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Abstract

The hierarchical dual-net (HDN) was introduced as a topology of interconnection net-
works for extremely large parallel computers. The HDN is constructed based on a symmet-
ric product graph (base network). A k-level hierarchical dual-net, HDN(B,k, S), contains

(2N0)
2
k

/(2×
∏

k

i=1
si) nodes, where S = {G′

1, G
′

2, . . . , G
′

k}, G′

i is a super-node and si = |G′

i|
is the number of nodes in the super-node at the level i for 1 ≤ i ≤ k, and N0 is the number of
nodes in the base network B. The node degree of HDN(B,k, S) is d0 + k, where d0 is the node
degree of the base network. The HDN is node and edge symmetric and can contain huge number
of nodes with small node-degree and short diameter. Disjoint-path routing is a fundamental
and critical issue for the performance of an interconnection network. In this paper, we propose
an efficient algorithm for finding disjoint-paths on an HDN and give the performance simulation
results.

Keywords: Interconnection network, routing algorithm, disjoint paths

1 Introduction

Recently, because of the advances in computer and networking technologies, supercomputers con-
taining hundreds of thousands of nodes have been built [9]. It was predicted that the parallel systems
of the next decade will contain 10 to 100 millions of nodes. The interconnection network plays an
important role for achieving high-performance in such ultra-scale parallel systems. The performance
of an ultra-scale parallel computers depends largely on the time complexities of communication
schemes, and in turn depends on the diameter of the network.

An interconnection network consists of switches with multiple communication ports and cables
connecting ports by following certain topologies. For an ultra-scale parallel computer, the traditional
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interconnection networks may no longer satisfy the requirements for the high-performance computa-
tions or efficient communications. For such an ultra-scale parallel computer, the node degree and the
diameter will be the critical measures for the effectiveness of the interconnection networks. The node
degree is limited by the hardware technologies and the diameter affects all kinds of communication
schemes directly. The number of communication ports (node degree) in the network-on-chip (NoC)
is typically 4 to 8 in current implementations. The off-chip interconnect switches can have tens of
ports, but the cost becomes expensive as the number of ports increases. Other important measures
for the effectiveness of the interconnection networks include symmetricity, scalability, and efficient
routing algorithms.

The following two categories of interconnection networks have attracted a great research attention
and been used in many supercomputers’ implementations. One is the hypercube-like family that has
the advantage of short diameters for high-performance computing and efficient communications [8].
The other is the 2D/3D mesh or torus family that has the advantage of small and fixed node degrees
and easy implementations [1]. Traditionally, most supercomputers including those built by CRAY,
IBM, SGI, and Intel use 3D tori or hypercubes.

However, the node degree of the hypercube increases logarithmically as the number of nodes
in the systems increases; the diameter of the 2D/3D torus becomes large in an ultra-scale parallel
system. To solve these problems, the hierarchical (cluster-based) architectures are proposed in
literature [2, 4, 7]. The supercomputers built by IBM recently, Roadrunner, adopt a new approach
for the interconnection network [3]. It is a cluster-based architecture: the connection among clusters
is fully connected, and the fat-tree is used for the connection inside a cluster.

In this paper, we first present a flexible interconnection network, called Hierarchical Dual-Net
(HDN) [6]. The HDN is symmetric and can connect a large number of nodes with a small node
degree, meanwhile keeping the diameter short. The HDN was motivated by recursive dual-net
(RDN) [5]. The RDN has merits of low node degree and short diameter. The problem of the RDN is
that it grows too fast in size, and there is no mechanism to control the rate of its growth. Different
from the RDN, the scale of the HDN can be controlled by setting a set of suitable parameters while
generating an expanded network through dual-construction. The HDN also adapts to the cluster-
based architecture. Compared to the Roadrunner, the HDN is symmetric, uses small number of
links, and meanwhile keeps the diameter short. The HDN structure is also better than other popular
existing networks such as hypercube and 2D/3D torus with respect to the degree and diameter. We
investigate the topological properties of the HDN and show some examples of HDNs with simple
base networks of small size. Then we compare them to other networks such as three-dimensional
torus used in IBM Blue Gene/L [1], and hypercube [8].

The main contribution of this paper is the disjoint-path routing algorithm on hierarchical dual-
net. Let d0 be the node-degree of the symmetric base-network B. Given two nodes s and t in a
hierarchical dual-net HDN(B, k, S) with a base network B such that, for any two nodes in B, there
are d0 disjoint-paths connecting them in O(d20) time, we propose an O((d0 + k)2k) time algorithm
for finding d0 + k disjoint-paths connecting s and t.

The rest of this paper is organized as follows. Section II introduces the hierarchical dual-net in
detail. Section III describes the disjoint-path routing algorithms on a hierarchical dual-net. Section
IV gives the performance evaluation results. Section V concludes the paper.

2 The Hierarchical Dual-Net

We begin with a brief introduction to the recursive dual-net (RDN) [6], the details of the RDN
descriptions can be found in [6]. An RDN is constructed recursively by a dual-construction. The
dual-construction is a way to expand a given symmetric graph G of size n to a new symmetric graph
G∗ of size 2n2. It generates 2n copies of G as subgraphs (denoted as clusters) of G∗. Half of them,
n clusters, are of class 0 and the others are of class 1.

If G is symmetric then the expanded graph G∗ is unique and symmetric. Therefore, the dual-
construction can be applied recursively from a symmetric network (the base network). RDN(m, k)
denotes an RDN generated from a base network of size m by applying dual-construction k times.

261



Disjoint-Path Routing on Hierarchical Dual-Nets

The problem about an RDN is that its growth rate is super-exponential ((2m)2
k

/2). There is very
little space for selection of the size of an RDN. For example, let the base network be a 3-cube,
then the sizes of RDN(8, k) will be 27, 215, and 231 for k = 1, 2, and 3, respectively. In HDN, we
provide a mechanism to control the growth rate through its expansion from a base network. This
new interconnection network has a very flexible way for adjusting its size.

The hierarchical dual-net, HDN(B, k, S), contains three sets of parameters: B is a symmetric
product graph, we call it base network; k is an integer that indicates the level of the HDN (the number
of dual-constructions applied); and S = {G′

1, G
′

2, . . . , G
′

k}, where G′

i is a sub-graph of HDN(B, k, S)
and si = |G′

i| is the number of nodes in a super-node at the level i for 1 ≤ i ≤ k. All these
terminologies will be defined in the following paragraphs.

Given r graphs Gi = (Vi, Ei), 1 ≤ i ≤ r, their product graph G = G1 × G2 × . . . × Gr is
defined as the graph G = (V,E), where V = {(vj1, . . . , vji, . . . , vjr)|vji ∈ Vi, 1 ≤ i ≤ r} and
E = {[(vj1, . . . , vji, . . . , vjr), (vk1, . . . , vki, . . . , vkr)]|vji 6= vki, (vji, vki) ∈ Ei, and vjl = vkl for l 6=
i, 1 ≤ i ≤ r}. Given a product graph G = G1 × G2 × . . . × Gr, we define a quotient graph Q as
Q = G/G′ where G′ is a sub-product graph of G such that G = G′ ×Q. A node in a product graph
G = G1 × . . . × Gi × . . . × Gr can be represented by (a1, . . . , ai, . . . , ar) with 0 ≤ ai ≤ |Gi| − 1.
We define a sub-graph G′ as G′ = G

′′

1 × . . .× G
′′

j × . . .× G
′′

q with G
′′

j = Gi for 1 ≤ j ≤ q ≤ r and

1 ≤ i ≤ r, G
′′

j 6= G
′′

k if j 6= k for 1 ≤ j, k ≤ q. Then a node in the sub-graph G′ can be represented

by (b1, . . . , bi, . . . , bq) with 0 ≤ bi ≤ |G
′′

i | − 1. We can consider a quotient graph Q as a reduced
graph of G with G′ being mapped into a single node (a super-node).

A graph G is symmetric (node-symmetric) if all its nodes looks alike. A product graph is
symmetric if all its component graphs are symmetric. We use the symmetric product graph as the
base network for generating a hierarchical dual-net through dual-constructions. We denote the base
network as B = B1 × B2 × . . . × Br where all the Bi, 1 ≤ i ≤ r, are symmetric. We define a
super-node of B, denoted as SN as a sub-product graph of B. That is, SN = Bi1 ×Bi2 × . . .×Biq ,
where ij, 1 ≤ j ≤ q, are distinct and q ≤ r. Let |Bi| = bi be the number of nodes in Bi for
1 ≤ i ≤ r. The HDN(B, 0, S) = B is the base network. For i > 0, the HDN(B, i, S) is generated
from HDN(B, i − 1, S) by a construction to be explained below. Note that S = {G′

1, G
′

2, . . . , G
′

k},
where G′

i is a sub-graph of HDN(B, k−1, S) and si = |G
′

i| is the number of nodes in a super-node at
the level i for 1 ≤ i ≤ k. First, we define a super-node of level i, denoted as SN i, to be a sub-product
graph G′

i of size si in B. Then, we define graph Qi as the quotient graph HDN(B, i − 1, S) /SN i.
Suppose that there are Ni−1 nodes in the HDN(B, i − 1, S), then the number of nodes ni in Qi is
Ni−1/si. The si can be 1 or

∏q
j=1 |Bij |, where 1 ≤ ij ≤ r and q ≤ r. That is, si can be a product

of any number of integers in {b1, b2. . . . , br}. For example, if r = 3, b1 = 2, b2 = 3, and b3 = 5, the
possible si can be 1, 2, 3, 5, 2× 3, 2× 5, 3× 5, or 2× 3× 5.

The construction of HDN(B, i, S), 1 ≤ i ≤ k, can be defined by a two-step process: First, we
perform a dual-construction on the quotient graph Qi−1 = HDN(B, i− 1, S) /SN i (HDN(B, 0, S)=
B). Let the graph generated by the dual-construction be Qi, and the subgraph of two nodes that
is connected by a cross-edge of level i be K2. Second, to get the HDN(B, i, S), we replace every K2

in Qi by a product graph K2 × SN . We call HDN(B, i − 1, S) cluster of HDN(B, i, S).

Referring to Figure 1, an HDN(B, i, S) consists of 2ni clusters which are divided into two classes:
class 0 and class 1 with each class containing ni clusters. That is, the number of clusters in each
class is equal to the number of super-nodes in a cluster. At level i, each super-node in a cluster has
si new links to a super-node in a distinct cluster of the other class. Because there are si nodes in a
super-node, one node contributes a new link. The dual-construction of an RDN is a special case of
the construction of an HDN with si = 1 for 1 ≤ i ≤ k.

The indexes of the nodes in HDN(B, k, S) can be defined as follows. Let SNk
id be a super-node id

in a cluster of HDN(B, k, S) and Nk
id be a node id in a super-node, then a node in the HDN(B, k, S)

can be represented by (Ck, Uk
id, SN

k
id, N

k
id) where C

k is the class id (0 or 1) and Uk
id is the cluster id.

A cross-edge at level k connects node (Ck, Uk
id, SN

k
id, N

k
id) and node (Ck, SNk

id, U
k
id, N

k
id), reverting

Ck and exchanging Uk
id and SNk

id.

Two HDN examples are shown in Figures 2 and 3, where the base network is a 2-cube. Figure 2
shows an HDN(B, 1, S) with s1 = 2. There are 2 super-nodes (SN 0 and SN 1) in a cluster and each
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Figure 1: Build an HDN(B, i, S) from HDN(B, i − 1, S) [6]

Cluster 1

0 1

Class 1

Cluster 0

0 1

Cluster 1

0 1

Cluster 0
Class 0

0 1

SN

SN

SN

SN

SN

SN

SN

SN

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1

Figure 2: An HDN(B, 1, S) with s1 = 2 [6]

contains 2 nodes: node 0 and node 1. Each class has 2 clusters (the number of clusters in a class
is equal to the number of super-nodes in a cluster). Figure 3 shows an HDN(B, 2, S) with s2 = 4,
also based on HDN(B, 1, S). More details of HDN, such as the number of nodes and topological
properties, are presented in [6]. The following theorem summarizes some properties of the HDN.

Theorem 1 Assume that the base network B is a symmetric, product graph and SN i, 1 ≤ i ≤ k,
are sub-product graphs of B with |SN i| = si. Let the number of nodes, the node-degree, and the
diameter of B be N0, d0, and D0, respectively. Let the diameters of SN i, 1 ≤ i ≤ k, be D(SN i).
Let S = {G′

1, G
′

2, . . . , G
′

k}, where G′

i is a sub-graph of HDN(B, k − 1, S) and si = |G′

i| is the
number of nodes in a super-node at the level i for 1 ≤ i ≤ k. Then, the number of nodes of

HDN(B, k, S) is (2N0)
2k/(2

∏k

i=1 si), the node-degree is d0+k, and the diameter is Dk = 2kD(B)−∑k−1
j=0 2

jD(SNk−j) + 2k+1 − 2, where N is the number of nodes in HDN(B, k, S).
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Figure 3: An HDN(B, 2, S) with s1 = 2 and s2 = 4 [6]

3 Disjoint-path Routing on HDN

The problem of finding a path from a source s to destination t and forwarding a message along the
path is known as the routing problem. Finding multiple, disjoint-paths for routing from s to t is
called disjoint-path routing. The solutions for these routing problems are fundamental and critical
for the performance of an interconnection network.

In this section, we introduce an efficient routing algorithm and propose a disjoint-path routing
algorithm that finds d disjoint-paths on a hierarchical dual-net with the node degree of d.

3.1 Routing on HDN

Given two nodes u and v in HDN(B, k, S), we first present a simple routing algorithm that finds a
shortest path from u to v [6]. In Section II, we defined the product and quotient graphs. Now, we
define the difference graph as follows. Let SN1 and SN2 are two super-nodes in base network B, the
difference graph SN1−SN2 is the sub-product graph of B such that Bi, 1 ≤ i ≤ r, is in SN1−SN2

if and only if Bi ⊂ SN1 and Bi 6⊂ SN2. For example, if B = C2 × C3 × C5, SN1 = C2 × C3, and
SN2 = C3 × C5 then SN1 − SN2 = C2.

We also need a re-indexing process of nodes in the cluster, which is an HDN(B, i − 1, S), for
routing via cross-edges of level i since the indexes of nodes in HDN(B, i − 1, S) is based on SN i−1

and the cross-edge of level i is defined based on SN i. The index of a node in HDN(B, i − 1, S)
contains four parts (Ci−1, U i−1

id , SN i−1
id , N i−1

id ).
At the construction of the ith level, HDN(B, i − 1, S) becomes a cluster containing only two

parts, SN i
id and N i

id, of the node index in HDN(B, i, S). The other two parts, Ci and U i
id, are

generated from the construction at the ith level. The re-indexing process that generates an 1-to-1
mapping between (Ci−1, U i−1

id , SN i−1
id , N i−1

id ) and (SN i
id, N

i
id) on an HDN(B, i − 1, S) is necessary

for the proposed routing algorithm. More detailed explanation of re-indexing process is given in [6].
Assume that the point-to-point routing algorithm in the base network is available. The proposed

algorithm for routing node u to node v in HDN(B, k, S) works as follows. We first perform re-
indexing of u and v if k > 1. Then, there are three cases: the two nodes are in the same cluster
(Case A), in the distinct clusters of distinct classes (Case B), and in the distinct clusters of the same
class (Case C). Case A is trivial. Case C can be reduced to Case B by routing u via a cross-edge
of level k. Therefore, we explain only the Case B: The two nodes are in the distinct clusters with
the same class. We first identify the super-nodes, denoted as SNk

u′ and SNk
v′ , in the two Qk−1s

containing u and v, respectively, such that SNk
u′ and SNk

v′ are connected by a unique cross-edge of
level k in Qk from the dual-construction. Then, we route node u to node u′, and node v to node
v′ inside the clusters of level k, respectively. Notice that, u′ and v′ are not unique although SNk

u′
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and SNk
v′ are unique. The algorithm finds the u′ and v′ that leave uk

3 and vk3 unchanged if possible.
And then, the routing from u to v is done by routing from u′ to u′′ ∈ SNk

v′ via a cross-edge of
level k in HDN(B, k, S) and routing from u′′ to v′ inside SNk

v′ . The algorithm is formally presented
as Algorithm 1. The correctness of the algorithm and its time complexity are given in Theorem 2.
Note that the Base routing(B, u, v) in the algorithm is a routing algorithm in the base network
(hypercube or torus for example).

Algorithm 1: HDN routing(HDN(B, k, S), u, v)

input: HDN(B, k, S);

input: node u = (uk
0 , u

k
1 , u

k
2 , u

k
3) (the node representation of level k);

input: node v = (vk0 , v
k
1 , v

k
2 , v

k
3 ) (the node representation of level k);

output: a path u⇒ v;

begin

if k = 0 then

Base routing(B, u, v);

else

if k > 1 then /* perform re-indexing */

(uk−1
0 , uk−1

1 , uk−1
2 , uk−1

3 )← (uk
2 , u

k
3);

(vk−1
0 , vk−1

1 , vk−1
2 , vk−1

3 )← (vk2 , v
k
3 );

endif

Case A: uk
0 = vk0 and uk

1 = vk1 /* u, v in the same cluster */

if k > 1 then

HDN routing(HDN(B, k − 1, S), u, v);

else

Base routing(B, u, v);

endif

Case B: uk
0 6= vk0 /* u, v in the clusters of distinct classes */

u′ ← (uk
0 , u

k
1 , v

k
1 , u

k
3);

v′ ← (vk0 , v
k
1 , u

k
1 , v

k
3 );

if k > 1 then /* perform re-indexing */

((u′)k−1
0 , (u′)k−1

1 , (u′)k−1
2 , (u′)k−1

3 )← (vk1 , u
k
3);

((v′)k−1
0 , (v′)k−1

1 , (v′)k−1
2 , (v′)k−1

3 )← (uk
1 , v

k
3 );

HDN routing(HDN(B, k − 1, S), u, u′);

HDN routing(HDN(B, k − 1, S), v, v′);

else

Base routing(B, u, u′);

Base routing(B, v, v′);

endif

route u′ to u′′ via a cross-edge of level k; /* u′′ = (vk0 , v
k
1 , u

k
1 , u

k
3) */

Base routing(B, u′′, v′); /* route from uk
3 to vk3 inside the super-node */

Case C: uk
0 = vk0 and uk

1 6= vk1 /* u, v in the clusters of the same class */

route u to w via the cross-edge of level k;

route node w to node v as in Case B;

endif

end
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Theorem 2 Assume that the routing algorithm in the base network B is available. In HDN(B, k, S)

for k > 0, routing between any two nodes can be done in at most 2kR(B) −
∑k−1

j=0 2
jR(SNk−j) +

2k+1 − 2 steps, where R(B) and R(SN i), 1 ≤ i ≤ k, are the time complexities of the routing in B
and SN i, respectively.

Proof: We show the correctness of Algorithm 1 by induction on k. Assume that the algorithm is
correct for k − 1 ≥ 0. From the algorithm, it is clear that we need to consider only Case B. In
Case B, nodes u′ and u are in the same cluster by the definition of u′. They can be connected
by the induction hypothesis. Similarly, nodes v′ and v can be connected. The node u′′ that is
connected to u′ by a cross-edge of level k and node v′ are in the same super-node as can be seen
from their IDs. Therefore, they can be connected by Base routing algorithm. Next, we derive the
time complexity Rk of the algorithm. In Case B, there are two recursive calls to connect u to u′

and v to v′, respectively. Since the node IDs of u and u′ are the same (so are v and v′), a recursive
call takes only Rk−1 − R(SNk) time. Since the super-node IDs of u′′ and v′ are the same, the last
call to Base routing to connect u′′ to v′ takes only R(SNk) time. In Case C, there is an additional
routing step via a cross-edge. Therefore, the time complexity Rk of HDN routing(HDN(B, k, S), u, v)
satisfies the recurrence Rk = 2(Rk−1 − R(SNk)) + R(SNk) + 2 for k > 0. Solving this recurrence,
we have

Rk = 2kR(B)−
k−1∑

j=0

2jR(SNk−j) + 2k+1 − 2

where R(B) and R(SN i), 1 ≤ i ≤ k, are the time complexities of the routing in B and SN i,
respectively.

Lemma 1 If two nodes are in distinct clusters of different classes, a path which connects the two
nodes can go through only two clusters in which the two nodes reside.

Proof: By the definition of the HDN, there is at least one cross-edge which connects the two clusters.
The path can use this cross-edge(s) and route inside the clusters to reach the two nodes, respectively.

Lemma 2 If two nodes are in distinct clusters of the same class, a path connecting the two nodes
can go through only three clusters.

Proof: Two of them are the clusters in which the two nodes reside. The third cluster can be the
one that has cross-edges connecting to the first two clusters and therefore it is of different class from
that of the first two clusters. In the Case C of HDN routing algorithm, we route node u to a node
w in the third cluster via the cross-edge of level k. Instead, we can also route node v to a node w
in the third cluster. After that, Lemma 1 can be applied.

3.2 Distributing on HDN

To build multiple disjoint-paths between the nodes u and v on an HDN, the basic idea is to let the
paths use as different clusters as possible so that they will be disjoint each others. Because we must
find d disjoint-paths on an HDN which has a node degree of d, all the d neighbors of u or v will be
used in the paths.

In this paper, we assume that the number of super-nodes (and hence the number of clusters of
each class) is larger than the number of disjoint-paths. Some of neighbors may be located in the
same super-node of u or v. In such case, we further route the neighbor to a node which is in an
unused super-node. Algorithm 2, namely Base distributing any, performs the node distributing for
a given node u in the base network B. The output of the algorithm is the d0 paths, starting from u
and ending at ui or wi, 0 ≤ i < d0, each of which is located in a unique super-node.

Figure 4 shows an example of Algorithm 2. The base network is a 2× 3× 5 Torus and a super-
node contains 5 nodes (a 5-node ring). There are 6 super-nodes, namely SNj, 0 ≤ j < 6, that are
connected with a 2 × 3 Torus. The specified node u has 5 neighbors: ui, 0 ≤ i < 5. Three of them
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Algorithm 2: Base distributing any(B, s1, u)

input: B (base network);

input: s1 (the number of nodes in a super-node at level 1);

input: node u = (uSN , uN );

output: distributed paths;

begin

for i = 1 to d0 do

ui ← (uiSN , uiN ); /* ui is a neighbor of u */

if uiSN 6= uSN and ui’s super-node is not in paths then

path[i] ← path[i] ∪ [u→ ui];

else

find wi ← (wSN , uiN ) such that wi’s super-node is not in paths;

newpath ← Base routing(B, ui, wi);

/* newpath = [u→ ui → ...→ wi] */

path[i] ← path[i] ∪ newpath;

endif

endfor

end

(u0, u1, and u2) are in different super-nodes (SN0, SN2, and SN4). Two neighbors (u3 and u4) are
in the same super-node of u. Thus we route them to nodes w3 and w4, which are located in SN3,
and SN5, respectively.

Super-Node

u

u0

u1

u2

w3

w4

u3

u4

SN0 SN1 SN2 SN3 SN4 SN5

Figure 4: Distributing image on 2× 3× 5 Torus

267



Disjoint-Path Routing on Hierarchical Dual-Nets

We call an ending node in the distributed path a dispersion node. Algorithm 2 finds the dispersion
nodes inside the base network. Algorithm 3, as shown as below, finds the dispersion nodes in an
HDN(B, k, S) with k > 0. The basic idea of the algorithm is to extend the distributed paths to
reach clusters of different classes by using the cross-edges of level k.

Algorithm 3: HDN distributing any(HDN(B, k, S), u)

input: HDN(B, k, S);

input: node u = (u0, u1, u2, u3);

output: distributed paths;

begin

if k = 1 then Base distributing any(B, s1, u);

else HDN distributing any(HDN(B, k − 1, S), u);

endif

for i = 1 to the number of paths do

/* wi is a dispersion-node connected by a cross-edge */

wi ← (di0, di2, di1, di3);

distributed path[i] ← path[i] ∪ wi;

endfor

end

u

w0 w1 w2 w3

Figure 5: Distributing image on an HDN(B, 1, S)

As an example of Algorithm 3, Figure 5 shows finding distributed paths on an HDN(B, 1, S) with
a base network of a 3-cube. We let s1 = 2. The node u is of class 0 and we must find d0+k = 3+1 = 4
distributed paths. First, the algorithm finds the d0 = 3 distributed paths inside the base network.
Each of the dispersion nodes after this step is located in a unique super-node. Then we extend the
3 paths to reach the clusters of class 1. Another path can be obtained by routing node u directly
along with its cross-edge. Each of the 4 dispersion nodes after this step is located in a unique cluster
of class 1.

Algorithm 2 and Algorithm 3 find distributed paths from node u to any dispersion nodes as
long as the dispersion nodes are in different super-nodes or clusters. In the disjoint-path routing
algorithm, it is needed to find a special distributed path from node u to a special dispersion node
v. The following algorithms, Algorithm 4 and Algorithm 5, perform the node distributing with a
pre-assigned dispersion node v in base network and HDN, respectively.

Algorithm 4 finds distributed paths of node u with a dispersion node v in the base network B.
The algorithm determines this special path first, and then finds the rest paths by Algorithm 2.
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Algorithm 4: Base distributing(B, s1, u, v)

input: B (base network);

input: s1 (the number of nodes in a super-node at level 1);

input: node u = (uSN , uN );

input: node v = (vSN , vN );

output: distributed paths, one of them ended at v;

begin

if ∃w(wSN = vSN ) /* w is neighbor of u */

Base routing(B,w, v);

else

w′ ← (wSN , vN );

Base routing(B,w,w′);

Base routing(B,w′, v);

endif

distribute the rest neighbors as Algorithm 2;

end

Figure 6 shows two examples of Algorithm 4. In Figure 6(a), a u’s neighbor node w and the
pre-assigned node v are in a same super-node, so we route node w to v inside the super-node. In
Figure 6(b), we first route w to a w′ whose node id equals to the node id of v inside the super-node
and then route w′ to v.

Similar to Algorithm 3, Algorithm 5 also distributes paths starting from node u on an HDN(B, k, S)
but one of the path ends at a pre-assigned node v.

3.3 Disjoint-Path Routing on HDN

We have described the path distributing algorithms from a given node u. This subsection gives an
algorithm for finding disjoint-paths on HDN. Suppose that a disjoint-path routing algorithm exists
for a given symmetric base network B and we name it Base disjoint path(B, u, v).

Algorithm 6 is an algorithm for finding disjoint-paths on HDN. If k = 0, the algorithm calls
Base disjoint path. For k > 0, the algorithm can be classified roughly three cases.

If the two nodes (u and v) are in the same cluster (Case A), d0+k−1 paths are found recursively
in the cluster. And, we find the rest path to use HDN routing(u′, v′) where u′ and v′ are the neighbor
nodes of u and v linked by the cross-edges, respectively.

If two nodes are in the distinct clusters of same class (Case C), we find distributed paths for u
and v and connect the each pair of two dispersion nodes which are in same clusters. Since each node
pair is in a separated cluster, the paths are disjoint.

If two nodes are in the distinct clusters of distinct classes (Case B), we first find distributed paths
for u and v. One of the dispersion nodes, say w, in the distributed paths for node u may be located
in the same cluster of v. In this case, we find distributed paths for v with a pre-assigned node w.
If node v′ (the neighbor of v linked with the cross-edge) is in the same cluster of u, then we find
distributed paths for u with a pre-assigned node v′. After that, two dispersion nodes of u and v are
connected by cross-edges.

Figures 7-9 illustrate disjoint-path routing examples on an HDN(B, 1, S) with a 3-cube base
network and s1 = 2 by Algorithm 6. Figure 7 shows the case in which u and v are in a same
cluster (Case A). Three disjoint-paths are built inside the cluster and one path is generated through
cross-edges of u and v.

Figure 8 shows the disjoint-path routing example of Case B in which u and v are in distinct
clusters of different classes. In Figure 8(a), the distributed paths of u were generated first. One
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Figure 6: Distributing image with a pre-assigned dispersion node

dispersion node, w, is located in the cluster of v. Then the distributed paths were generated with
the pre-assigned w. In Figure 8(b), because a neighbor of v, v′, is in the cluster of u, the distributed
paths of u were generated with the pre-assigned v′. As the result of node distributing, all the
distributed paths of u or v are in different clusters. Then we can connect two nodes of each pair
with cross-edges.

Figure 9 shows the disjoint-path routing example of Case C in which u and v are in distinct
clusters of same class. This is a simple case. The distributed paths of u and v were generated and
two dispersion nodes in the same cluster were connected.

Figure 10 shows the Case C in an HDN(B, 1, S) with k > 1. We only show the clusters in the
figure. Nodes u and v are located in the distinct clusters, Clusteru and Clusterv, of a same class.
The distributed paths of u and v were generated. All of the dispersion nodes are distributed to
the clusters of another class. Then we can connect them through other clusters than Clusteru and
Clusterv.

Theorem 3 If d0 disjoint-paths in the base-network B exists, d0+k disjoint-paths on HDN(B, k, S)
can be found by Algorithm 6 if the number of clusters of each class is larger than or equal to d0 + k.

Proof: If two nodes are in the distinct clusters of same class (Case C), distributing two nodes and
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Algorithm 5: HDN distributing(HDN(B, k, S), u, v)

input: HDN(B, k, S);

input: node u = (u0, u1, u2, u3);

input: node v = (v0, v1, v2, v3);

output: distributed paths, one of them ended at v;

begin

if u0 = v0 and u1 = v1 then /* u and v are in the same cluster */

if k > 1 then HDN distributing(HDN(B, k − 1, S), u, v);

else Base distributing(B, u, v);

endif

for i = 1 to number of dispersion-nodes do

if ui 6= v then /* ui is dispersion-node of u */

w ← u′

i; /* w is connected to ui by a cross-edge of level k */

path[i] ← path[i] ∪ w;

endif

endfor

else

HDN distributing any(HDN(B, k, S), u);

if ∃w(w0 = v0 and w1 = v1) then /* w is dispersion-node of u */

HDN routing(HDN(B, k, S), w, v); /* and is in cluster of v */

else

w ← u′

i; /* u′ is an any dispersion-node of u */

HDN routing(HDN(B, k, S), w, v);

endif

endif

end

jointing each distributed-paths are done without problems. In the case that the two nodes are of
distinct classes (Case B), if node u connects to a node uk in the cluster in which v is contained, one
of the distributed-path of v can be ended at uk. If a neighbor of node v, v′ in the cluster in which u
is contained, one of the distributed-path of u can be ended at v′. If two nodes are in the same cluster
(Case A), it is clear that d0+k−1 disjoint-paths can be built inside the cluster without distributing
all other clusters. The last path can be built outside of the cluster through the cross-edges of the
two nodes.

Theorem 3 gives a sufficient condition for the disjoint paths to exist. It is not the necessary
condition. If the number of clusters of each class is less than d0 + k, the d0 + k disjoint-paths on
HDN(B, k, S) may exist. To prove it and to develop a disjoint routing algorithm that eliminates the
limitation on the cluster numbers are the future works. Theorem 4 gives the upper bounds on the
maximum path length and time complexity of the current algorithm.

Theorem 4 Algorithm 6 finds d0 + k disjoint paths between node u and node v of lengths at most
(3×2k−1+2)D(B)−3

∑k−2
j=0 2

jD(SNk−1−j)−D(SNk)+3×2k+2k−2 in O(dk2
k) time complexity.

Proof: Figure 11 shows the case of the maximal path length (Case C) on HDN(B, k, S). In
Base distributing any algorithm, the distance between node u and node ui is 1. The distance
between node ui and w equals the diameter of graph B/SNk. Therefore, the maximal length
of path given by Base distributing any algorithm is 1 + D(B) − D(SNk). HDN distributing any
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Algorithm 6: HDN disjoint path(HDN(B, k, S), u, v)

input: HDN(B, k, S);

input: node u = (u0, u1, u2, u3) (the node representation of level k);

input: node v = (v0, v1, v2, v3) (the node representation of level k);

output: disjoint-paths u⇒ v;

begin

if k = 0 then Base disjoint path(B, u, v);

else

Case A: u0 = v0 and u1 = v1 /* u, v in the same cluster */

if k > 1 then HDN disjoint path(HDN(B, k − 1, S), u, v);

else Base disjoint path(B, u, v);

w ← (u′

0, u
′

1, w2, w3); /* u′

2 6= w2 */

/* u′ is connected to u by a cross-edge of level k*/

HDN routing(HDN(B, k, S), u′, w); /* route node u′ to node w */

/* v′ is connected to v by a cross-edge of level k*/

HDN routing(HDN(B, k, S), w, v′); /* route node w to node v′ */

Case B: u0 6= v0 /* u, v in the clusters of distinct classes */

if v2 = u1 then /* v′ and u are in the same cluster. */

/* v′ is connected to node v by a cross-edge of level k */

HDN distributing(HDN(B, k, S), u, v′); /* Algorithm 5 */

else HDN distributing any(HDN(B, k, S), u); /* Algorithm 3 */

if ∃w(w0 = v0 and w1 = v1) then /* w is dispersion-node of u */

HDN distributing(HDN(B, k, S), v, w); /* w and v: same cluster */

else HDN distributing any(HDN(B, k, S), v); /* Algorithm 3 */

for i = 1 to number of distributed-path do

ui ← (ui0, ui1, ui2, ui3); /* ui is ith rest dispersion-node of u */

vi ← (vi0, vi1, vi2, vi3); /* vi is ith rest dispersion-node of v */

HDN routing(HDN(B, k, S), ui, vi); /* route node ui to node vi */

Case C: u0 = v0 and u1 6= v1 /* u, v in the clusters of the same class */

HDN distributing any(HDN(B, k, S), u); /* Algorithm 3 */

HDN distributing any(HDN(B, k, S), v); /* Algorithm 3 */

for i = 1 to number of cluster which contain two dispersion-nodes do

ui ← (ui0, ui1, ui2, ui3); /* ui is dispersion-node which is in the cluster */

vi ← (vi0, vi1, vi2, vi3); /* vi is dispersion-node which is in the cluster */

HDN routing(HDN(B, k, S), ui, vi); /* route node ui to node vi in the same cluster */

for i = 1 to number of the rest of dispersion-node of u do

ui ← (ui0, ui1, ui2, ui3); /* ui is ith rest dispersion-node of u */

vi ← (vi0, vi1, vi2, vi3); /* vi is ith rest dispersion-node of v */

HDN routing(HDN(B, k, S), ui, vi); /* route node ui to node vi */

endif

end

algorithm connects dispersion-node and node wi on each level. Therefore, the maximal length
of path is D(Dist) + 1 = 1 + D(B) − D(SNk) + k = D(B) − D(SNk) + k + 1. The maxi-
mum length between one dispersion-node ui and a node vi whose super-node id is same as ui is
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u v

Figure 7: Case A: disjoint-path image on HDN(B, 1, S)
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vw
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uv′

Figure 8: Case B: disjoint-path image on HDN(B, 1, S)

(D(Qk−1)+ 1)+ (D(Qk−1)+ 1)+D(Qk−1) = 3D(Qk−1)+ 2. Moreover, a D(SNk) length is needed
to route to node id in a super-node. From the above, the maximal length is 2(D(B)−D(SNk)+k+
1)+ (3D(Qk−1) + 2) +D(SNk) = 3D(Qk−1) + 2D(B)−D(SNk) + 2k+4. Solving this recurrence,
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u v

Figure 9: Case C: disjoint-path image on HDN(B, 1, S)

Clusteru Clusterv

Figure 10: Case C: disjoint-path image on HDN(B, k, S) with k > 1

we get (3×2k−1+2)D(B)−3
∑k−2

j=0 2
jD(SNk−1−j)−D(SNk)+3×2k+2k−2. The time complexity

of Figure 11 is most high. In this case, Base routing is called 2k times, so the time complexity of
Algorithm 6 is O(dk2

k).

D(Dist)

u

D(Qk−1)

D(Qk−1) D(SNk)

D(Dist)

v

D(Qk−1)

1 1 1 1

Figure 11: The case of maximal path length on HDN(B, k, S)

If some nodes in HDN are faulty, all the d0 + k may not be found by the algorithm. If the
algorithm can find at least one path between two nodes, then the communication between the two
nodes can be done. We give the simulation results by considering the node faulty in the next section.
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4 Experimental Results

We have performed a set of simulations on the performance of the proposed algorithms with faulty
nodes. Our simulations focused on 1) the successful rate of finding all the disjoint-paths, 2) the
successful routing rate, i.e., there is at least one path connecting the two nodes, and 3) the average
path lengths, for an HDN with different node faulty probabilities.

We used a 3-cube as the base network in which three disjoint-paths exist. We let k = 2 and
S = {2, 8}. Therefore, the numbers of nodes in HDN(B, 1, S) and HDN(B, 2, S) are 8×8/2×2 = 64
and 64 × 64/8× 2 = 1024, respectively. The diameters of the HDN(B, 1, S) and HDN(B, 2, S) are
(1 + 3 − 1)× 2 + 1 = 7 and (1 + 7− 3)× 2 + 3 = 13, respectively. The number of disjoint-paths is
d0 + k = 3 + 2 = 5. The simulation consists of the following four steps.

1. Mark faulty nodes in HDN(B, 2, S) randomly at a specified percentage of the faulty nodes.

2. Select two non-faulty nodes, u and v, in HDN(B, 2, S) randomly.

3. Find disjoint-paths for the two nodes by using the HDN disjoint path algorithm.

4. Record the the number of successful paths, the number of path lengths, and so on.
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Figure 12: Successful ratio of finding all disjoint-paths

Figure 12 illustrates the successful ratio of finding all disjoint-paths. The x-axis of the graph is
faulty rate and the y-axis is successful ratio of finding all disjoint-paths. The probability of finding
all disjoint-paths (Pall(F,Lsum)) is expressed the following expression.

Pall(F,Lsum) = (1− F )Lsum (1)

where F is the probability of the node faulty and Lsum is number of nodes in all the disjoint-paths.
Figure 13 illustrates the successful communication rate. If there is a path connecting the two

nodes, we say they can communicate successfully. From the figure, we can see that the Case A has
highest rate than other cases.

Figure 14 shows the average path lengths. The lengths become shorter as the faulty rate increases.
This is because, as the faulty rate increases, the successful routing rates decreases, especially for
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Figure 13: Successful ratio of finding a path
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Figure 14: Average path length

those paths which have longer lengths, and we just count the paths which successfully connect the
two nodes. Again, the Case A has shortest path lengths than other cases.

As the number of clusters the disjoint-path uses increases, the path length is tend to be longer.
This is because that the path needs more cross-edges to move to distinct clusters. We have examined
the number of clusters the disjoint-path contains for each case.

In Case A, four paths which are generated in the cluster use only one cluster. If two specified
nodes u and v are in the same super-node, then the rest paths use two clusters. Otherwise the paths
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use four clusters. In Case B, if the super-node id of the one specified node is equal to the cluster id
of the other node, then a path uses two clusters and the rest paths use four clusters. Otherwise
all the paths use four clusters. The paths use three or five clusters in Case C. If a path has two
dispersion-nodes which are in a same cluster, the path uses three clusters. Otherwise it uses five
clusters.

Based on the discussion above, we calculated the expected numbers of clusters the disjoint paths
used for the three cases. EcaseA is the expected average number of clusters in case A. Four paths
are generated inside the cluster. Another path is generated outside the cluster. In our simulation,
there are eight clusters of each class. The probability the two nodes are in a same super-node is
1/8. In this case, the path can be generated by using another cluster. That is, two clusters are used.
Otherwise, four clusters will be used. Therefore we get the expected value of EcaseA as below:

EcaseA = (4× 1 + 1/8× 2 + 7/8× 4)/5 = 1.55

EcaseB is the expected average number of clusters in case B. The probability the super-node id
of a node equals the cluster id of the other node is 1/8 + 7/8× 1/8 = 15/64. Therefore we get the
expected value of EcaseB as below:

EcaseB = (4× 4 + (15/64× 2 + 49/64× 4))/5 = 3.90

In Case C, the expected number of clusters in which two dispersion-nodes exist is 25/8. Therefore
we get the expected value of EcaseC as below:

EcaseC = (25/8)/5× 3 + (5− 25/8)/8× 5 = 3.75

The expected numbers of clusters the disjoint-paths use the in three cases are calculated at the
assumption that there is no faulty node. We get EcaseB > EcaseC > EcaseA. This is consistent with
the simulation results shown in Figure 14. However, as the number of faulty nodes increases, the
number of paths we can find decreases. The EcaseB and EcaseC converge 2 and 3, respectively, thus
EcaseB < EcaseC . This is also consistent with the simulation results. From Figure 14, we found that
the relation between EcaseB and EcaseC is reversed when the faulty rate is around the 23%.

We did not take any measures for fault-tolerant routings in this paper. If the fault-tolerant routing
is taken into account, better successful rates of finding all disjoint-paths and the communications
are expected.

5 Concluding Remarks

In this paper we showed that there are d0+k disjoint-paths on HDN(B, k, S) if there are d0 disjoint-
paths on the base network B and the number of clusters of each class is larger than d0+k. Moreover,
we proposed an algorithm to find the disjoint-paths on HDN(B, k, S) and investigated the perfor-
mance of the algorithm via simulations. The future work may include the fault-tolerant routing and
eliminating the limitation on the cluster numbers.
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