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Abstract
Image analysis is crucial to medical and biological applications. Recent advances in imaging technology

have led to the demand for processing and visualizing a large amount of three-dimensional (3D) biomedical
images. In addition, cloud computing has become popular for managing big data. Unfortunately, conven-
tional image-processing systems either lack cloud computing services or advanced 3D processing abilities.
In this paper, we present a novel cloud-based system for sharing, processing, and visualizing 3D biomedical
images. Our system employs a standard web browser as a client interface that interactively communicates
with high-performance servers. Thus, an inexpensive tablet PC without an advanced graphics processing
unit (GPU) can be used for 3D image processing and visualization. Our system provides the sharing of
limited software and hardware resources, and it allows for effective collaboration between researchers. We
demonstrate the applicability and functionality of the system by examining typical case studies on biomed-
ical images. We also examine the performance of our system numerically.
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1 Introduction
The development of image-processing tools has become popular in biological and medical applications; in ad-
dition, rapid advances are being made in biomedical imaging technology [20, 57, 19]. In particular, tools that
can manage large amounts of volumetric data (i.e., three-dimensional (3D) images) are required in advanced
applications such as surgery simulations based on Computed Tomography (CT) volumes and quantitative
analysis of live-cell images in molecular cell biology.

Many useful computational tools have been developed for biomedical image analysis, including ImageJ
[53], CellProfiler [11], and Fiji [56]. However, most existing tools are stand-alone systems that are not
equipped with a communication platform to facilitate collaboration among users, or the sharing of images,
software, or central processing unit/graphics processing unit (CPU/GPU) resources. Moreover, these conven-
tional tools are either designed for a specific image-processing task or lack the 3D image processing functions
required for advanced applications.

Thus, biologists often purchase or develop proprietary software and hardware for every research project/group.
Conversely, developing proprietary image processing systems has been become difficult because of the ex-
pensive hardware, such as a GPU clusters and/or supercomputers, and related software that are required for
large-scale 3D image analysis.

(a) (b) (c)

Figure 1: (a) Intracellular volume rendering of plasma and nuclear membranes and mitochondria using our
system. (b) Medical CT volume processing using our system via a tablet PC. (c) Our system allows volume
rendering with curved cross-sectional images.

Our approach. In this paper1, we propose a new cloud-based communication system for biomedical im-
ages that allows collaboration among users and facilitates the effective and seamless management of images,
software, and CPU/GPU resources. Our system consists of a set of computer servers and databases, such as a
web server, a biomedical image database, a set of CPU/GPU servers, and a remote computing server in order
to provide the cloud computing services required for collaboration, management, and large-scale 3D analysis
of biomedical images.

The key idea of our system is to employ standard web browsers (e.g., Internet Explorer, Google Chrome,
and Mozilla FireFox) as the user interface. We developed a novel cloud-based interactive technique to pro-
vide user interaction and rendering results through the web browser; therefore, our system can control the
data management, visualization, and processing services through the web browser via inexpensive hardware
devices such as tablet PCs, mobile phones, and low-cost PCs without advanced GPUs, see Fig. 1. The im-
ages are uploaded to the biomedical image database using any standard file transfer protocol (FTP) software
through the web server. The user selects a CPU/GPU server with images in the biomedical image database

1This is an extension of our previous work [44]. The main differences from [44] are more detailed descriptions and performance
evaluations (Sections 6 and 7) of our system.
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through the web server. The CPU/GPU server is equipped with a set of image processing software (including
our own [23], open source software, and commercial software). The remote computing server controls user
interaction via background processes in our system.

Our system also includes a unified method for managing biomedical images for collaborative research,
and an intuitive user interface for advanced processing of complex 3D biomedical images. We demonstrate
our system by examining several case studies on biomedical images. The contributions and benefits of the
paper are summarized as follows:

• A new communication platform for effective biomedical image analysis and management.

• An efficient method for sharing limited software and hardware resources.

• Support for a unified approach to collaborative research 3D images.

• A novel cloud-based interactive technique using a standard web browser for user interaction and ren-
dering results.

• A quantitative performance evaluation of the proposed cloud-based interactive technique.

• Three case studies for typical biomedical image analysis: unsupervised segmentation and filtering,
supervised machine learning, and interactive volume visualization and processing.

Paper organization. The remainder of this paper is organized as follows. Section 2 presents related work
on the communication systems of biomedical images. We describe our platform overview in Section 3. Our
cloud-based interactive technique is explained in Section 4. Section 5 provides case studies on biomedical
images using our system. We evaluate the performance of our system in Section 6, and present a simple user
study on our system in Section 7. We conclude the paper in Section 8.

2 Related Work

Image processing, including pattern recognition and computer vision, is one of the most intensively studied
fields in computer science; therefore, a large number of software systems have been proposed over the past
60 years. Image analysis in biology has become popular more recently compared with other scientific fields,
such as astronomical physics and geology. We briefly review the conventional biomedical image processing
systems and screen-updating techniques related to our system, see [18, 20] and references therein for excellent
surveys on general biomedical image processing tools.

2.1 Stand-Alone Systems

ImageJ [53] is a common tool for image analysis in biology, see [57] for its historical survey (although the
Java programming language has less than 18 years of history). Fiji [56] is a set of ImageJ software resources
focused on biomedical image analysis. Cell Profiler [11] is a specialized tool for two-dimensional (2D) seg-
mentation and quantitative analysis; its extension [31] can manage and analyze multidimensional images
using machine learning techniques. Icy [17] and BioImageXD [33] also include a multidimensional image
processing ability; Icy optimizes its processing by multi-cores with OpenCL implementation, and BioIm-
ageXD provides deconvolution and segmentation functions. Table 1 summarizes these conventional systems
in terms of their functionalities for extensibility, 3D processing and visualization, and user communication.
All of these systems are very useful, but they are stand-alone systems that do not provide any data sharing or
database functions. Any of these systems can be used as image processing engines in our CPU/GPU servers.
In other words, our system is not a competitor to any these stand-alone systems; rather, it is a collaborative
engine where these systems can complement each other.
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Extensibility 3D Processing 3D Visualization User Communication
ImageJ [53] High Low Yes (plugin) No

Fiji [56] High Middle Yes (plugin) No
Cell Profilers [11, 31] Low Low No No

Icy [17] Middle Middle Yes (plugin) Yes
BioImageXD [33] Middle Middle Yes No

Table 1: Conventional systems for biomedical images.

2.2 Cloud-based Systems

There are many general cloud-based systems, such as remote desktops (Microsoft and Google), Citrix (Pro-
prietary software), Virtual Network Computing (VNC, Open source), RVEC (Fujitsu), GRID (NVIDIA), and
ORBX.js (Mozilla). Furthermore, many cloud-based systems have been proposed for specific tasks, such
as CT reconstruction using PC clusters [63], as well as for particular techniques, such as transferring com-
pressed images and videos [36, 39, 37]. Our system is designed for general purposes in biomedical image
visualization, processing, and analysis; see Fig. 1 (c) for a representative example of 3D volume rendering
with curved surface image visualization by our system.

In contrast to the specialized system, OMERO [2] and Bisque [35] are both web-based systems that focus
mainly on data management for multidimensional images accessed and used via a web browser (OMERO
also has its own client) on Mac, Windows, and Linux operating systems. Unfortunately, OMERO and Bisque
are only equipped with simple image processing functions. PSLID [45] is a database for 3D cell images that
works on a web browser. Shen et al. [59] proposed a cloud-based classification tool for multidimensional
biomedical images with a web browser interface. Wu et al. [66] proposed a cloud-based image processing
system that efficiently processes large data sets with distributed parallel computing. This system is designed
only for non-interactive image processing and does not provide visualization functions. Although the pattern
recognition methods implemented in [59] are powerful, such as a genetic algorithm and Support Vector Ma-
chine (SVM), and PSLID includes an image classification function, all the conventional cloud-based systems
mentioned in this paragraph [2, 35, 45, 59, 66] lack either 3D visualization or advanced 3D image processing
abilities. In addition, it is difficult to incorporate conventional image processing tools [53, 31, 33] into these
systems [2, 35, 45, 59, 66].

Engel et al. [21] proposed an interactive visualization system that combines local and remote hardware
for medical CT images. Vazhenin [65] proposed a cloud-based system that allows the general populace access
to medical health information. The idea of these system architectures is similar to ours, and these systems
include 3D visualization. However, their purpose is very different, for example, our system is directed at
scientists and engineers who might not have sufficient knowledge about detailed image processing algorithms,
but who would want to apply advanced computations on their images. Therefore, our system is capable of
incorporating image processing tools; in addition, the systems described in [21, 65] only provide visualization
and are not equipped with advanced image processing tools. Table 2 summarizes these conventional cloud-
based systems for biomedical images and our system.

Image Sharing 3D Processing 3D Visualization Call Stand-Alones
X-ray Tools [63] No Limited Use Yes No

Wu et al. [66] No Low No Middle
OMERO [2] High No No No
Bisque [35] High Low Yes No
PSLID [45] Limited Use Low No No

Shen et al. [59] No Limited Use No No
Vazhenin [65] No No Yes No

Engel et al. [21] No No Yes No
Our System Middle High Yes High

Table 2: Conventional cloud-based systems for biomedical images.
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2.3 Updating Screens
Displaying screen images has been well studied in computer graphics and related research fields. Recent
advances in GPU and multi-core CPU make tile-based approaches usable for parallel processing of a screen,
e.g., NVIDIA’s SLI [68] and ATI’s Crossfire [3]. Both multi-GPU environments support tile-based rendering
at the level of the graphics driver. The Split Frame Rendering mode of NVIDIA’s SLI horizontally splits
the screen into two regions such that the rendering workload becomes identical. The splitting position is
dynamically changed by the performance feedback. The Super Tiling mode of ATI’s Crossfire splits the
screen into tiles based on the number of GPUs. See [46] for a survey of tile-based approaches in both stand-
alone and cloud-based systems.

Adaptively adjusting the screen quality has also been well studied in order not to disturb human-computer
interactions. In such techniques, the quality of the rendered image becomes low during user interactions.
Progressive and multiresolutional rendering techniques are popular for achieving adaptive adjustments. For
example, path-tracing [32] employed progressive image synthesis by stochastically sampling eye rays on a
screen. QSplat [55] used multiresolutional point-based rendering for large meshes.

These techniques are performed to avoid rendering latency for large-scale data in a stand-alone system.
On the other hand, network latency is a bigger problem for our purpose, which is interactive image processing
via a network.

Network-based techniques. Most of existing remote desktop solutions, such as VNC [54] and Remote
Desktop Protocol [42], are firmly designed for traditional computer desktop architecture, which constructs
with graphic primitives such as a window and a popup menu. Such remote desktop solutions update a desktop
screen based on each graphic primitive. With these systems, it is difficult to exploit hardware acceleration that
is essential for our biomedical image processing. Furthermore, the compression techniques [13, 60, 10, 40]
employed in general video streaming may introduce artifacts because of their high compression rate, and such
artifacts are not desirable for biomedical image applications.

Cedilnik et al. [12] proposed a parallel rendering framework, most likely an application programming
interface, for large data visualization. Although this framework has a screen division functionality and can be
used for parallel volume rendering [43], it cannot be applied to accelerate visualization of existing software
such as ImageJ and Fiji. Engel et al. [22] presented an image-streaming framework for the remote visualiza-
tion of large-scale volume data sets. Unfortunately, modifications to the application software are required in
order to use this framework.

Lu et al. [39] proposed a virtual screen system that employs a strategy similar to our cloud-based inter-
active technique in terms of updating screens. The system detects the difference between the previous and
the current screens, and divides the screens as local windows. In addition, the system classifies the windows
into skip, text, and picture-blocks, and applies different coding schemes for each block. Thus, the system
clients require special browser software in order to decode the blocks. Whereas our technique focuses on the
interactions for processing biomedical images using general web browsers, Lu et al.’s system focuses on text
information using their system for both servers and clients.

3 Platform Overview
Our system consists of a set of computer servers, and it provides cloud computing services. Here, we briefly
describe the types of services available in our system and how servers are employed to construct the system.

3.1 System Services
Our system provides 3D image data management, visualization, and processing services through a web
browser. The main features of the services are as follows.

Data management. The system allows users to store, search, and delete images with information that
describes the experimental conditions for imaging and explanations of the data, e.g., a description of what
is observed in the image, microscopy parameters, image aspect-ratio, fluorescent staining methods, etc. The
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system also includes user accounts and group management that controls permissions for the groups and users
in order to support collaborative research and to manage software licenses.

Visualization and processing. The user can employ any conventional image processing tool (e.g., [53, 31,
33]) that the administrator installs on the CPU/GPU servers. In the default setting, we install our software
VCAT [23] as a core image processing engine. VCAT provides a set of plug-in image processing functions,
a macro design interface, and visualization methods. Standard three-axial views and volume rendering with
multi-dimensional transfer functions [34] are implemented in VCAT; see Fig. 1 (a) for an example of volume
rendering for intracellular organelles and Fig. 2 for simple filtering examples.

Currently, the VCAT plug-ins include standard noise reduction filters (Gaussian, median, adaptive me-
dian [26], bilateral [64], and non-local means [9]), morphological operations [26], fast edge-aware filters
[52, 67, 24], feature extraction methods (HoG [16], HLAC [49], Saliency [30], and SIFT [38]), SVM via
the sequential minimal optimization [51], traditional (Otsu [48], graph cuts [8], region growing [1], and
mean shift [15]) and interactive [28, 29] segmentation methods, meshing segmented volumes (tetra- and
hex-dominant tetra meshes, see Fig. 3), and other functions such as labeling, counting, and measuring
segmented regions for quantitative analysis. VCAT employs a multi-page TIFF format that is translated
from standard biomedical image formats using the Bio-formats library [6]. Obviously, any other open-
source/free/commercial software can also be employed and their licenses can be managed by the system
appropriately with user accounts.

(a) (b) (c) (d) (e)

Figure 2: Image processing examples using VCAT. Since biomedical images are often corrupted with noise,
denoising is important for processing such images. The image (a) was corrupted with additive Gaussian noise,
artificially. The image (b) demonstrates a result of denoising with edge-preservation, which was obtained by
applying Domain Transformations (DT) [24] to the corrupted input image (a). Biomedical images may also
consist of a gradation of background intensity due to their imaging conditions. The image (c) mimics a such
condition, and applying the Otsu method [48] to (c) gave a undesired segmentation result (d). Employing
Top-Hat transformation [26] prior to the Otsu method provided a better segmentation result (e).

Figure 3: Volumetric mesh generation for a multi-material biomedical volume. Each organ was segmented
and labeled by a simple thresholding with manual corrections. The hexa-dominant tetrahedral mesh was
generated on the multi-labeled segmented organ volume by VCAT with the meshing method [47]. Such vol-
umetric meshing is useful for mechanical and biochemical computations in surgical or metabolic simulations
from real-world images.

3.2 System Architecture
To provide the services mentioned in the previous section, the proposed system consists mainly of the compo-
nents described in this section (CPU/GPU servers, clients, databases, and web server). The key components
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required to achieve interactivity with our system are remote computing and capturing servers in the web
server and CPU/GPU servers, respectively. Our computational schemes built on these servers are described
in Section 4.

Clients. Any standard PC, including tablet PCs, mobile phones, and inexpensive PCs without advanced
GPUs.

CPU/GPU servers. High-performance computers with advanced GPUs. The image processing engines
(e.g., VCAT, ImageJ, etc.) are installed and a screen-capturing daemon process (capture server) runs on each
server. The capture server sends the screen rendering results to the remote computing server (Section 4).

Web server. A network server that handles connections between the client web browsers and the transmis-
sion control protocol/Internet protocol (TCP/IP) ports of a server machine, and provides access to a content
management system (CMS) such as Drupal. Our CMS provides four sets of graphical user interface (GUI)-
based contents such as saving (downloading) images to (from) a biomedical image database, searching the
database, converting image formats, and managing/processing images. The network server also provides
connections between client web browsers, a remote computing server, and CPU/GPU servers. Currently,
we employ the Bio-formats library [6] for an image converter and a meta-information reader in our system.
Figure 4 illustrates our configuration for the web server.

Figure 4: Web server architecture. (a) The CMS provides the GUI-based services (from (a-1) to (a-4)) to
users of the biomedical image database. (b) The biomedical image database manages images. (b-1) The local
disk space stores the images. (b-2) The image information (e.g., image pathnames) and meta-information are
extracted by using a meta-information reader, and are stored in the image (b-3) and meta-information (b-4)
databases, respectively. (c) The CPU/GPU servers access to images in the disk space. (d) The image format
is unified via TIFF using a image converter. (e) The remote computing server manages user interactions
between the CPU/GPU servers and clients.
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• Biomedical Image Database: The database manages uploaded images with their additional informa-
tion. Meta-information (e.g., lens type, laser power and frequency, and imaging time) stored in raw
image format depends on its format and imaging device, and has wide variations. Thus, our system
employs two databases, such as image and meta-information databases, for regular and free-form data,
respectively. The image database currently stores absolute image pathnames and additional informa-
tion corresponding to the image (title, size, pitch, channel number, time-lapse ID, and format type),
object (e.g., cell type), imaging device and method (e.g., microscope type), staining technique, dates,
and text descriptions (e.g., experiment memo).

• Remote Computing Server: A server program that manages user interactions from the web browsers
and rendering results from the CPU/GPU servers. See Section 4 for technical details.

Figure 5 presents a simplified flowchart that describes how the image data and the aforementioned com-
ponents interact in terms of individual hardware. The flowchart for the web server is shown in Fig. 4.

Figure 5: Data flowchart and interaction within our system architecture. (a,h) Image data are uploaded
(downloaded) to (from) the biomedical image database via standard FTP software. (b) User logs in to the
web server via the web browser to access the biomedical image database and selects a CPU/GPU server. (c)
The selected CPU/GPU server downloads the images from the biomedical image database in a background
process. (d,e) The remote computing server sends the user’s mouse and keyboard events on the web browser
to the CPU/GPU server. (f,g) The capture server (daemon process in the CPU/GPU server) automatically
sends the desktop screen rendering results to the web browser through the remote computing server.

4 Cloud-based Interactive Technique
Manipulating the image processing engines in the CPU/GPU server interactively from the client is crucial
to cloud-based 3D image processing. Such manipulation is especially important when the user attempts
to adjust the volume rendering parameters (e.g., transfer functions and view information) and apply semi-
manual segmentations [1, 8, 28, 29]. If the user is not able to manipulate the engines without delay and
jumping of interactions and visualization results, it can be extremely difficult to obtain the desired 3D image
processing results (for quality evaluation, immediate visualization is important, even for time-consuming off-
line filters). To resolve this issue, we developed a novel cloud-based interactive technique based on the three
schemes described in this section to improve the system interactivity. Each scheme is inspired by different
conventional techniques developed in image processing and computer graphics, and in contrast to them, our
technical contribution includes combining all three schemes to be available simultaneously on standard web
browsers.
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4.1 Screen Transfer by Detecting Differences
Updating the partial regions of a screen that a user has changed is a popular strategy in video-streaming and
cloud-based systems (e.g., [39]). In our system, the capture server detects a change in the screen according to
differences, and then sends the screen to the remote computing server if and only if the screen has changed.
The capture server always maintains an image of the previous screen. Figure 6 illustrates our strategy.

The sum of squared distances among uniformly sampled pixels between the previous and the current im-
ages (as specified in the configuration file) is computed for every frame. If the computed value is greater than
a user-specified threshold, the current image is determined to have differences. The difference is measured as

1

N

N−1∑
i=0

(Icurr(xi)− Iprev(xi))
2 > threshold,

where N is the number of samples, xi is a pixel on the screen, Icurr(xi) is the luminance of xi on the current
screen, and Iprev(xi) is the luminance of xi on the previous screen.

CPU/GPU Server Client PC

Figure 6: An illustration of screen transfer by the detection of the screen differences. We only update the
screen if it has changed.

4.2 Spatially Divided Screen Transfer
Dividing a screen spatially into regions and processing the regions separately is a method that has been used
in computer graphics (e.g., multi-GPU rendering for one screen). In our system, the desktop screen of the
CPU/GPU server is subdivided, and each region is processed separately to send the corresponding screen
part to the remote computing server. The screen is divided into tiles as shown in Fig. 7, and the number of
divisions can be changed dynamically via the menu displayed on the browser.

The client web browser periodically queries the remote computing server to determine whether the screen
on the CPU/GPU server has changed. If it has changed, the CPU/GPU server sends the indices of the changed
tiles (and their corresponding tile images) to the client web browser. The client web browser then updates
only the corresponding tile images.

CPU/GPU Server Client PC

Figure 7: An illustration of screen subdivision with 2 × 2 image tiles. The screen is divided into smaller
image tiles, and we separately update the tile if it has changed.
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4.3 Quality Adjusted Screen Transfer
Image and video compression techniques have been well studied [13, 60, 10, 40]; however, the techniques for
interactive applications have not been well investigated compared with the field of geometry compression.
Existing methods of such techniques are either for simple [62] or predefined [41] regions, specialized with
volume rendering [4, 61], or application-dependent [60], although MPEG presumably has interactive 3D
content functionality [10].

In our system, the screen compression rate is dynamically changed according to user interaction. A low-
quality screen image is employed for high-speed interactions and vice versa. This scheme also includes a
buffer (queue) for interaction events so that stroke-based interactions, such as curve drawing, can be managed
interactively. Such interactive management is important, for example, for editing transfer functions of volume
rendering [34] or sketch-based interfaces of [28, 29].

The image is compressed in the JPEG format. The image quality decreases exponentially between the
user-specified minimum and maximum quality values (min and max) during a mouse operation (e.g., clicking
and dragging). Here, we use the image quality (reciprocal of compression rate) as 100qα ∈ [min,max] where
q is a user-specified constant (we use 0.8 as the default value), and α is a number of user interactions (i.e.,
mouse operations). All tile images are rendered at the highest quality to guarantee the quality of the still
image when the mouse button is released. The graph in Fig. 8 illustrates the change in image quality during
a user interaction. Figure 9 demonstrates how this scheme affects the user’s view when we rotate a medical
CT volume by 90 degrees via our system. As can be seen in the lower images of Fig. 9, the quality of the
screen images is decreased by compressions, but such decrease does not disturb user interaction because such
change is not time-consuming; for example, the instance described in this paragraph only took an average of
54.7 ms for one frame (18.3 frames per second, or approximately 1 s for 19 frames).

Max

Min

Time

100%

0%

Start interactions End interactions

Figure 8: An illustration of quality adjustment during user interaction. The vertical and horizontal axes are
the image quality and the interaction time, respectively. We change JPEG compression rate according to
mouse dragging operations.

· · · · · ·

· · · · · ·

Frame 1 Frame 2 Frame 8 Frame 18 Frame 19

Figure 9: An example of quality adjustment for rotating the medical CT volume via VCAT with our system.
The bottom images are magnifications of the corresponding top images. We employed the minimum and
maximum image qualities at [min,max] = [10, 80]%. The interaction and compression start from frame 2
and end at frame 18; frames 1 and 19 possess 80% quality images.
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5 Case Studies on Biomedical Images
In this section, we demonstrate our system by examining three case studies on biomedical images. The case
studies typify the use of our system: unsupervised segmentation and filtering, supervised machine learning,
and interactive volume visualization and processing.

System implementation. All numerical experiments presented in this paper were executed on two work-
stations with VCAT. For our system, we employed Drupal 7.20, MySQL 5.5.22, and MongoDB 2.4.6 for
CMS, the image database, and the meta-information database, respectively. The biomedical image database
and remote computing server were implemented on an Intel Xeon 3.3 GHz CPU workstation with 16 GB of
memory and the Apache 2.2.20 web server. The CPU/GPU server was an Intel Xeon 3.6 GHz CPU worksta-
tion with 64 GB of memory and NVIDIA GeForce GTX 670. We employed an Intel Core2 Duo 1.83 GHz
with 2 GB of memory PC for the client, and ran Google Chrome 34.0 as the web interface. The network was
a 100 Mbps LAN.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

Otsu(a) (b)

DT Otsu(c) (d)

TH (e)

Otsu (f)

TH Otsu(g) (h)

DT (i)

Otsu (j)

(k)

Figure 10: Mitochondria segmentation results. All segmentations were obtained by the Otsu method. (a)
Input image. (b) Segmented image of (a). (c) Denoised image of (a) via DT. (d) Segmented image of (c). (e)
Top-Hat image of (c). (f) Segmented image of (e). (g) Top-Hat image of (a). (h) Segmented image of (g). (i)
Denoised image of (g) via DT. (j) Segmented image of (i). (k) Processing flowchart with the resulting image
IDs (a-j).

5.1 Automatic Segmentation of Mitochondria
Intracellular image analysis has become a crucial tool in the field of molecular cell biology because of rapid
advances in fluorescence microscopy [50, 19]. A cell contains many internal compartments that consist of
lipid bilayer membranes: organelles, cytoskeletons, and vesicles. Thus, separating the regions of interest
from the background of cell images is important for quantitative analysis [5].

In this case study, we apply unsupervised image segmentations on a HeLa cell observed with a con-
focal laser scanning microscope and a fluorescent stain (MitoTracker Deep Red 633 [25]). We extract the
mitochondria regions using different procedures, and compare them visually. Figure 10 demonstrates the
mitochondria segmentation results.
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We employed the following methods. DT [24], which is a state-of-the-art fast edge-preserving smoothing
filter, was employed to eliminate unessential noise, with the spatial parameter set to 0.4 and the color range
parameter set to 2000 and 8000 for (c-f) and (i) of Fig. 10, respectively, to obtain the best results. The Top-
Hat transform that consists of morphological operations [26] was applied to compensate for differences in
intensity between the background and mitochondria; a disk with radius 8 was used as the Top-Hat structural
element.

Segmentation was performed with the famous Otsu’s discriminant thresholding [48], which is the most
frequently used unsupervised fully automatic segmentation method. As shown in Fig. 10, filtering with the
Otsu method worked well for this case.

5.2 Organellar Classifications via SVM with HLAC
Supervised machine learning is a very powerful tool in computer vision and pattern recognition [7]. More-
over, such a tool has been used in medical image registrations. Thus, its application to biology has garnered
considerable attention in biology [58, 14, 50].

We applied organellar classification to three sets of intracellular images obtained by a confocal laser scan-
ning microscopy with fluorescent staining (ER: Endoplasmic Reticulum (GFP2), Golgi Apparatus (RFP3),
and Mitochondria (MitoTracker Deep Red 633)).

Figure 11: Examples of training images for SVM; top: ER, middle: Golgi Apparatus, and bottom: Mitochon-
dria.

2Organelle Lights ER-GFP (O36212), Thermo Fisher Scientific.
3Organelle Lights Golgi-RFP (O10098), Thermo Fisher Scientific.

380



International Journal of Networking and Computing

The image features were extracted using HLAC [49], which approximates with higher order local au-
tocorrelation on the image and is proven to be a very good image feature in pattern recognition. A fast
implementation of a linear SVM [51] was employed as the classifier, where a hyperplane in feature space
was constructed such that the distance from the plane to the nearest sample was maximized allowing for the
failure of a sample to reach the correct distance. The C parameter in the linear SVM was C = 100, where C
exchanges a wide margin with a small number of margin failures [51].

Figure 11 shows representative training images for SVM where 15 images were used for each class.
Figure 12 illustrates the learning results of ER vs. Golgi Apparatus (a) and ER vs. Mitochondria (b). Figures
12 and 13 visualize the learned and classified results, respectively, by mapping a high-dimensional feature
(HLAC) space (25 dimensions) onto a 2D plane that is orthogonal to the corresponding hyperplane in the
HLAC space. The hyperplane is represented by a straight line in the 2D plane (long straight lines in Figs. 12
and 13). The 2D coordinate axes coincide with the normal and tangent directions of the line in the 2D plane.
The distance from the 2D sample to the line is equal to the distance from the sample in the HLAC space to
the hyperplane. The tangential coordinate is provided by the distance from the projected sample to a fixed
sample on the hyperplane.

(a) (b)

Figure 12: Training results using SVM with HLAC for ER vs. Golgi Apparatus (a) and ER vs. Mitochondria
(b). The straight line represents the SVM’s hyperplane. In this visualization, the training samples are pro-
jected onto a 2D plane, where the distance from each sample to the hyperplane is preserved, and the tangential
direction of the straight line corresponds to distance from a fixed sample projected onto the hyperplane.

As shown in Fig. 13 and Table 3, ER and Golgi Apparatus are well recognized, whereas the system has
some difficulty distinguishing between ER and Mitochondria. In other words, ER and Mitochondria are well
correlated with each other. Further investigation is needed in order to understand the correlation in terms of
biological evidence (in recently, geometrical and biological correlations between ER and Mitochondria have
been reported [27]).

N M Accuracy N M Accuracy
ER 122 120 98.36% ER 122 85 69.67%

Golgi Apparatus 120 118 98.33% Mitochondria 119 107 89.92%

Table 3: Classification accuracy of ER with Golgi Apparatus, and Mitochondria, where N and M are the
sample size and number of correctly classified images, respectively. The accuracy is measured by M/N as a
percentage (%) of the classification.
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Correctly classified ER samples

Incorrectly classified ER samples

Correctly classified Golgi samples

Incorrectly classified Golgi samples

Endoplasmic Reticulum Golgi Apparatus

Endoplasmic Reticulum

Mitochondria

Correctly classified ER samples

Incorrectly classified ER samples

Correctly classified Mitochondria samples

Incorrectly classified Mitochondria samples

Figure 13: Classification results for ER vs. Golgi Apparatus (top) and ER vs. Mitochondria (bottom). The
straight line represents the SVM’s hyperplane. In this visualization, the classified samples are projected onto
a 2D plane, where the distance from each sample to the hyperplane is preserved, and the tangential direction
of the straight line corresponds to the distance from a fixed sample projected onto the hyperplane (similar to
the coordinate system used in Fig. 12).

5.3 Interactive Visualization and Segmentation of Medical CT
Data visualization is a key ingredient for image analysis. Our system provides volume rendering [34], or-
thogonal planar cross-sections, and curved cross-sections [28]. Figure 14 shows the volume rendering and
curved cross-section visualization of a CT image. Such high-quality volume visualizations usually require
high-end, expensive computers. However, because our system allows the user to share a computer (i.e., the
CPU/GPU server), it does not force the user to own a high-end computer.

Fully automatic segmentation is difficult to apply to biomedical images because the images often contain
blurred boundaries and noise. Therefore, user input during the segmentation process is crucial. To help
the user by providing subjective interpretation during the segmentation process, our system includes a set
of interactive segmentation tools, such as seeded region growing [1], graph cuts [8], and contour-based [29]
segmentations. With the seeded region growing tool, the user places several seed points on the cross-sections.
The system gradually grows the foreground region by considering the local differences in voxel features
(Fig. 15a). With the graph-cut segmentation tool, the user places foreground/background seeds. Then, the
system computes the foreground voxels by minimizing an energy function. This method solves the energy
minimization problem using the minimum cut of a flow network (Figs. 15b,c). With the contour-based
segmentation tool, the user specifies a set of contours in the 3D space. The system generates a signed scalar
field from the contours and obtains the segmentation boundary surface using the zero-level-set of the signed
scalar field (Fig. 16). These interactive tools normally require high-end computing capacity. Our cloud-based
system allows users to access these tools with inexpensive devices (e.g., tablet PCs).
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Figure 14: Typical volume visualization using our system.

(a) (b) (c)

Figure 15: The seeded region growing (a) and graph-cut segmentation (b,c) tools. (a) The red mark is a seed.
A segmented region is highlighted in green. (b,c) The user specifies the foreground (red) and background
(blue) seeds. The resulting segmented region is highlighted in green.

Figure 16: The contour-based segmentation tool. The user specifies contours (blue), and the system computes
a segmentation boundary (green surface) that interpolates both contours and image edges.
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6 Performance Evaluation
We examined the performance of our cloud-based interactive technique described in Section 4 using the
implementation and case studies described in Section 5. Let D, S, and Q be the abbreviations for our schemes
proposed in Sections 4.1, 4.2, and 4.3, respectively; see Table 4. Consider the three case studies (A, B, and
C) presented in Sections 5.1, 5.2, and 5.3, respectively; see Table 5. Figures 17 and 18 illustrate the average
response times for one frame and the volume of downloaded data (KB/s) for experiments in the case studies
(A, B, and C) and combinations of the proposed schemes (D, S, and Q). The response times were measured
through a web browser. The display resolution was 1024× 768. For scheme S, a screen subdivision number
of 6× 6 was used. The maximum and minimum values for scheme Q were 100% and 20%, respectively.

Symbol Scheme Name Section On Off
D Screen Transfer by Detecting Differences 4.1 D:On D:Off
S Spatially Divided Screen Transfer 4.2 S:On S:Off
Q Quality Adjusted Screen Transfer 4.3 Q:On Q:Off

Table 4: Abbreviations for our schemes employed in this section and in Figs. 17 and 18. Here, On and Off
correspond to switching on and off the functions of our schemes, respectively.

Symbol Study Name Section Case Name
A Automatic Segmentation of Mitochondria 5.1 Case A
B Organellar Classifications via SVM with HLAC 5.2 Case B
C Interactive Visualization and Segmentation of Medical CT 5.3 Case C

Table 5: Abbreviations for our case studies employed in this section and in Figs. 17, 18, and 19. The
experiments A, B, and C were performed for each measurement carefully in order to match every results as
closely as possible (because the case studies include user interactions).

Applying scheme Q always provides a better response time according to the comparison between Q:Off
and Q:On shown in Fig. 17. In other words, image compression during user interaction works well in all
cases and combinations of schemes. Additionally, Fig. 18 shows that scheme Q greatly reduces the average
volume of the downloaded data for all cases and schemes.

On the other hand, the response time is not improved using scheme S (S:On). In particular, the response
time is not good when transferring screens without detecting differences (D:Off and S:On). This is because of
the overhead of dividing an image into small tiles. The screen transfer using both D and S (D:On and S:On)
schemes provides a reasonable performance compared with the image response time obtained by not using
scheme S (S:Off with D:On/Off). Therefore, scheme S should be always used in combination with scheme
D.

Subdivision number analysis. We further investigated a significant number of screen subdivisions. Figure
19 presents the average image response time when we vary the subdivision number of scheme S (D:On, S:On,
and Q:On). Figure 6 details the results of the response time, the frames per second (FPS), and the updated
screen area ratio (USAR) calculated by averaging the three case studies. Here, a smaller response time (larger
FPS, smaller USAR) is better.

As can be seen by the USAR shown in Fig. 6, subdividing the screen decreases the screen area that is
updated. On the other hand, the cases that have more than 6 × 6 tiles do not gain actual speed (see the FPS
shown in Fig. 6) because of the overhead of processing too many small area tiles. This numerical experiment
suggests that the use of 2 × 2 tiles is the best parameter for all case studies, see Fig. 6. The case of 2 × 2
tiles demonstrates the fastest response time, and approximately 1.3 FPS better than the no subdivision case
(1× 1). The case of 4× 4 tiles is similar to the no subdivision case, according to its FPS.

Overall, the case of all three schemes employed simultaneously (D:On, S:On, and Q:On) with 2× 2 sub-
division is the best performance in our case studies. This performance evaluation indicates that our technique
is useful and effective for the interactivity of a cloud-based system that provides a rich variety of biomedical
image-processing applications.
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Figure 17: The average image response time (ms) for one frame with switching on/off of our three schemes.
The symbols Q, S, and D are given in Table 4.
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Figure 18: The average rate of data downloaded (KB/s) with switching on/off of our three schemes. The
symbols Q, S, and D are given in Table 4.
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Figure 19: Average image response time (ms) for one frame with different numbers of tiles.

1× 1 2× 2 4× 4 6× 6 8× 8 10× 10
Response Time 103.4 90.7 109.9 162.9 255.7 399.3
Frames Per Second: FPS 9.7 11.0 9.2 6.2 3.9 2.6
Updated Screen Area Ratio: USAR 90.0% 57.5% 38.3% 33.7% 34.1% 33.4%

Table 6: Average image response time (ms), FPS, and number of updated tiles per frame for different division
numbers of a screen.
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7 Preliminary User Test
Because our system is targeted to scientists and engineers who might not have sufficient knowledge about
image processing, it is better to evaluate our system in terms of the feasibility and usability for non-computer-
scientists. Here, we report the results of a simple user test, although extensive user studies remain for future
work.

We performed the user tests described in this section with eight non-expert participants that consisted of
three biologists, two medical scientists, and three mechanical and precision engineers who had never used
our system (or the conventional system employed in this test) before the test, with the exception of one of the
participants, see Table 7. Here, two of the biologists, one of the medical scientists, and one of the engineers
had limited experience with a stand-alone VCAT; the remaining participants had no experience. In addition,
one of the participants is one of authors of this paper and contributed to this research partially, but never had
the opportunity of using our system before the test.

Symbol Character Number Task Number × Task VCAT Experience
B Biologist 3 2 6 2
M Medical Scientist 2 1 2 1
E Engineer 3 1 3 1

Table 7: Abbreviations for the eight participants. Because the three biologists performed the tasks twice, the
total number of tasks is equivalent to 11.

Test setting. We asked the participants to perform a segmentation task similar to the case study A described
in Section 5.1 on two systems: our system with Google Chrome and VCAT, and a conventional system
that consisted of VCAT, OMERO [2] 4.4.4, and Chrome Remote Desktop (CRD) 35.0. In our system, we
employed all schemes simultaneously (D:On, S:On, and Q:On) with 2×2 tiles in scheme S and the minimum
and maximum image qualities of scheme Q as [min,max] = [20, 80]%.

7.1 Segmentation Task
First, we explained to the participants how to use both systems and asked the participants to segment ten
mitochondria images by showing the images (a) and (h) of Fig. 10 as the input and the preferred result,
respectively. We also provided a simple instruction note for how to proceed with this test. The task was
provided with the following instructions:

Our System : Login to our system via a web browser. For the ten images, select an image and a CPU/GPU
server, and perform the following VCAT procedure.

Conventional System : Access a server via CRD. Run OMERO via a shortcut icon. For the ten images,
download an image from OMERO and perform the following VCAT procedure.

Common Task on VCAT : Run VCAT via a shortcut icon and load the image. Apply DT and Top-Hat
filtering according to case study A. (We allowed the participants to freely choose the parameters and the
order of the DT and Top-Hat, but provided these tips: α = 0.4, σ ∈ [1000, 10000] for DT, and the radius of
Top-Hat lives [1, 20].) Apply the Otsu method to the filtered image and save the resulting image.

Test conditions. Obviously, the order in which the systems are tested affects the results, especially with
regard to the time required to finish the task, because the VCAT portions are common. Thus, we asked four
of the participants (two biologists, one medical scientist, and one engineer) to attempt to use the conventional
system first, and then our system second. We asked the other four participants to attempt the reverse order.
Moreover, we asked the three biologists to attempt a reverse order with different image sets (ten ER images
used in the case study B described in Section 5.2).
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7.2 Test Results
We measured the total time required to finish the task and the mean squared error (MSE) between the preferred
and task results. The preferred segmented results (ten images for both mitochondria and ER) were produced
by an experienced user with knowledge of both our system and the image processing tools used in this
test. Table 8 provides the total and average processing times for each group of participants. As expected,
the biologists required more time than the medical scientists and the engineers. It is because their biological
knowledge tend to spend more time to segment the organelles accurately. The total and average times required
for our system is somewhat longer than that required for the conventional system (4 min in average for ten
image segmentations). It is probably because of good affordance of CRD. On the other hand, the processing
time the biologists required to use our system is slightly faster than that required to use the conventional
system.

Table 9 shows the total and average MSE for each group of participants. As expected, the engineers and
biologists scored the best and worst, respectively. The total and average MSE for our system is clearly better
than for the conventional system.

Total Average: Total/(Number × Task)
Character (B,M,E) B M E (B,M,E) B M E
Number × Task 11 6 2 3 11 6 2 3
Conventional System 6.9 5.5 0.56 0.84 0.63 0.92 0.28 0.28
Our System 7.33 5.21 0.75 1.37 0.67 0.87 0.37 0.46

Table 8: Total (left) and average (right) processing times (hours) and (hours/persons), respectively.
Total Average: Total/(Number × Task)

Character (B,M,E) B M E (B,M,E) B M E
Number × Task 11 6 2 3 11 6 2 3
Conventional System 1.66 1.198 0.194 0.255 0.15 0.2 0.097 0.085
Our System 1.271 0.879 0.198 0.195 0.116 0.146 0.099 0.065

Table 9: Total (left) and average (right) MSE where the segmented image consists of zero or one pixel values.
Total 11 Total 8

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5
Conventional System 7 7 1 1 8 7 4 1 1 6

Our System 8 7 10 6 8 7 5 8 4 6

Table 10: Total numbers of affirmative (Yes) answers to the questions. The left table includes the second
segmentation task of the three biologists, whereas the right table consists of the first segmentation task of all
eight participants.

We also asked five questions (yes or no) to the participants. Table 10 summarizes the number of affirma-
tive (Yes) answers given to the questions. Unfortunately, the questions regarding latency (Q3 and Q4) provide
a better result for the conventional system. On the other hand, questions (Q1, Q2, and Q5) provide similar
results for both the conventional and our systems. Considering the timing and segmentation quality discussed
in the previous paragraphs, the participants’ feeling of latency affects somewhat on the processing time, and
this might produce opposite results in terms of quality because users might become more prudent when pro-
cessing the images. Nevertheless, extensive user studies that include perceptual evaluation are required in
order to obtain a conclusive analysis.

The five questions are as follows:

• Q1: Are you satisfied with your segmentation results ?

• Q2: Was it easy to access the images ?

• Q3: Did you feel latency for mouse or keyboard interactions ?

• Q4: Did you feel latency for displaying a screen ?
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• Q5: Do you want to use the system in future ?

8 Conclusion
We proposed a novel cloud-based communication system for biomedical images. The system is based on a
set of computer servers that manage collaborative users, their images and software, and CPU/GPU resources
effectively and seamlessly. Because our system can control data management, visualization, and processing
services through a standard web browser on inexpensive hardware, users can collaborate and share limited
software and hardware resources for biomedical image processing and analysis. The paper’s technical contri-
bution also includes the novel cloud-based interactive technique. We believe that our system can significantly
contribute to quantitative analysis in modern biology.

Future Work We employed an intermediate upload server between the biomedical image database and the
client FTP software in our current implementation. Future work will simplify this intermediate server and
include evaluations via end-user studies.
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