0 to 89 do

begin
ρ← xk cos θ + yk sin θ
v[θ][ρ]← v[θ][ρ] + 1
output (θ, ρ) if v[θ][ρ] = threshold

end
for θ ← 1 to 90 do

begin
ρ← −x cos(θ) + y sin(θ)
v[180− θ][ρ]← v[180− θ][ρ] + 1
output (θ, ρ) if v[θ][ρ] = threshold

end
end

In the following section, we show an efficient implementation of the Circuit-oriented Hough Trans-
form.

3 Our FPGA architecture for the Hough transform

This section describes our FPGA architecture for the Hough transform using DSP slices and block
RAMs in Xilinx Virtex-6 FPGA. We use Xilinx Virtex-6 Family FPGA XC6VLX240T-1 as the
target device [37].

3.1 Structure of our architecture for the Hough transform

Figure 4 illustrates our architecture for the Hough transform. We use 178 DSP slices X1, X2, . . . X89

and Y1, Y2, . . . , Y89. For each θ (0 ≤ θ ≤ 90) Xθ and Yθ compute xk cos θ and yk cos θ for given xk

and yk, respectively. Since xk cos 0 = xk, xk cos 90 = 0, yk sin 0 = 0, and yk cos 90 = yk, DSP slices
X0, X90, Y0, and Y90 are not necessary. Using an adder and a subtractor for each pair Xθ and Yθ,
ρθ = xk cos θ+yk cos θ and ρ180−θ = −xk cos θ+yk cos θ are computed. We also use 180 block RAMs
V0, V1, . . . V179 to store the voting value. Address ρ of each Vθ (0 ≤ θ ≤ 179) is used to store the
value of v[θ][ρ].

To minimize the delay between registers, DSP slices X1, . . . , X90 are connected in a pipeline
fashion as illustrated in Figure 4. Each Xθ has a register to store the value of xk. In every clock
cycle, the value is transferred from Xθ to Xθ+1. Similarly, DSP slices Y0, Y1, . . . , Y90 are connected
in a pipeline fashion.

Figure 5 illustrates two DSP slices Xθ and Yθ with an adder and subtractor to compute ρ. In
Xθ, the value of xk is loaded in an internal register. Also, the value of cos θ is pre-computed. Note
that the value of cos θ used in Xθ is a fixed value. The product of xk and cos θ is computed in
a multiplier of the DSP slice Xθ. Similarly, the value of sin θ used in Yθ is a fixed value and the
product of yk and sin θ is computed in a multiplier of the DSP slice Yθ.
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Figure 4: The outline of our FPGA architecture for the Hough transform
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In the Virtex-6 FPGA XC6VLX240T, that is our target device, has DSP48E1 slices are arranged
in 8 columns of 96 adjacent DSP48E1 slices. Neighboring DSP48E1 slices are connected directly
through pipeline registers. Our Hough transform architecture uses 2 columns to compute xk cos θ
and yk sin θ each, and uses a pipeline technique to maximize the clock frequency (Figure 6).

Figure 7 illustrates the architecture of Vθ using a block RAM. A block RAM in the FPGA is
dual port architecture. Xilinx Virtex-6 Family has 18Kbit dual-port block RAMs, which have two
sets of ports operated independently. Two sets of ports are:

Port Set A ADDRA (ADDRess A), DOA (Data Output A), DIA (Data Input A), and

Port Set B ADDRB (ADDRess B), DOB (Data Output B), DIB (Data Input B).

Let M [i] denote a data of address i of the block RAM. In read operation of Port Set A, M [ADDRA]
is output from DOA after the rising clock edge. In write operation of Port Set A, the data given
to DIA is written in M [ADDRA] at the rising clock edge. Read/write operations of Port Set B are
the same as Port Set A. Port Set A and Port Set B work independently. In the block RAMs in the
target device of this work, read/write operations can be configured as either RF (Read First) mode
or WF (Write First) mode. In the RF mode, if reading and writing operations are performed to the
same address, reading operation is performed before the reading operation. Hence the reading data
is the data before writing data. On the other hand, in the WF mode, since the writing performed
before the reading, the reading data is the updated data. However, when a dual port is used, there
is a restriction that if read and write operations to the same address are performed for each port,
the setting of block RAMs must be RF [36].

We use the block RAM to store the values of v[θ][ρ] (− n√
2
< ρ ≤ n√

2
). Let vθ[i] denote the

data of address i in block RAM Vθ. Since ρ is given to it ADDRA, vθ[ρ] is output from DOA after
the rising clock edge as illustrated in Figure 7. After that, vθ[ρ] + 1 is computed and it is given to
DOB. Since ρ is given to ADDB, vθ[ρ] + 1 is written in vθ[ρ]. In other words, vθ[ρ] ← vθ[ρ] + 1 is
performed. At that time, according to the restriction stated in the above, since the same value of ρ
may be input continuously, the setting of block RAMs must be RF. Namely, when the same value
of ρ is input continuously, the former voted value is not read from the block RAM. To avoid this
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situation, we use an additional register to store the latest voted value and if the same value of ρ is
input continuously, the stored value is used instead of the value read from the block RAM.

In the same time, a comparator is used to determine if vθ[ρ] + 1 = threshold . If so, the value
of ρ is written in a register. After that, a pair (θ, ρ) is written into a next register. The pair (θ, ρ)
represents a probable line. It moves toward the output of the circuit using series of shift registers
one by one shown in Figure 4. In order to reduce the number of clock cycles necessary to move data
to the output, we use two series of shift registers. One is used for output data of V0, . . . , V89. The
other is used for output data of V90, . . . , V179. Therefore, the number of clock cycles necessary to
move data to the output is reduced to at most 90 clock cycles.

3.2 Data representation

The choice of data precision is guided by the implementation cost in terms of area, simplicity of
design, speed and power consumption. Higher precision will lead to less quantization error in the
final implementation. On the other hand, lower precision will produce more compaction and faster
designs with less power consumption. A trade-off choice needs to be made depending on the given
application and available FPGA resources.

In our work, in order to minimize chip space and computation time, short fixed point represen-
tation of numbers are used. Considering the structure of DSP slices and block RAMs, we choose
the data presentation in our implementation, as follows. The data format of inputs that are pairs of
coordinates xk and yk are 10bit two’s complement integer each. Also, the data format of cos θ and
sin θ is 16bit fixed point number, which consists of 1bit sign, 1bit integer and 14bit fraction based on
two’s complement. On the other hand, the data format of ρ is 10bit two’s complement integer. The
data format of the voted value is 18bit integer. Namely, the number of the vote is at most 218 − 1.
Since the range of the value of θ is 0 to 180, the data format of θ is 8bit integer.
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4 Our GPU implementation for the Hough transform

This section describes our GPU Implementation for the Hough transform. We use GeForce GTX
680 as the target GPU and CUDA as the development environment by NVIDIA.

4.1 Compute Unified Device Architecture (CUDA)

Graphics Processing Units (GPUs) can achieve a high computational throughput due to their large
number of processing cores and different memory spaces. All the processing cores are organized into
several streaming multi-core processors as shown in Figure 8. For fully utilizing all the processing
cores of a GPU, numerous threads are required. Compute Unified Device Architecture (CUDA) [25]
organizes these threads into a large grid of thread blocks. Each thread block contains a number of
threads which can be executed on an assigned streaming multi-core processor. Threads of a thread
block are organized into several warps and each warp contains 32 threads. At a time, only a warp
of a thread block can be executed by the assigned streaming multi-core processor concurrently.
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Core Core 

Core Core 

Core Core 

Core Core 

Shared Memory

Streaming 

Multiprocessor

Shared Memory

Streaming 

Multiprocessor

Shared Memory

…

Global  Memory

Core Core 

Core Core 

Core Core 

Core Core 

Core Core 

Core Core 

Core Core 

Core Core 

Figure 8: CUDA hardware architecture

CUDA uses two types of memories in the NVIDIA GPUs: the global memory and the shared
memory [27]. The global memory is implemented as an off-chip DRAM of the GPU, and has large
capacity, say, 1.5-6 Gbytes, but its access latency is very long. The shared memory is an extremely
fast on-chip memory with lower capacity, say, 16-48 Kbytes. The efficient usage of the global memory
and the shared memory is a key for CUDA developers to accelerate applications using GPUs. In
particular, we need to consider the bank conflict of the shared memory access [24, 26]. Figure 9
illustrates the CUDA hardware architecture. The shared memory is divided into 32 equally-sized
modules of 32-bit width, called banks. It means that, in the shared memory, the successive 32-bit
words are assigned to successive banks. To achieve maximum throughput, concurrent threads of a
thread block should access different banks, otherwise, bank conflicts will occur.
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Figure 9: Structure of the shared memory
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4.2 GPU implementation

The main idea of our GPU implementation it also to use the voting space partitioning shown in the
above. Another idea is to avoid bank conflict on the shared memory. In the followings, the details
of our GPU implementation are shown.

The voting space (θ, ρ) of the Hough transform is partitioned for each θ and the voting procedure
for each partition is performed in parallel. In our GPU implementation, a thread block is assigned
to each θ and threads in the thread block concurrently vote for input edge points. Partitioning the
voting space for each θ, each voting space can be stored in the shared memory. Therefore, the voting
procedure is performed to the voting space in the shared memory. In our GPU implementation, the
voting space is partitioned into 180 spaces and 180 thread blocks vote in parallel.

In each thread block, the values of the trigonometric functions cos θ and sin θ are initially com-
puted since the values are common for every thread in a thread block. After that, threads read
coordinates of input points stored in the global memory. Using the values of cos θ and sin θ, Eq. 1
for each point is computed and vote to the voting space in parallel. In the parallel voting procedure,
some threads may vote to the same ρ simultaneously. To avoid it, we use the atomic add operation
supported by CUDA [27].

Additionally, to reduce the bank conflict of the shared memory, the voting is distributed to the
different banks. We use 32 voting spaces of the same size and each space is assigned to a bank. Every
thread in a warp votes to the different banks without the bank conflict. After voting, to merge the
results of the voting in the different banks the sums of the values in the voting spaces are computed.
In the sum computation, if it is performed in parallel straightforwardly, the bank conflict occurs in
the read operation (Figure 10(a)). Therefore, to avoid the bank conflict in each warp, the order of
each sum computation is shifted thread by thread shown in Figure 10(b). As a result, the parallel
voting can be performed without the bank conflict. After that, the results of the voting are stored
back to the global memory.
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Figure 10: Summing the voting spaces in the different banks on the shared memory

5 Experimental Results

We have implemented and evaluated our proposed methods of the Hough transform on the FPGA
and the GPU. For the purpose of estimating the speed up of our implementations, we have also
implemented a conventional software approach of the Hough transform using GNU C. We have used
Intel Xeon X7460 running in 2.66GHz and 128GB memory to run the sequential algorithm for the
Hough transform. For the image shown in Figure 1(b) that includes 33232 edge points, the software
implementation can perform the Hough transform in 37.10ms. If the input image is worst case in
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terms of the computing time, that is, if all the points of an image of size 512 × 512(= 262144) are
edge points, it takes 359.27ms to complete to output the results.

In the evaluation of our FPGA implementation, we have used the Xilinx Virtex-6 FPGA XC6VLX240T-
1. Table 1 shows the experimental results using Xilinx ISE 13.1. In the implementation, to reduce
the delay of the circuit, some pipeline registers are inserted into between circuit elements. It takes
3 clock cycles to compute the values of ρ for given xk and yk. Also, 4 clock cycles are necessary
to output a pair (θ, ρ) that represents a probable line. Moreover, the number of clock cycles neces-
sary to move data to the output is reduced to at most 90 clock cycles. Therefore, this circuit can
output identified straight lines represented by (θ, ρ) in m + 97 cycles, i.e., m+97

245.519µs. For example,
Figure 1(b) includes 33232 edge points. Therefore, the circuit can perform the Hough transform in
135.75µs. Also, if all the points of an image of size 512 × 512(= 262144) are edge points, it takes
1068.11µs to complete to output the results. Of course, it is not possible that all points are edge
points, however, this fact guarantees that our Hough transform implementation for any 512 × 512
image terminates in less than 1068.11µs. Therefore, our FPGA implementation attains a speed-up
factor of more than 300 over the sequential implementation on the CPU.

Table 1: Performance evaluation of the proposed architecture for the Hough transform

DSP48E1 slices (out of 768) 178 (23.1%)
18Kbit block RAMs (out of 832) 180 (21.6%)
Slices (out of 301440) 14493 (4.81%)
Clock frequency [MHz] 245.519

There are a number of literatures reported to implement the Hough transform for lines using
the FPGA shown in Section 1. Performances such as device, logic blocks, DSP slices, frequency
and throughput are compared in Table 2. It is difficult to directly compare to other works because
utilized FPGAs and supported size of images differ. Considering the throughput, however, it is clear
that the performance of our FPGA implementation is better than that of other works.

Table 2: Comparison with related works for the Hough transform using FPGAs

Karabernou [22] Deng [9]
Device XC4010EPC84 XC4010XL
Logic blocks 205 CLBs 333 CLBs
DSP slices — —
Frequency 23.166MHz 40MHz
Throughput 10.368Mpixel/s 0.623Mpixel/s

Lee [23] This work
Device Virtex 4 XC6VLX240T-1
Logic blocks 314 CLBs 14493 Slices
DSP slices — 178 DSP48E1s
Frequency 132MHz 245.519MHz
Throughput 32.768Mpixel/s 245.428Mpixel/s

On the other hand, in the evaluation of our GPU implementation, we have used an NVIDIA
GeForce GTX680 with 1536 processing cores (8 Streaming Multiprocessors which have 192 processing
cores each) running in 1.006GHz and 4GB memory. We select the numbers of thread blocks and
threads in each block are 180 and 1024, respectively. For Figure 1(b), our GPU implementation can
perform the Hough transform in 637.79µs. Also, if all the points of an image of size 512 × 512(=
262144) are edge points, it takes 4348.83µs to complete to output the results.

According to the above results, the FPGA implementation can run about 4 times faster than the
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GPU implementation. However, the GPU implementation attains a speed-up factor of more than 68
over the sequential implementation on the CPU. That is, both our FPGA and GPU implementations
achieve a sufficient speed-up. Regarding the power consumption, it is not easy to measure and
compare the power consumption of the FPGA, GPU, and the CPU. However, Thomas et al. show
the comparison of them about the performance and the power consumption for random number
generation [31]. The problem is different and utilized devices are slightly older, but it seems to be a
good indicator to consider the power consumption. According to the paper, the power consumption
of the GPU and CPU is almost the same and six times more than that of the FPGA. Therefore, the
performance per power of the FPGA is also much better than that of the GPU and CPU.

6 Conclusions

We have proposed two implementations of the Hough transform that identifies straight lines on the
FPGA and the GPU and their performances have been compared. The first idea of the implemen-
tations is an efficient usage of DSP slices and block RAMs for FPGAs, and the shared memory for
GPUs. The second idea is to partition the voting space in the Hough transform and the voting
operation is performed in parallel. The implementation results show that the Hough transform for
a 512×512 image with 33232 edge points can be done in 135.75µs and 637.88µs on the FPGA and
the GPU, respectively. On the other hand, a conventional CPU implementation runs in 37.10ms.
Thus, both implementations achieve a sufficient speed-up.
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