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Abstract

Distance constrained labeling problems, e.g., L(p, ¢)-labeling and (p, q)-total labeling, are
originally motivated by the frequency assignment. From the viewpoint of theory, the upper
bounds on the labeling numbers and the time complexity of finding a minimum labeling are
intensively and extensively studied. In this paper, we survey the distance constrained labeling
problems from algorithmic aspects, that is, computational complexity, approximability, exact
computation, and so on.

Keywords: distance constrained labeling, L(2,1)-labeling, (2, 1)-total labeling, frequency assign-
ment

1 Introduction

Let G be an undirected graph. An L(p, q)-labeling of a graph G is an assignment f from the vertex
set V(G) to the set of nonnegative integers such that |f(x) — f(y)| > p if  and y are adjacent and

OA part of this work was presented in [35, 57]. This work is partially supported by KAKENHI 23500022, 24700001,
24106004, 25104521, 25106508 and 26540005, the Kayamori Foundation of Informational Science Advancement, and
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|f(z) — f(y)| > q if z and y are at distance 2, for all z and y in V(G). A k-L(p, q)-labeling is an
L(p, g)-labeling f : V(G) — {0,...,k}, and the L(p, q)-labeling problem asks the minimum k among
all possible assignments. We call this invariant, the minimum value k, the L(p, q)-labeling number
and is denoted by A, 4(G). Notice that we can use k + 1 different labels when A, ,(G) = k since we
can use 0 as a label for conventional reasons. Instead of L(p, ¢)-labeling, term “L(p, ¢)-coloring” is
sometimes used (e.g., [14]). Here, p and g are parameters, and in a general setting of L(p, ¢)-labeling
problem, they are defined in advance. Among many candidates of pairs p and ¢, p = 2 and ¢ = 1
is the most popular setting, but other settings such as p = ¢ =1 and p = 0,q = 1 are also studied
from a viewpoint of practical applications (e.g., [4, 7]).

A (p,q)-total labeling of a graph G is an assignment f from the vertex set V(G) and the edge
set E(G) to the set of nonnegative integers such that |f(z) — f(y)| > p if = is a vertex and y
is an edge incident to x, and |f(z) — f(y)| > ¢ if x and y are a pair of adjacent vertices or a
pair of adjacent edges, for all z and y in V(G) U E(G). A k-(p,q)-total labeling is a (p, q)-total
labeling f : V(G) U E(G) — {0,...,k}, and the (p,q)-total labeling problem asks the minimum
k among all possible assignments. We call this invariant, the minimum value k, the (p,q)-total
labeling number and is denoted by )\;q(G). L(p, q)-labeling and (p, g)-total labeling are examples of
distance constrained labelings, which are intensively and extensively studied from the theoretical and
applicational points of view. The notion of (p, ¢)-total labeling is introduced by Havet and Yu [42],
but it is a special case of L(p, ¢)-labeling, because a (p,q)-total labeling of G corresponds to an
L(p, g)-labeling of the incidence graph of G, where the incidence graph of G is the graph obtained
from G by replacing each edge (v;,v;) with two edges (v;,v;;) and (v;j,v;) after introducing one new
vertex vj;.

The original notion of L(p, ¢)-labeling or L(2, 1)-labeling can be seen in Hale [32] and Roberts [59]
in the context of frequency assignment, where ‘close’ transmitters must receive different frequencies
and ‘very close’ transmitters must receive frequencies that are at least two frequencies apart so that
they can avoid interference. Then, Griggs and Yeh formally introduced the notion of L(p, ¢)-labeling
in [31, 67]. Due to its practical importance, the L(2,1)-labeling problem has been widely studied.
From the structural graph theoretical point of view, since this is a kind of vertex coloring problem,
it has attracted a lot of interest [16, 31, 40, 65]. Especially, deriving upper bounds on Ay 1 (or more
generally A, ) for general graphs is one of the main concern. Griggs and Yeh [31] posed a conjecture
that Ag;; < A? for any graph with A > 2, where A is the maximum degree of G, and they proved
that Ao < A? + 2A at the same time. After that, it was shown that Ao; < A% + A by Chang
and Kuo [16], Aoy < A% + A — 1 by Kral’ and Skrekovski [51], and then Ay; < A2+ A —2 by
Gongalves [30], however, the conjecture is still open. In this context, L(2,1)-labeling is generalized
into L(p, q)-labeling for arbitrary nonnegative integers p and ¢, and in fact, we can see that L(1,0)-
labeling (L(p, 0)-labeling, actually) is equivalent to the classical vertex coloring. We can find a lot of
related results on L(p, ¢)-labelings in comprehensive surveys by Calamoneri [11, 12] and by Yeh [68].
The survey paper [12] is still updated and we can download the latest version from a web page .
The current latest version is ver. March 14, 2011.

In the following sections, we first see the computational complexity of L(p, ¢)-labeling problems,
and then see the bounds on (p, ¢)-total labeling numbers.

2 The computational complexity of L(p, q)-labeling problems

There are also a number of studies on the L(p, ¢)-labeling problem from the algorithmic point of view.
It should be noted that for a graph G and a positive integer ¢, G has a ck-L(cp, cq)-labeling if and
only if G has a k-L(p, ¢)-labeling (Observation 5.2 in [27]). That is, L(cp, cq)-labeling problem and
L(p, g)-labeling problem are equivalent in the sense of polynomial-time computability; we assume
that p and ¢ has no common divisor hereafter.

Unfortunately, for any positive integers p and ¢ with p > ¢, L(p, ¢)-labeling problem is NP-hard.
More precisely, for any p and ¢, there exists a k such that it is NP-complete to decide whether G
has a k-L(p, q)-labeling. If ¢ = 0, it is obviously NP-hard, due to the NP-hardness of the ordinary

Inttp://wuw.dsi.uniromal.it/~calamo/PDF-FILES/survey.pdf
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coloring problem. For another basic case of p = ¢ (i.e., it is equivalent to L(1, 1)-labeling problem), it
is also shown to be NP-hard in [54], where the problem is called Distance-2 Graph Coloring Problem.
The L(1, 1)-labeling problem is well studied also from the viewpoint of restricted classes of graphs,
such as planar graphs [2, 10, 55, 60, 66], outerplanar graphs [3], and so on [8, 53].

For the more general cases p > ¢ > 1, Fiala, Kloks and Kratochvil showed that it is NP-complete
to decide whether G has a (p+¢[p/q])-L(p, g)-labeling, and conjectured that there exists some value
K, 4 such that for every integer k > K, , it is NP-hard to decide G has a k-L(p, ¢)-labeling [27].
They partially succeeded to show it; it is true when p > 2¢. Also, for p > 2, the problem of deciding
whether G has k-L(p, 1)-labeling is NP-hard for every k > p + 5, and is solvable in polynomial
time for k < p + 2 [27]. For the case of p < ¢, only a few results are known: For example, the
L(0, 1)-labeling problem is NP-hard [7], and bounds on L(p, ¢)-labeling numbers of trees with p < ¢
are investigated in [13].

Due to the NP-hardness, it is natural to investigate its approximability. For L(1,1)-labeling
problem, it is shown that a greedy algorithm achieves O(y/n)-approximation ratio [1, 54], and it is
hard to approximate in polynomial time within factor n'/2=¢ for any & > 0, unless NP£ZPP [1].
This holds even if the input graph is bipartite or a split graph. For general p and ¢, the following
result is known: it can be approximate in polynomial time within a factor of O(min{A, v/n+p/q}),
but it is NP-hard to approximate within factor n'/2~¢ for any £ > 0 [33].

2.1 L(2,1)-labeling problem

As mentioned above, the most popular parameter setting of L(p, ¢)-labeling is p = 2,q = 1. First,
it was shown to be NP-hard to decide whether a given graph G has a k-L(2, 1)-labeling for some
integer k£ [31]. Actually, this holds for every integer k > 4 [27]. It was then shown that it still
remains NP-hard for some restricted classes of graphs, such as planar graphs, bipartite graphs,
chordal graphs [9] and graphs with diameter 2 [31]. Particularly, in the case of planar graphs,
determining the existence of k-L(2,1)-labeling is NP-hard even for every k > 4, while it can be
done in polynomial time for k& < 3 [20]. Also, it is NP-hard even for graphs of treewidth 2 [22]
and for perfect elimination bipartite graphs [58]. In contrast, only a few graph classes are known
to have polynomial-time algorithms for this problem, e.g., we can determine in polynomial time the
L(2,1)-labeling number of paths, cycles, wheels [31] and co-graphs [16].

As for trees, Griggs and Yeh [31] showed that A 1(7T) is either A+ 1 or A+ 2 for any tree T', and
also conjectured that determining As 1 (7") is NP-hard, however, Chang and Kuo [16] disproved this
by presenting a polynomial-time algorithm for computing Az 1 (7). Their algorithm exploits the fact
that Ag1(7T) is either A+1 or A+2 for any tree T'. Its running time is O(A*®n), where n = |V(T)|.
This result has a great importance because it initiates to cultivate polynomially solvable classes
of graphs for the L(2,1)-labeling problem and related problems. For example, Fiala, Kloks and
Kratochvil [27] showed that L(2,1)-labeling of ¢-almost trees can be solved in O(/\gtl+ 451) time for
Ag,1 given as an input, where a ¢-almost tree is a graph that can be a tree by eliminating ¢ edges. Also,
it was shown that the L(p, 1)-labeling problem for trees can be solved in O((p+ A)%°n) = O(X3:3n)
time [15]. Both results are based on Chang and Kuo’s algorithm, which is called as a subroutine in
the algorithms. Moreover, the polynomially solvable result for trees holds for more general settings.
The notion of L(p, 1)-labeling is generalized as H (p, 1)-labeling, in which graph H defines the metric
space of distances between two labels, whereas labels in L(p, 1)-labeling (that is, in L(p, ¢)-labeling)
take nonnegative integers; i.e., it is a special case that H is a path graph. In [24], it has been
shown that the H(p, 1)-labeling problem of trees for arbitrary graph H can be solved in polynomial
time, which is also based on Chang and Kuo’s idea. In passing, these results are unfortunately not
applicable for L(p, q)-labeling problems for general p and ¢. Fiala, Golovach and Kratochvil [23]
showed that the L(p,q)-labeling problem for trees is NP-hard if ¢ is not a divisor of p, which is
contrasting to the positive results mentioned above.

As for L(2,1)-labeling of trees again, Chang and Kuo’s O(A*-5n) algorithm is the first polynomial-
time one. It is based on dynamic programming (DP) approach, and it checks whether (A + 1)-
L(2, 1)-labeling is possible or not from leaf vertices to a root vertex in the original tree structure.
The principle of optimality requires to solve at each vertex of the tree the assignments of labels
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to subtrees, and the assignments are formulated as the maximum matching in a certain bipartite
graph. This running time is improved into O(min{n!"® A-5n}) [34], and recently, a linear time
algorithm has been established [38]. They are based on the similar DP framework to Chang and
Kuo’s algorithm, but achieve their efficiency by reducing heavy computation of bipartite matching
in Chang and Kuo’s and by using an amortized analysis. Particularly, the latter algorithm achieves
the linear running time by best utilizing a nice property of labeling, called label compatibility. Since
this property holds for more general labelings, say L(p,1)-labeling, the linear time algorithm for
L(2, 1)-labeling of trees can be extended to a linear time algorithm for L(p, 1)-labeling of trees for a
fixed positive integer p.

As an intermediate class between graphs with treewidth 2 and trees (i.e., graphs with treewidth
1), outerplanar graphs are known. For outerplanar graphs, a polynomial-time algorithm is known,
though the degree of the polynomial is large [48]. As far as the authors know, outerplanar graphs
are the most well-known maximal graph class that has a polynomial-time algorithm solving the
L(2, 1)-labeling problem.

As mentioned at the beginning of this section, it is NP-hard to find an optimal L(2, 1)-labeling
of a given graph, and we cannot expect a polynomial-time algorithm. Then, designing a faster
exponential-time algorithm becomes meaningful. As a research to this direction, Krél’ first presented
an exact algorithm for a more general labeling problem, called channel assignment problem. The
algorithm solves L(p, ¢)-labeling problem in O(n(max{p, ¢} + 2)") time and space O((max{p,q} +
2)), so it solves L(2,1)-labeling problem in O*(4™), where polynomial terms are omitted in O*
notation [50]. In [39], Havet et al. propose an O*(3.8730™)-time algorithm for L(2,1)-labeling
problem, and the time complexity is improved by Junosza-Szaniawski et al. to O*(3.2361™) [46].
Then, Cygan and Kowalik presented a faster algorithm for the channel assignment problem, based
on the fast zeta transform in combination with the inclusion-exclusion principle [18]. The algorithm
solves L(p, ¢)-labeling problem in O*((max{p, ¢} +1)") time and L(2, 1)-labeling problem in O*(3")
time. Junosza-Szaniawski et al. [44] then present a faster algorithm. Its running time is O*(2.6488™)
and currently fastest. Note that all of these algorithms use exponential size of memories. The current
fastest exact algorithm with polynomial space for L(2,1)-labeling is proposed by Junosza-Szaniawski
et al. [45], and it runs in O*(7.4922"™) time.

Another issue about the exact computation is parameterized complexity. For a given parameter
a, a problem is called fized parameter tractable with respect to « if it can be solved in f(«) - nOMm
time, where f is some computable function. As seen above, since L(2, 1)-labeling problem is NP-hard
even for graphs with treewidth 2 or even for k = 4, it is not fixed parameter tractable with respect
to treewidth or Ay 1, unless P=NP. In contrast, it is fixed parameter tractable with respect to the
vertex cover number [25].

3 (p,q)-total labeling

We review several results on (p, ¢)-total labeling.
We notice that (1,1)-total labeling of G is equivalent to total coloring of G. Generalizing the
Total Coloring Conjecture [6, 63], Havet and Yu [42] conjectured that

MG <A+2p-1

holds for any graph G. They also investigated bounds on )\I:,F,l(G) under various assumptions and
some of their results are described as follows: (i) AL |(G) > A+p—1, (i) AT (G) > A+pifp > A,
(iii) A71 (G) < min{2A+p—1, x(G) + x'(G) +p—2} for any graph G, where x(G) and x’(G) denote
the chromatic number and the chromatic index of G, respectively, and (iv) AT, (G) < n +2p — 2 if
G is the complete graph where n = |V(G)|. In particular, it follows by (iii) that if G is bipartite,
then AT, (G) < A+ p holds (by x(G) <2 and x/(G) = A [49]), and if in addition, p > A, then
A 1(G) = A+ p by (ii) [5, 42]. Also, Bazzaro et al. [5] showed that AT (G) <A+p+s for any s-
degenerated graph (by x(G) <s+1 and x'(G) <A+1 [62]), where an s-degenerated graph G is a graph
which can be reduced to a trivial graph by successive removal of vertices with degree at most s, that
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AT (G) <A+ p+3 for any planar graph (by the Four-Color Theorem), and that A1 (G) < A+p+1
for any outerplanar graph other than an odd cycle (since any outerplanar graph is 2-degenerated,
and any outerplanar graph other than an odd cycle satisfies x'(G) = A [28]). As for the (2, 1)-total
labeling number of outerplanar graphs is known to be at most A + 2, which is tight, i.e., there exists
an outerplanar graph whose (2,1)-total labeling number is A + 2 [36, 37]. Also, there are many
related works about bounds on /\gl(G) [17, 38, 52, 56]. From the algorithmic point of view, Havet
and Thomassé [41] showed that for bipartite graphs, if (i) p > A or (ii) A = 3 and p = 2, then the
(p, 1)-total labeling problem is polynomially solvable and otherwise it is NP-hard.

In [19, 47, 61], the [r, s, t]-coloring problem which is a generalization of the (p, ¢)-total labeling
problem was studied, while results in the cases corresponding to the (p, q)-total labeling problem
(actually, the cases of t > r = s) are limited to paths, cycles, stars or the complete graph with some
p and q.

As for the (p, ¢)-total labeling of trees, the following results are known [37]:

e (Upper bounds on )\g’q(T)) Ifp=qg+rforre{0,1,...,¢—1} and A > 1 (resp., A = 1),
then AI' (T) < p+ (A —1)g + r holds and this bound is tight (resp., AL (T) = p+¢). If
p > 2q, then /\;q(T) < p + Agq holds and this bound is tight. In particular, if p > Agq, then
)\Z,q(T) =p+ Aq.

e (Lower bounds on A" (T)) If ¢ < p < (A —1)gq, then AT (T) > p+ (A — 1)q holds and this
bound is tight. If p = (A —1)g+r for r € {0,1,...,¢ — 1}, then AT (T) > p+ (A —1)g+r
holds and this bound is tight. If p > Ag, then AT (T) = p+ Aq.

e The (p, g)-total labeling problem with p < 3¢/2 for trees can be solved in linear time. In
particular, if A > 2, we have AT (T) € {p+ (A —1)¢,p+ (A =1)g+r}. If p> g and A > 4,
then AT (T) = p+ (A — 1)g holds if and only if no two vertices with degree A are adjacent.

e In the case of p = 2¢q, the condition that no two vertices with degree A are adjacent is sufficient
for )\;,q(T) = p+ (A — 1)q, while in the case of p > 3¢/2 and p # 2¢, this condition is not
sufficient.

e For any two nonnegative integers p and ¢, the L(p, ¢)-labeling problem for trees can be solved
in polynomial time if A = O(logl/3 |7]) where |I| = max{|V(T)|,logp}. Particularly, if A is a
fixed constant, it is solved in linear time.

The first and second results provide tight upper and lower bounds on A7 (") for all pairs (p,¢) with
p > q. The first statement in the third result indicates that as for the (p, q)-total labeling problem
for trees, there exists a tractable case even if ¢ is not a divisor of p, in contrast to the NP-hardness
of the L(p, q)-labeling problem. The second and third statements in the third result completely
characterize trees T achieving )‘17;41 (T') in the case of p < 3¢/2 and A > 4 (note that if p = g, we have
AL ,(T) = p+ (A —1)q by the first and second results). This is also contrasting to the fact that no
simple characterization of trees T achieving As 1(7") is known even for the L(2, 1)-labeling problem.

4 Other results

Other than L(p, g)-labeling and (p, ¢)-total labeling, many distance constrained labeling problems are
considered. A natural generalization of L(p, ¢)-labeling is L(p1,p2,. .., ps)-labeling. In fact, several
publications mentioned above actually study L(pi,p2,...,pe¢)-labeling (e.g., [2, 54]), although the
main results are about L(p1,p2)-labeling (or even L(2,1)-labeling) in many cases.

The following introduces some miscellaneous results. Fiala et al. [21] consider online and offline
setting of L(p1,pa,...,pe)-labeling of disk graphs. Also, “distance three labeling” is studied as a
natural and not too generalized extension. Unfortunately, L(2,1,1)-labeling problem of trees is
already NP-hard [26].

From the viewpoint of channel assignments, the list version of L(p, ¢)-labeling could be mean-
ingful. The list-coloring is a list version of the ordinary coloring, and is actually studied in the
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context of channel assignments [29, 64]. It is a generalization of “coloring” for vertices (i.e., the
colors assigned to adjacent vertices differ), where the color of vertex v should be chosen from its own
color list L(v). In channel assignments, it is not allowed to assign some channels (frequencies) to
some wireless nodes due to several practical constraints, and color lists can reflect such constraints.
Thus, it is also natural to consider the list version of L(p, q)-labeling or (p, ¢)-total labeling. Ito et
al. [43] studies reassignments of the list version of L(2,1)-labeling from such a viewpoint.
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