
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 5, Number 1, pages 2–25, January 2015

Composing resilience techniques: ABFT, periodic and incremental checkpointing

George Bosilca1, Aurelien Bouteiller1, Thomas Herault1,
Yves Robert1,2 and Jack Dongarra1

1. University of Tennessee Knoxville, USA
2. Laboratoire LIP, Ecole Normale Supérieure de Lyon, France

{bosilca|bouteill|dongarra|herault}@icl.utk.edu, yves.robert@ens-lyon.fr

Received: August 1, 2014
Revised: November 5, 2014
Accepted: December 3, 2014

Communicated by Akihiro Fujiwara

Abstract

Algorithm Based Fault Tolerant (ABFT) approaches promise unparalleled scalability and
performance in failure-prone environments. Thanks to recent advances in the understanding
of the involved mechanisms, a growing number of important algorithms (including all widely
used factorizations) have been proven ABFT-capable. In the context of larger applications,
these algorithms provide a temporal section of the execution, where the data is protected by
its own intrinsic properties, and can therefore be algorithmically recomputed without the need
of checkpoints. However, while typical scientific applications spend a significant fraction of
their execution time in library calls that can be ABFT-protected, they interleave sections that
are difficult or even impossible to protect with ABFT. As a consequence, the only practical
fault-tolerance approach for these applications is checkpoint/restart. In this paper we propose a
model to investigate the efficiency of a composite protocol, that alternates between ABFT and
checkpoint/restart for the effective protection of an iterative application composed of ABFT-
aware and ABFT-unaware sections. We also consider an incremental checkpointing composite
approach in which the algorithmic knowledge is leveraged by a novel optimal dynamic program-
ming to compute checkpoint dates. We validate these models using a simulator. The model
and simulator show that the composite approach drastically increases the performance delivered
by an execution platform, especially at scale, by providing the means to increase the interval
between checkpoints while simultaneously decreasing the volume of each checkpoint.

Keywords: fault-tolerance, resilience, high-performance computing, checkpoint, ABFT, model,
performance evaluation

1 Introduction

As the processor count increases with each new generation of high performance computing systems,
the long dreaded reliability wall is materializing, and threatens to derail the efforts and milestones
on the road toward Exascale computing. Despite continuous evolutions, such as improvements to the
individual processor reliability, the integration of a large number of components leads to, by simple
probabilistic amplification, a stern decrease in the overall capability of High Performance Computing
(HPC) platforms to execute long-running applications spanning a large number of resources. Already
today, leadership systems encompassing millions of computing elements experience a Mean Time

2

International Journal of Networking and Computing

Between Failures (MTBF) of a few hours [1, 2, 3]. Even considering an optimistic scenario with
“fat” nodes, featuring many-core systems and/or GPU accelerators, projections of Exascale machines
show unprecedented socket counts which will thereby suffer in terms of reliability due to the sheer
number of components used [4].

However, the high performance computing community is not without resources to face this
formidable threat. Under the already serious pressure that failures pose to currently deployed
systems, checkpointing techniques have seen a large adoption, and many production quality soft-
ware effectively provide protection against failures with application-level rollback recovery. During
the execution, periodic checkpoints are taken that capture the progress of the application. When
a failure occurs, the application is terminated, but can later be restarted from the last checkpoint.
However, checkpointing techniques inflict severe overhead when failure frequency becomes too high.
Checkpoints generate a significant amount of I/O traffic and often block the progression of the ap-
plication; in addition, they must be taken more and more often as the MTBF decreases in order
to enable steady progress of the application. Analytical projections clearly show that sustaining
Exascale computing solely with checkpointing will prove challenging [5, 6].

The fault-tolerance community has developed a number of alternative recovery strategies that
do not employ checkpoint and rollback recovery as their premise. Strategies such as Algorithm
Based Fault Tolerance (ABFT) [7], naturally fault tolerant iterative algorithms [8], resubmission
in master-slave applications, etc., can deliver more scalable performance under high stress from
process failures. As an example, ABFT protection and recovery activities are not only inexpensive
(typically less than 3% overhead observed in experimental works [9, 10]), but also have a negligible
asymptotic overhead when increasing node count, which makes them extremely scalable. This is in
sharp contrast with checkpointing, which suffers from increasing overhead with system size. ABFT
is a useful technique for production systems, offering protection to important infrastructure software
such as the dense distributed linear algebra library ScaLAPACK [9]. In the remainder of this paper,
without loss of generality, we will use the term ABFT broadly, so as to describe any technique that
uses algorithm properties to provide protection and recovery without resorting to rollback recovery.

However, typical HPC applications do spend some time where they perform computations and
data movements that are incompatible with ABFT protection. The ABFT technique, as the name
indicates, allows for tolerating failures only during the execution of the algorithm that features the
ABFT properties. Moreover, it then protects only the part of the user dataset that is managed by
the ABFT algorithm. In case of a failure outside the ABFT-protected operation, all data is lost; in
case of a failure during the ABFT-protected operation, only the data covered by the ABFT scheme
is restored. Unfortunately, these ABFT-incompatible phases force users to resort to general-purpose
(presumably checkpoint based) approaches as their sole protection scheme.

Yet, many HPC applications do spend quite a significant part of their total execution time inside
a numerical library, and in many cases, these numerical library calls can be effectively protected
by ABFT. We believe that the missing link to enable fault tolerance at extreme scale is the ability
to effectively compose broad spectrum approaches (such as checkpointing) and algorithm-based
recovery techniques, as is most appropriate for different phases within a single application. Possible
target applications are based on iterative methods applied across an additional dimension such as
time or temperature. Examples of such applications range from heat dissipation to radar cross-
section, all of them being extremely time consuming applications, with the usual execution time for
real-size problems ranging from several days to weeks. At the core of such applications, a system of
linear equations is factorized, and the solution is integrated into a larger context, across the additional
dimension. Upon closer inspection of the execution of such an application, it becomes obvious
that the most costly step is the factorization of the linear equations. Conveniently, factorization
algorithms are some of the first algorithms to be extended with ABFT properties, both in the dense
and sparse [11, 12, 13] linear algebra world.

The main contribution of this paper is the design and evaluation of a new composite algorithm
that allows for taking advantage of ABFT techniques in applications featuring phases for which no
ABFT algorithm exists. We investigate a composition scheme corresponding to the above mentioned
type of applications, where the computation alternates between ABFT protected and checkpoint
protected phases. This composite algorithm imposes forced checkpoints when entering (and in some

3

Composing resilience techniques: ABFT, periodic and incremental checkpointing

cases leaving) library calls that are protected by ABFT techniques, and uses traditional periodic
checkpointing, if needed, between these calls. When inside an ABFT-protected call, the algorithm
disables all periodic checkpointing. We describe a fault tolerance protocol that enable switching
between fault tolerance mechanisms, and depicts how different parts of the dataset are treated
at each stage. Based on this scheme, we provide a performance model and use it to predict the
expected behavior of such a composite approach on platforms beyond what is currently possible
through experimentation. We validate the model by comparing its predicted performance to that
obtained with a discrete event simulator.

Another important contribution is the detailed comparison of various checkpointing techniques
with ABFT protection, this time not at the whole application level, but rather for a single computa-
tional routine (such as a dense matrix LU or QR factorization). The knowledge of the routine char-
acteristics enables us to use incremental checkpointing and a novel dynamic programming approach
to optimally place the checkpoints. We compare this technique with classical periodic checkpointing
(a la Daly) and the cost of ABFT protection for the routine.

The rest of the paper is organized as follows. We start with a brief overview of related work
in Section 2. Then we provide a detailed description of the composite approach in Section 3, and
derive the corresponding analytical performance model in Section 4. Section 5 presents a model
and a dynamic programming algorithm for incremental checkpointing during computation routines.
Section 6 is devoted to evaluating the approach, and comparing the performance of traditional
checkpointing protocols with that of the composite approach under realistic scenarios. This com-
parison is performed both analytically, instantiating the model with the relevant parameters, and
in simulation, through an event-based simulator that we specifically designed for this purpose. We
obtain an excellent correspondence between the model and the simulations, and we perform a weak-
scalability study that demonstrates the full potential of the composite approach at very large scale.
We also assess the impact and potential of incremental checkpointing with respect to both classical
checkpointing and ABFT protection. Finally, we provide concluding remarks in Section 7.

2 Related work

Both hardware and software errors can lead to application failure. The consequence of such errors
can take various forms in a distributed system: a definitive crash of some processes, erroneous results
or messages, or, at the extreme, corrupted processes exhibiting malignant behavior. In the context
of HPC systems, most memory corruptions are captured by ECC memory or similar techniques,
leaving process crashes as the most commonly observed type of failures.

The literature is rich in techniques that permit recovering the progress of applications when
crash failures strike. The most commonly deployed strategy is checkpointing, in which processes
periodically save their state, so that computation can be resumed from that point when some failure
disrupts the execution. Checkpointing strategies are numerous, ranging from fully coordinated
checkpointing [14] to uncoordinated checkpoint and recovery with message logging [15]. Despite a
very broad applicability, all these fault tolerance methods suffer from the intrinsic limitation that
both protection and recovery generate an I/O workload that grows with failure probability, and
becomes unsustainable at large scale [5, 6] (even when considering optimizations such as diskless or
incremental checkpointing [16]).

In contrast, Algorithm Based Fault Tolerance (ABFT) is based on adapting the algorithm so
that the application dataset can be recomputed at any moment, without involving costly check-
points. ABFT was first introduced to deal with silent error in systolic arrays [7]. In recent work, the
technique has been employed to recover from process failures [17, 10, 9] in dense and sparse linear
algebra factorizations [11, 12, 13], but the idea extends widely to numerous algorithms employed
in crucial HPC applications. So called Naturally Fault Tolerant algorithms can simply obtain the
correct result despite the loss of portions of the dataset (typical of this are master-slave programs,
but also iterative refinement methods, like GMRES or CG [8, 18]). Although generally exhibiting
excellent performance and resiliency, ABFT requires that the algorithm is innately able to incorpo-
rate fault tolerance and therefore stands as a less generalist approach. Another aspect that hinders

4

International Journal of Networking and Computing

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

LIBRARY Phase GENERAL Phase

Figure 1: Typical Application

its wide adoption and production deployment is that it can protect an algorithm and its dataset,
but applications assemble many algorithms that operate on different datasets, and which may not
all have a readily available ABFT version or employ different ABFT techniques.

To the best of our knowledge, this work is the first to introduce an effective protocol for alternating
between generalist (typically checkpoint based) fault tolerance for some parts of the application and
custom, tailored techniques (typically ABFT) for crucial, time consuming computational routines.

Many models are available to understand the behavior of checkpoint/restart [19, 20, 21, 22], and
thereby to define an optimal checkpoint period. [23] proposes a scalability model to evaluate the
impact of failures on application performance. Compared with these works, we include several new
key parameters to refine the model. A significant new contribution is to propose a generalized model
for a protocol that alternates between checkpointing and ABFT sections. Although most ABFT
methods have a complete complexity analysis (in terms of extra-flops, communications incurred by
both protection activity and per-recovery cost [10, 9]), modeling the runtime overhead of ABFT
methods under failure conditions has never been proposed. The composite model captures both
the behavior of checkpointing and ABFT phases, as well as the cost of switching between the two
approaches, and thereby permits investing the prospective gain from employing this mixed recovery
strategy on extreme scale platforms.

3 Composite approach

We consider a typical HPC application whose execution alternates General phases and Library
phases (see Figure 1). During General phases, we have no information about the application
behavior, and an algorithm-agnostic fault-tolerance technique, like checkpoint and rollback recov-
ery, must be used. On the other hand, during Library phases, we know much more about the
application, and we can apply special-purpose fault-tolerance techniques, such as ABFT, to ensure
resiliency.

During a General phase, the application can access the whole memory; during a Library phase,
only the Library dataset (a subset of the application memory, which is passed as a parameter to the
library call) is accessed. The Remainder dataset is the part of the application memory that does
not belong to the Library dataset. A strong feature of ABFT is that, in case of failure, the ABFT
algorithm can recompute the lost ABFT-protected data based only on the Library dataset of the
surviving processors. The major goal of this paper is to compare two fault tolerant approaches:
PurePeriodicCkpt Pure (Coordinated) Periodic Checkpointing refers to the traditional approach

based on coordinated checkpoints taken at periodic intervals, and using rollback recovery to
recover from failures.

ABFT&PeriodicCkpt Algorithm-Based Fault Tolerance & Periodic Checkpointing refers to the
proposed algorithm that combines ABFT techniques in Library phases with Periodic Check-
pointing techniques in General phases. It is described below.

Both approaches use PeriodicCkpt techniques, but to a different extent: while PurePeriodic-
Ckpt uses PeriodicCkpt throughout the execution, ABFT&PeriodicCkpt uses it only within
General phases of the application.

5

Composing resilience techniques: ABFT, periodic and incremental checkpointing

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Periodic
Checkpoint

Split
Forced

Checkpoints

Failure
(during LIBRARY)

Rollback
(partial)

Recovery

ABFT
Recovery

Figure 2: ABFT&PeriodicCkpt composite approach

3.1 ABFT&PeriodicCkpt Algorithm

The ABFT&PeriodicCkpt composite approach consists of alternating between periodic check-
pointing and rollback recovery on one side, and ABFT on the other side, at different phases of
the execution. Every time the application enters a Library phase (that can thus be protected by
ABFT), a partial checkpoint is taken to protect the Remainder dataset. The Library dataset,
accessed by the ABFT algorithm, need not be saved in that partial checkpoint, since it will be
reconstructed by the ABFT algorithm inside the library call.

When the call returns, a partial checkpoint covering the modified Library dataset is added to
the partial checkpoint taken at the beginning of the call, to complete it and to allow restarting from
the end of the terminating library call. In other words, the combination of the partial entry and
exit checkpoints forms a split, but complete, coordinated checkpoint covering the entire dataset of
the application.

If a failure is detected while processes are inside the library call, the crashed process is recovered
using a combination of rollback recovery and ABFT. ABFT recovery is used to restore the Library
dataset before all processes can resume the library call, as would happen with a traditional ABFT
algorithm. The partial checkpoint is used to recover the Remainder dataset (everything except
the data covered by the current ABFT library call) at the time of the call, and the process stack,
thus restoring it before quitting the library routine, see Figure 2. The idea of this strategy is that
ABFT recovery will spare some of the time spent redoing work, while periodic checkpointing can be
completely de-activated during the library calls.

During General phases, regular periodic coordinated checkpointing is employed to protect
against failures. In case of failure, coordinated rollback recovery brings all processes back to the last
checkpoint (at most back to the split checkpoint capturing the end of the previous library call).

3.2 Efficiency Considerations and Application-Specific Improvements

A critical component to the efficiency of the PeriodicCkpt algorithm is the duration of the check-
pointing interval. A short interval increases the algorithm overheads, by introducing many coordi-
nated checkpoints, during which the application experiences slowdown, but also reduces the amount
of time lost when there is a failure: the last checkpoint is never long ago, and little time is spent
re-executing part of the application. Conversely, a large interval reduces overhead, but increases the
time lost in case of failure. The PeriodicCkpt protocol has been extensively studied, and good ap-
proximations of the optimal checkpoint interval exist (known as Young and Daly’s formula [19, 20]).
These approximations are based on the machine MTBF, checkpoint duration, and other parame-
ters. We will consider two forms of PeriodicCkpt algorithms: the PurePeriodicCkpt algorithm,

6

International Journal of Networking and Computing

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library
ABFT&P

ERIO
DICC

KPT

GENERAL
Checkpoint Interval

Figure 3: ABFT&PeriodicCkpt composite (time spent in General phases is large)

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

ABFT&P
ERIO

DICC
KPT

Figure 4: ABFT&PeriodicCkpt composite (time spent in General phases is small)

where a single checkpointing interval is used consistently during the whole execution, and the Bi-
PeriodicCkpt algorithm, where the checkpointing interval may change during the execution, to
fit different conditions (see Section 4.3, Figures 5 and 6).

In the ABFT&PeriodicCkpt algorithm, we interleave PeriodicCkpt protected phases with
ABFT protected phases, during which periodic checkpointing is de-activated. Thus, different cases
have to be considered:

• When the time spent in a General phase is larger than the optimal checkpoint interval,
periodic checkpointing is used during these phases in the case of ABFT&PeriodicCkpt (see
Figure 3);
• When the time spent in a General phase is smaller than the optimal checkpoint interval,

the ABFT&PeriodicCkpt algorithm already creates a complete valid checkpoint for this
phase (formed by combining the entry and exit partial checkpoints), so the algorithm will not
introduce additional checkpoints (see Figure 4).

Moreover, the ABFT&PeriodicCkpt algorithm forces (partial) checkpoints at the entry and
exit of library calls; thus if the time spent in a library call is very small, this approach will introduce
more checkpoints than a traditional PeriodicCkpt approach. The time complexity of library algo-
rithms usually depends on a few input parameters related to problem size and resource number, and
ABFT techniques have deterministic, well known time overhead complexity. Thus, when possible,
the ABFT&PeriodicCkpt algorithm features a safeguard mechanism: if the projected duration
of a library call with ABFT protection (computed at runtime thanks to the call parameters and the
algorithm complexity) is smaller than the optimal periodic checkpointing interval, then ABFT is not
activated, and the corresponding Library phase is protected using the PeriodicCkpt technique
only.

Furthermore, since only a subset of the entire dataset is modified during a library call (the Li-
brary dataset), application-level checkpointing techniques can benefit PeriodicCkpt approaches.
This consists of saving only the subset of the memory that has been modified since the last check-
point, when taking a new process checkpoint. This influences the duration of the checkpointing
operation, and thus the optimal checkpoint interval. In our models, we will take this parameter into
consideration.

7

Composing resilience techniques: ABFT, periodic and incremental checkpointing

4 Model

In this section, we detail the application model and the various parameters used to quantify the
cost of checkpointing and ABFT protection. Then we analytically derive the minimal overhead for
all scenarios. In Section 4.1, we start by defining the parameters, and then proceed in Section 4.2
with determining the cost of the composite approach. We compare this cost to that of classical
approaches in Section 4.3.

4.1 Application and checkpoint parameters

The execution of the application is partitioned into epochs. Within an epoch, there are two phases:
the first phase is spent outside the library (it is a General phase), and only periodic checkpointing
can be employed to protect from failures during that phase. Then the second phase (a Library
phase) is devoted to a library routine that has the potential to be protected by ABFT.

Such a scenario is very general, and many scientific applications obey this scheme, alternating
phases spent outside and within a library call that can be protected by ABFT techniques. Since
each epoch can be analyzed independently, without loss of generality, we focus on a single epoch.
Let us introduce some notations. The total duration of the epoch is T0 = TG + TL, where TG and
TL are the durations for the General and Library phases, respectively. Let α be the fraction of
time spent in a Library phase: then we have TL = α× T0 and TG = (1− α)× T0.

As mentioned earlier, another important parameter is the amount of memory that is accessed
during the Library phase (the Library dataset). This parameter is important because the cost of
checkpointing in each phase is directly related to the amount of memory that needs to be protected.
The total memory footprint is M , and the associated checkpointing cost is C (we assume a finite
checkpointing bandwidth, so C > 0). We write M = ML+ML, where ML is the size of the Library
dataset, and ML is the size of the Remainder dataset. Similarly, we write C = CL+CL, where CL
is the cost of checkpointing ML, and CL the cost of checkpointing ML. We can define the parameter
ρ that defines the relative fraction of memory accessed during the Library phase by ML = ρM , or,
equivalently, by CL = ρC.

4.2 Cost of the composite approach

We now detail the cost of resilience during each phase of the composite approach. We start with
the intrinsic cost of the method itself, i.e., assuming a fault-free execution. Then we account for the
cost of failures and recovery.

4.2.1 Fault-free execution

During the General phase, we separate two cases. First, if the duration TG of this phase is short,
i.e. smaller than PG-CL, which is the amount of work during one period of length PG (and where
PG is determined below), then we simply take a partial checkpoint at the end of this phase, before
entering the ABFT-protected mode. This checkpoint is of duration CL, because we need to save
only the Remainder dataset in this case. Otherwise, if TG is larger than PG-CL, we rely on periodic
checkpointing during the General phase: more specifically, the regular execution is divided into
periods of duration PG = W +C. Here W is the amount of work done per period, and the duration
of each periodic checkpoint is C = CL +CL, because the whole application footprint must be saved
during a General phase. The last period is different: we execute the remainder of the work, and
take a final checkpoint of duration CL before switching to ABFT-protected mode. The optimal
(approximated) value of PG will be computed below.

Altogether, the length Tff
G of a fault-free execution of the General phase is the following:

• If TG ≤ PG − CL, then Tff
G = TG + CL

• Otherwise, we have bTG

W c periods of length PG, plus possibly a shorter last period if TG is not
evenly divisible by W . In addition, we need to remember that the last checkpoint taken is of
length CL instead of C.

8

International Journal of Networking and Computing

This leads to

Tff
G =

TG + CL if TG ≤ PG − CL
b TG

PG−C × PGc+ (TG mod W) + CL if TG > PG − CL and TG mod W 6= 0

TG

PG−C × PG − CL if TG > PG − CL and TG mod W = 0

(1)

Now consider the Library phase: we use the ABFT-protection algorithm, whose cost is modeled
as an affine function of the time spent: if the computation time of the library routine is t, its execution
with the ABFT-protection algorithm becomes φ × t. Here, φ > 1 accounts for the overhead paid
per time-unit in ABFT-protected mode. This linear model for the ABFT overhead fits the existing
algorithms for linear algebra, but other models could be considered. In addition, we pay a checkpoint
CL when exiting the library call (to save the final result of the ABFT phase). Therefore, the fault-
tree execution time is

Tff
L = φ× TL + CL (2)

Finally, the fault-free execution time of the whole epoch is

Tff = Tff
G + Tff

L (3)

where Tff
G and Tff

L are computed according to the Equations (1) and (2).

4.2.2 Cost of failures

Next we have to account for failures. During t time units of execution, the expectation of the
number of failures is t

µ , where µ is the Mean Time Between Failures on the platform. We start with
a discussion on the definition of µ. Consider a platform comprising N identical resources, whose

individual failure inter-arrival times X
(j)
i are I.I.D. (Independent Identically Distributed) random

variables. Here, X
(j)
i is the time elapsed between the occurrence of the j − 1-th failure on node i

(or the beginning of the execution if j = 1), and the occurrence of the j-th failure on the same node

i. All X
(j)
i follow the same probability distribution, whose expectation is µind, the MTBF on each

node. Now consider the whole platform, and let Y (j) denote the failure inter-arrival times on the

platform (for instance Y (1), the time until the first failure, is the minimum of the X
(1)
i , 1 ≤ i ≤ N).

Unfortunately, the Y (j) are not I.I.D., unless the X
(j)
i follow an Exponential distribution, so they

do not have the same expectation in the general case. In the literature, there are two (equivalent)
alternative definitions of µ, the MTBF of the platform, and we briefly sketch both of them.

The first alternative to define µ is based on the expected total number of faults. Let n(t) be the
expectation of the total number of failures on the whole platform from time 0 to time t, and define
the platform MTBF µ as the limit ratio of time over failure number:

µ = lim
t→+∞

t

n(t)

By definition, n(t) =
∑N
i=1 ni(t), where ni(t) is the expected number of failures on node i until time t.

Using Wald’s law (and the fact that the X
(j)
i are I.I.D.), it is shown in [24] that µind = limt→+∞

t
ni(t)

for 1 ≤ i ≤ N , hence that µ = µind

N .
The second alternative to define µ is based on the average value of the Yi, using the theory of

the superposition of renewal processes [25]: let us now define

µ = lim
n→+∞

∑n
i=1 E (Yi)

n

Then Kella and Stadje [26, Theorem 4] proves that this limit indeed exists and is also equal to µind

N ,

as soon as the distribution function of the X
(j)
i is continuous.

In summary, we use the relation µ = µind

N with either definition. This relation is agnostic of
the granularity of the resources, which can be anything from a single CPU to a complex multi-core
socket.

9

Composing resilience techniques: ABFT, periodic and incremental checkpointing

We are ready to compute the cost of failures in both execution phases. For each phase, we have a
similar equation: the final execution time is the fault-free execution time, plus the number of failures
multiplied by the (average) time lost per failure:

T final
G = Tff

G +
T final
G

µ
× tlost

G (4)

T final
L = Tff

L +
T final
L

µ
× tlost

L (5)

Equation (4) reads as follows: Tff
G is the failure-free execution time, to which we add the time

lost due to failures; the expected number of failures is
T final
G

µ , and tlost
G is the average time lost per

failure. We have a similar reasoning for Equation (5). Then, tlost
G and tlost

L remain to be computed.
For tlost

G (General phase), we discuss both cases:
• If TG ≤ PG − CL: since we have no checkpoint until the end of the General phase, we have

to redo the execution from the beginning of the phase. On average, the failure strikes at the

middle of the phase, hence the expectation of loss is
T ff
G

2 time units. We then add the downtime
D (time to reboot the resource or set up a spare) and the recovery R. Here R is the time
needed for a complete reload from the checkpoint (and R = C if read/write operations from/to
the stable storage have the same speed). We derive that:

tlost
G = D +R+

Tff
G

2
(6)

• If TG > PG − CL: in this case, we have periodic checkpoints, and the amount of execution
which needs to be re-done after a failure corresponds to half a checkpoint period on average,
so that:

tlost
G = D +R+

PG
2

(7)

For tlost
L (Library phase), we derive that

tlost
L = D +RL + ReconsABFT

Here, RL is the time for reloading the checkpoint of the Remainder dataset (and in many cases
RL = CL). As for the Library dataset, there is no checkpoint to retrieve, but instead it must be
reconstructed from the ABFT checksums, which takes time ReconsABFT.

4.2.3 Optimization

We verify from Equations (2) and (5) that T final
L is always a constant. Indeed, we derive that:

T final
L =

1

1− D+RL+ReconsABFT

µ

× (φ× TL + CL) (8)

As for T final
G , it depends on the value of TG: it is constant when TG is small. In that case, we

derive that:

T final
G =

1

1− D+R+
TG+C

L
2

µ

× (TG + CL) (9)

The interesting case is when TG is large: in that case, we have to determine the optimal value of the
checkpointing period PG which minimizes T final

G . We use an approximation here: we assume that
we have an integer number of periods, and the last periodic checkpoint is of size C. Note that the
larger TG, the more accurate the approximation. From Equations (1), (4) and (7), we derive the
following simplified expression:

T final
G =

TG
X

where X =

(
1− C

PG

)(
1−

D +R+ PG

2

µ

)
(10)

10

International Journal of Networking and Computing

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library
P
UREP

ERIO
DICC

KPT

Optimal Checkpoint Interval

Figure 5: PurePeriodicCkpt

We rewrite:

X = (1− C

2µ
)− PG

2µ
− C(µ−D −R)

µPG

The maximum of X gives the optimal period P opt
G . Differentiating X as a function of PG, we find

that it is obtained for:
P opt
G =

√
2C(µ−D −R) (11)

Plugging the value of P opt
G back into Equation (10) provides the optimal value of T final

G when TG is
large.

We have successfully computed the final execution time T final of our composite approach in all
cases. In the experiments provided in Section 6, we report the corresponding waste. The waste is
defined as the fraction of time when platform resources do not progress the application’s computation
(due to the intrinsic overhead of the resilience technique and to failures that strike the application
during execution). The waste is given by:

Waste = 1− T0

T final
(12)

We conclude this section with another word of caution: the optimal value of the waste is only
a first-order approximation, not an exact value. Equation (11) is a refined version of well known
formulas by Young [19] and Daly [20]. But just as in [19, 20], the formula only holds when µ, the
value of the MTBF, is large with respect to the other resilience parameters. Owing to this hypothesis,
we can neglect the probability of several failures occurring during the same checkpointing period.
However, in order to assess the accuracy of the model, when doing simulations in section 6, we
account for all unlikely failure scenarios, including multiple rollbacks during a period, and re-execute
the work until each period is indeed successfully completed. Also, we use arbitrary values for TG, not
just multiples of the optimal period P opt

G , and always conclude a General phase by a checkpoint
CL.

4.3 Comparison with conservative approaches

A fully conservative approach, agnostic of the ABFT library, would perform periodic checkpoints
throughout the execution of the whole epoch. As already mentioned, we call this approach Pure-
PeriodicCkpt (see Figure 5). Let T final

PC be the final execution time with this PurePeriodicCkpt
approach; it can be computed from the results of Section 4.2 as follows:
• No ABFT: α = 0 and T final

L = 0
• We optimize T final

PC = T final
G just as before, with the same optimal period P opt

PC = P opt
G , employed

throughout the epoch.
One can reduce the cost of PurePeriodicCkpt by noticing that during the Library epoch,

only the Library dataset is modified (namely ML). Employing application-level checkpointing
would, in this case, yield a checkpoint cost reduction (down to CL). Obviously, with a different cost
of checkpointing, the optimal checkpoint period is different. Therefore, a semi-conservative approach

11

Composing resilience techniques: ABFT, periodic and incremental checkpointing

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library
B

IP
ERIO

DICC
KPT

LIBRARY
Checkpoint Interval

GENERAL
Checkpoint Interval

Figure 6: BiPeriodicCkpt

(called BiPeriodicCkpt, see Figure 6) assumes that the checkpoint system can recognize that the
program has entered a library routine that modifies only a subset of the dataset, and switches to
the optimal checkpoint period according to the application phase. During the General phase, the
overhead of failures and protection remains unchanged, but during the Library phase, the cost of a
checkpoint is reduced to CL (instead of C); however, the cost of reloading from a checkpoint remains
R (since the different application-level checkpoints must be combined to recover the entire dataset
at rollback time). This leads to two different checkpointing periods, one for each phase. The new
optimal checkpoint period can be modeled as follows:
• T final

PC = T final
G + T final

LPC , where T final
G is computed as before

• T final
LPC is computed similarly as T final

G , but with different parameters:

T final
LPC =

1

1− D+R+
PBPC

2

µ

× PBPC
PBPC − CL

× TL (13)

and the optimal period is
P opt
BPC,L =

√
2CL(µ−D −R) (14)

5 Incremental checkpointing

In this section, we refine our evaluation of checkpointing vs. ABFT during the Library phase.
In addition to comparing ABFT with (classical) periodic checkpointing, we also compare it with
incremental checkpointing applied during the Library routines. This technique relies on knowledge
about the computational routine: during the execution of the routine, the overhead of checkpointing
can be reduced owing to a careful selection of the time-steps at which checkpoints are taken, in order
to minimize the volume of data that needs to be saved during these checkpoints.

5.1 Application model

We target a typical library routine that consists of several consecutive tasks. Each task is executed
in parallel on the platform, and can be followed by a checkpoint. To give an example, a typical
task could be factoring a matrix panel within the HPL benchmark [27]. However, our approach is
agnostic of the granularity of the tasks, and a finer granularity can always be achieved by subdividing
the routine workload into more tasks.

Formally, the library routine is partitioned into n tasks t1 . . .tn. The execution time of ti
on the platform is wi. Task ti may be followed by a checkpoint, whose cost is incremental: it
depends on the number of memory locations cumulatively modified by all the tasks executed since
the last checkpoint. ci...j represents the cost of checkpointing after task tj , when the last checkpoint
precedes ti. Refer to Table 1 for a summary of the notations.

When a failure strikes, we have to re-execute all tasks that follow the last checkpoint. The cost
of reloading from the checkpoint preceding ti is ri−1. The cost of restarting from the initial state

12

International Journal of Networking and Computing

ti an individual task that represents a checkpointable unit
wi duration of work for task ti
wi...j cumulative duration of work for tasks ti . . .tj
ci...j duration of checkpoint after tj , knowing that last checkpoint is after ti−1

ri duration of restart from checkpoint after ti
τio collective I/O transfer throughput
τflops collective computation throughput
λ 1/µ (rate of Exponentially-distributed failures)

Table 1: List of model parameters.

nb#

nb#

N#

N#

L#

U#

T3#

Figure 7: Representation of a tiled LU Factorization. Once the L and U parts of the matrix have
been computed, they are not touched by the algorithm before the end of the factorization. The
figure shows the part of the matrix that is updated by Task t3.

is r0. Note that except for t1, it is possible to restart at ti only when a checkpoint was taken after
ti−1 (therefore, ri−1 does not include the cost of computing any preceding task). The cost of ri−1 is
fixed for a given value of i and does not depend on the number of tasks separating two checkpoints.

To illustrate these definitions, consider the dense LU or QR factorization of a square matrix of
size N . This matrix is partitioned into square tiles of size nb, and there are n × n tiles (so that
N = n × nb). We partition the factorization into n tasks, where ti corresponds to the i-th step of
the factorization: factor panel i (the i-column of the tiled matrix) and update columns i + 1 to n.
For an LU factorization (see Figure 7), only the tiles on, or below the diagonal are modified (we
ignore pivoting for simplification, as this does not impact the checkpoint size), so that ti operates
on the bottom-right corner of tiles, those of index i to n. We derive that ci...j depends on i but not
on j and corresponds to the cost of writing this bottom-right corner onto stable storage. There are
(n − i + 1)2 tiles of n2

b elements, hence ci...j = (n − i + 1)2n2
bτio, where τio is the time to write a

floating point number to stable storage. We similarly derive that ri−1 = ci...j , assuming the same
speed for reading from and writing to stable storage. Finally, for the QR factorization, we obtain
the same checkpoint and recovery costs as for LU, however, the computational cost is different. For
LU, task ti requires 2(n− i+ 1)2n3

b flops, hence an execution time wi = 2(n− i+ 1)2n3
bτflops, where

τflops is the (parallel) time to execute a double-precision floating-point operation. For QR, the load
of each task is twice as high, and the computation rate is typically slower, because QR kernels are
not as efficient as LU kernels (employing LARFB kernels instead of GEMM matrix products for the
updates).

We can envision more complex applications for which ci...j would depend on both i and j. An

13

Composing resilience techniques: ABFT, periodic and incremental checkpointing

example is the left-looking LU factorization [28], where at step i, only the i-th panel is updated.
But in this variant, the i-th panel is updated i − 1 times at step i, receiving the updates from all
the previous steps. In that case, we have ci...j = (j − i + 1)2n2

bτio, because only panels i to j have
been modified between ti and tj . On average, the checkpoint time is reduced in comparison with
the previous (so-called right-looking) variant. However, we need the entire matrix to restart the
execution at any step, hence ri−1 = n2n2

bτio. Also, while the flop counts of both versions are the
same, the parallel efficiency of the left-looking version is not as good as that of the right-looking
one, because a smaller fraction of the matrix (a single panel instead of the whole trailing matrix)
is updated at each step. In other words, we would use a larger value of τflops for the left-looking
version.

The optimization problem can be stated as follows:

Definition 1 (Incremental). Given n consecutive tasks ti of execution time wi, 1 ≤ i ≤ n, given
the values ci...j, 1 ≤ i ≤ j ≤ n and ri, 0 ≤ i ≤ n − 1, and given the failure MTBF µ, decide after
which tasks to insert checkpoints so as to minimize the expectation of the total execution time.

We provide an optimal solution for Incremental when the failure inter-arrival times follow an
Exponential distribution (of rate λ = 1/µ) below. For an arbitrary distribution, one can derive an
approximation by using the result obtained with an Exponential distribution for the same MTBF.

5.2 Optimal incremental checkpointing strategy

This section provides a dynamic programming algorithm to solve the Incremental problem. We
use a dynamic programming algorithm to compute Opt(i, n) for 1 ≤ i ≤ n, the optimal runtime
expectation for executing all tasks ti, ti+1, . . . , tn, knowing that a checkpoint has been taken just
after task ti−1 and that one checkpoint will be taken after task tn. We assume that the application
data is originally stored on disk, hence C0 = 0 where C0 is the time needed to prepare for r0. We
also assume that it will be stored on disk at the end of the execution, hence the need to take a
checkpoint after the last task. In fact we are interested only in the value of Opt(1, n), but we will
compute it recursively from the other values Opt(i, n) (1 ≤ i ≤ n), and from the expected time
needed to successfully execute some amount of work and checkpoint it. We start with the latter: let
f(i, j) denote the expected time to successfully execute tasks ti, ti+1, . . . , tj , and to checkpoint
after tj , without any intermediate checkpoint, and knowing that a checkpoint has been taken after
task ti−1. To the best of our knowledge, the expectation E(W,C) of the time needed to successfully
compute during W seconds and then take a checkpoint of duration C is known only for Exponentially
distributed failures; from [22], we know that:

E(W,C) = eλR(
1

λ
+D)(eλ(W+C) − 1)

where λ is the failure rate (inverse of MTBF µ). We readily obtain:

f(i, j) = eλri−1(
1

λ
+D)(eλ(wi...j+ci...j) − 1)

The value of Opt(i, n) can be computed using the following recursive dynamic programming
formula, where 1 ≤ i < n:

Opt(i, n) = min
{
f(i, n), mini≤h<n f(i, h) +Opt(h+ 1, n)

}
(15)

The formula can be understood as follows: we search for all possible positions h of the first checkpoint
after task ti, recursively using the optimal solution for the subproblem Opt(h + 1, n), and we take
the minimum expected execution time over all these values. We also account for the possibility of
no checkpoint until the last task tn –hence the value f(i, n). The formula is initialized by letting
Opt(n, n) = f(n, n).

This dynamic programming formulation nicely extends the result of Toueg [29], who has a similar
approach for deciding which tasks to checkpoint in a linear chain of tasks. The main difference is

14

International Journal of Networking and Computing

that the checkpoint time of tack tj in [29] is independent of the location of the last checkpoint
(ci...j = Cj for all i).

For a general HPC application, let Inc&PeriodicCkpt denote the approach that uses optimal
incremental checkpointing in the Library phase, and regular checkpointing in the General phase.

6 Evaluation

In this section, we evaluate the ABFT&PeriodicCkpt protocol in simulation, and compare its
performance to PurePeriodicCkpt, BiPeriodicCkpt and Inc&PeriodicCkpt in different sce-
narios. We start with a description of the simulator and experiments in Section 6.1. Then we detail
the results of the comparison of the different protocols in Section 6.2. In Section 6.2, we also com-
pare simulation results and predicted performance results analytically computed from the models
presented in Sections 4.2 and 4.3, and we do obtain a very good correspondence. Then, we conduct
a weak scalability study in Section 6.3, in order to assess the performance of the various protocols
at very large scale. Last, in Section 6.4, we investigate the potential of Inc&PeriodicCkpt, where
incremental checkpointing is employed during the Library phases.

6.1 Validation

To validate the performance models, we have implemented a simulator, based on discrete event sim-
ulation, that reproduces the behavior of the different algorithms, even in cases that the performance
models cannot cover. Indeed, as mentioned in Section 4.2.3, a few approximations have been made
when considering the mathematical models, to make their expressions tractable. For example, the
models assume that a single failure may hit the system, until its recovery. The effect of events
like overlapping failures, which is uncommon when the MTBF is large enough, is neglected in the
proposed performance model. The simulator, however, takes these events into account, accurately
reproducing the corresponding costs.

In the simulator, failures are generated following an Exponential distribution law parameterized
to fix the MTBF to a given value. Then the application, and the chosen fault tolerance mechanism,
are unfolded on that set of failures, triggering rollbacks, and other protocol-specific overheads,
to measure the duration of the execution. For each scenario, and each parameter, the average
termination time over a thousand executions is returned by the simulator.

We present in [30] , an exhaustive evaluation of the different parameters independently, comparing
the results as predicted by the models, and the simulation. In this paper, we focus the analysis on
a smaller subset. We consider an application that executes for a week when there is neither a fault
tolerance mechanism nor any failure. The time required to take a checkpoint and rollback the whole
application is 10 minutes (C, R), a consistent order of magnitude for current applications at large
scale [5]. We consider that the ratio of the memory that is modified by the Library phase (ρ) is
fixed at 0.8 (to vary a single parameter at a time in our simulation), and the overhead due to ABFT
is φ = 1.03 (again, typical from production deployments [9]).

Figure 8 presents 6 evaluations of that scenario. The MTBF of the system varies on the x-
axis, and the ratio of time spent in the Library phase (α) on the y-axis. In Figures 8a to 8f,
we present the waste predicted by the model, and validate the model by observing the difference
between the model prediction and the waste measured from the simulator for a given combination
of parameters and protocol. From the validation perspective, the figures on the right side show an
excellent correspondence between predicted (from the model) and actual (obtained from simulation)
values. For small MTBF values, the model tends to slightly underestimate the waste. Qualitatively,
this under-estimation is expected, because an approximation that must be done to allow a closed
formula representation is to assume that failures will not hit processors while they are recovering
from a previous failure. In reality, when the MTBF is very small, this event can sometimes happen,
forcing the system to start a new recovery, and introducing additional waste. That underestimation
does not exceed 12% in the worst case and quickly decreases to below 5%.

15

Composing resilience techniques: ABFT, periodic and incremental checkpointing

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2

 60 80 100 120 140 160 180 200 220 240

MTBF system (minutes)

 0

 0.2

 0.4

 0.6

 0.8

 1

R
a

ti
o

 o
f

ti
m

e
 s

p
e

n
t

in
 L

ib
ra

ry
 P

h
a

s
e

 (
α

)

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) Waste of PurePeriodicCkpt: Model

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2

 60 80 100 120 140 160 180 200 220 240

MTBF system (minutes)

 0

 0.2

 0.4

 0.6

 0.8

 1

R
a

ti
o

 o
f

ti
m

e
 s

p
e

n
t

in
 L

ib
ra

ry
 P

h
a

s
e

 (
α

)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

(b) PurePeriodicCkpt: Difference Wastesimul −
Wastemodel

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2

 60 80 100 120 140 160 180 200 220 240

MTBF system (minutes)

 0

 0.2

 0.4

 0.6

 0.8

 1

R
a

ti
o

 o
f

ti
m

e
 s

p
e

n
t

in
 L

ib
ra

ry
 P

h
a

s
e

 (
α

)

 0

 0.2

 0.4

 0.6

 0.8

 1

(c) Waste of BiPeriodicCkpt: Model

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2

 60 80 100 120 140 160 180 200 220 240

MTBF system (minutes)

 0

 0.2

 0.4

 0.6

 0.8

 1

R
a

ti
o

 o
f

ti
m

e
 s

p
e

n
t

in
 L

ib
ra

ry
 P

h
a

s
e

 (
α

)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

(d) BiPeriodicCkpt: Difference Wastesimul −
Wastemodel

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2

 60 80 100 120 140 160 180 200 220 240

MTBF system (minutes)

 0

 0.2

 0.4

 0.6

 0.8

 1

R
a

ti
o

 o
f

ti
m

e
 s

p
e

n
t

in
 L

ib
ra

ry
 P

h
a

s
e

 (
α

)

 0

 0.2

 0.4

 0.6

 0.8

 1

(e) Waste of ABFT&PeriodicCkpt: Model

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2

 60 80 100 120 140 160 180 200 220 240

MTBF system (minutes)

 0

 0.2

 0.4

 0.6

 0.8

 1

R
a

ti
o

 o
f

ti
m

e
 s

p
e

n
t

in
 L

ib
ra

ry
 P

h
a

s
e

 (
α

)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

(f) ABFT&PeriodicCkpt: Difference Wastesimul −
Wastemodel

Figure 8: Waste as a function of MTBF and fraction of time α spent in Library phase; difference of
the measured waste by simulation Wastesimul minus the predicted waste by the model Wastemodel.
Here W =1 week, C =R =10 minutes, CL =0.8C, φ =1.03, ReconsABFT =2s.

16

International Journal of Networking and Computing

6.2 PurePeriodicCkpt, BiPeriodicCkpt, and ABFT&PeriodicCkpt

Consider Figures 8a and 8b, that represent the waste of PurePeriodicCkpt as a function of
the MTBF (µ) and the amount of time spent in the Library routine (α): it is obvious that the
PurePeriodicCkpt protocol, which is oblivious of the different phases of the application, presents
a waste that is only a function of the MTBF. As already evaluated and explained in many other
works, when the MTBF increases, the waste decreases, because the overheads due to failure handling
tend toward 0, and the optimal checkpointing period can increase significantly, reducing the waste
due to resilience in a fault-free execution.

Comparatively, for the protocol BiPeriodicCkpt presented in Figures 8c and 8d, the parameter
α affects the optimal periods used both in the Library and general phases. Since the cost of
checkpointing for these phases differs by 20% (CL = 0.8C), when the relative time spent in the
General routine increases (α is closer to 0), then the protocol behaves more and more as Pure-
PeriodicCkpt. When α is almost 1, on the other hand, the behavior is similar to PurePeriodic-
Ckpt, but with a checkpoint cost reduction of 20%. Thus, the waste becomes minimal when α
tends toward 1.

In Figures 8e and 8f, we present the waste for the ABFT&PeriodicCkpt protocol. When α
tends toward 0, as above, the protocol behaves as PurePeriodicCkpt, and no benefit is shown.
When 50% of the time is spent in the Library routine, the benefit, compared to PurePeriodic-
Ckpt, but also compared to BiPeriodicCkpt, is already visible: for 50% of the failures (when the
failure hits during a Library phase), the cost of recovery is reduced to 20% of the rollback cost,
plus the constant overhead of ABFT recovery. Moreover, periodic checkpointing is disabled 50%
of the time, producing yet another gain compared to BiPeriodicCkpt which still requires saving
80% of the memory periodically. In this case, the gain in checkpoint avoidance compensates for the
waste induced by additional computations done during the Library phase to provide the ABFT
protection. When considering the extreme case of 100% of the time spent in the Library phases,
the overhead tends to reach the overhead induced by the slowdown factor of ABFT (φ = 1.03, hence
3% overhead).

6.3 Weak Scalability

As illustrated above, the ABFT&PeriodicCkpt approach exhibits better performance when a
significant time is spent in the Library phase, and when the failure rate implies a small optimal
checkpointing period. If the checkpointing period is large (because failures are rare), or if the
duration of the Library phase is small, then the optimal checkpointing interval becomes larger than
the duration of the Library phase, and the algorithm automatically resorts to the BiPeriodic-
Ckpt protocol. This can also be the case when the epoch itself is smaller than (or of the same order
of magnitude as) the optimal checkpointing interval (i.e., when the application does a fast switching
between Library and General phases).

However, consider such an application that frequently switches between (relatively short) Li-
brary and General phases. When porting that application to a future larger scale machine, the
number of nodes that are involved in the execution will increase, and at the same time, the amount
of memory on which the ABFT operation is applied will grow (following Gustafson’s law). This has
a double impact: the time spent in the ABFT routine increases, while at the same time, the MTBF
of the machine decreases. In this section, we evaluate quantitatively how this scaling factor impacts
the relative performance of the ABFT&PeriodicCkpt, PurePeriodicCkpt and BiPeriodic-
Ckpt algorithms. Owing to the good correspondence between results from the model and results
from the simulation, we (confidently) use only the model in this scalability study.

First, we consider the case of an application where the Library and General phases scale at
the same rate. We take the example of linear algebra kernels operating on 2D-arrays (matrices),
that scale in O(n3) of the array order n (in both phases). Following a weak scaling approach, the
application uses a fixed amount of memory Mind per node, and when increasing the number x of
nodes, the total amount of memory increases linearly as M = xMind. Thus O(n2) = O(x), and the
parallel completion time of the O(n3) operations, assuming perfect parallelism, scales in O(

√
x).

17

Composing resilience techniques: ABFT, periodic and incremental checkpointing

 0

 10

 20

 30

 40

#
 F

a
u

lt
s Nb Faults PeriodicCkpt

Nb Faults Bi-PeriodicCkpt
Nb Faults ABFT PeriodicCkpt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1k 10k 100k 1M

W
a

s
te

Nodes

PeriodicCkpt
Bi-PeriodicCkpt

ABFT PeriodicCkpt

Figure 9: Total waste for ABFT&PeriodicCkpt, BiPeriodicCkpt and PurePeriodicCkpt,
when considering the weak scaling of an application with a fixed ratio of 80% spent in a Library
routine.

To instantiate this case, we take an application that would last a thousand minutes at 100,000
nodes (the scaling factor corresponding to an operation in O(n3) is then applied when varying the
number of nodes), and consisting for 80% of a Library phase, and 20% of a General phase. We
set the duration of the complete checkpoint and rollback (C and R, respectively) to 1 minute when
100,000 nodes are involved, and we scale this value linearly with the total amount of memory, when
varying the number of nodes. The MTBF at 100,000 nodes is set to 1 failure every day, and this also
scales linearly with the number of components. The ABFT overheads, and the downtime, are set to
the same values as in the previous section, and 80% of the application memory (ML) is touched by
the Library phase.

Given these parameters, Figure 9 shows (i) the relative waste of PurePeriodicCkpt, Bi-
PeriodicCkpt, and ABFT&PeriodicCkpt, as a function of the number of nodes, and (ii) the
average number of faults that each execution will have to deal with to complete. The expected num-
ber of faults is the ratio of the application duration by the platform MTBF (which decreases when
the number of nodes increases, generating more failures). The fault-free execution time increases
with the number of nodes (as noted above), and the fault-tolerant execution time is also increased
by the waste due to the protocol. Thus, the total execution time of PurePeriodicCkpt or Bi-
PeriodicCkpt is larger at 1 million nodes than the total execution time of ABFT&PeriodicCkpt
at the same scale, which explains why more failures happen for these protocols.

When comparing BiPeriodicCkpt and PurePeriodicCkpt, one can see the benefit of ap-
plication-level checkpointing, which spares about 20% of the checkpoint time during 80% of the
checkpoints: this benefit shows up by a small linear reduction of the waste for BiPeriodicCkpt.
However, both approaches perform similarly with respect to the number of nodes in this weak-scaling
experiment.

Up to approximately 100,000 nodes, the fault-free overhead of ABFT negatively impacts the waste
of the ABFT&PeriodicCkpt approach, compared to BiPeriodicCkpt or PurePeriodicCkpt.
Because the MTBF on the platform is very large compared to the application execution time (and
hence to the duration of each Library phase), periodic checkpointing approaches have a very large
checkpointing interval, introducing very few checkpoints, thus a small failure-free overhead. Because
failures are rare, the cost due to time lost at rollbacks does not overcome the benefits of a small
failure-free overhead, while the ABFT technique must pay the linear overhead of maintaining the

18

International Journal of Networking and Computing

 0
 2
 4
 6
 8

#
 F

a
u

lts

Nb Faults PeriodicCkpt
Nb Faults Bi-PeriodicCkpt

Nb Faults ABFT PeriodicCkpt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1k
α = 0.55

10k
α = 0.8

100k
α = 0.92

1M
α = 0.975

W
a

st
e

Nodes

PeriodicCkpt
Bi-PeriodicCkpt

ABFT PeriodicCkpt

Figure 10: Total waste for ABFT&PeriodicCkpt, BiPeriodicCkpt and PurePeriodicCkpt,
when considering the weak scaling of an application with variable ratio of time spent in a Library
routine.

redundancy information during the whole computation of the Library phase.
Once the number of nodes reaches 100,000, however, two things happen: failures become more

frequent, and the time lost due to failures starts to impact rollback recovery approaches. Thus, the
optimal checkpointing interval of periodic checkpointing becomes smaller, introducing more check-
pointing overheads. During 80% of the execution, however, the ABFT&PeriodicCkpt approach
can avoid these overheads, and when they reach the level of linear overheads due to the ABFT tech-
nique, ABFT&PeriodicCkpt starts to scale better than both periodic checkpointing approaches.

All protocols have to resort to checkpointing during the General phase of the application. Thus,
if failures hit during this phase (which happens 20% of the time in this example), they will all have
to resort to rollbacking and lose some computation time. Hence, when the number of nodes increases
and the MTBF decreases, eventually, the time spent in rollbacking and re-computing, which is linear
in the number of faults, will increase the waste of all algorithms. However, one can see that this
part is better controlled by the ABFT&PeriodicCkpt algorithm.

Next, we consider the case of an unbalanced General phase: consider an application where the
Library phase has a cost O(n3) (where n is the problem size), as above, but where the General
phase consists of O(n2) operations. This kind of behavior is reflected in many applications where
matrix data is updated or modified between consecutive calls to computation kernels. Then, the
time spent in the Library phase will increase faster with the number of nodes than the time spent in
the General phase, varying α. This is what is represented in Figure 10. We took the same scenario
as above for Figure 9, but α is a function of the number of nodes chosen such that at 100,000 nodes,
α = T final

L /T final = 0.8, and everywhere, T final
L = O(n3) = O(

√
x), and T final

PC = O(n2) = O(1). We
give the value of α under the number of nodes, to show how the fraction of time spent in Library
phases increases with the number of nodes.

The PurePeriodicCkpt protocol is not impacted by this change, and behaves exactly as in
Figure 9. Note, however, that T final = T final

L + T final
PC progresses at a lower rate in this scenario

than in the previous scenario, because T final
PC does not increase with the number of nodes. Thus,

the average number of faults observed for all protocols is much smaller in this scenario. Because
more and more time (relative to the duration of the application) is spent in the Library phase,
where 20% of the memory does not need to be saved, the BiPeriodicCkpt algorithm increases its

19

Composing resilience techniques: ABFT, periodic and incremental checkpointing

 0

 2

 4

 6

#
 F

a
u

lt
s Nb Faults PeriodicCkpt

Nb Faults Bi-PeriodicCkpt
Nb Faults ABFT PeriodicCkpt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1k
α = 0.55

10k
α = 0.8

100k
α = 0.92

1M
α = 0.975

W
a

s
te

Nodes

PeriodicCkpt
Bi-PeriodicCkpt

ABFT PeriodicCkpt

Figure 11: Total waste for ABFT&PeriodicCkpt, BiPeriodicCkpt and PurePeriodicCkpt,
when considering the weak scaling of an application with variable ratio of time spent in a Library
routine, and constant checkpointing time

benefit, compared to PurePeriodicCkpt: less overhead is paid for checkpoints that happen during
Library phases, and the optimal period of checkpointing during these phases is longer. The cost
of failures, however, remains the same, since the state of the entire application (Library memory,
and Remainder memory) must be restored at rollback time.

The efficiency on ABFT&PeriodicCkpt, however, is more significant. The latter protocol
benefits from the increased α ratio in both cases: since more time is spent in the Library phase,
periodic checkpointing is de-activated for relatively longer periods. Moreover, this increases the
probability that a failure will happen during the Library phase, where the recovery cost is greatly
reduced using ABFT techniques. Thus, ABFT&PeriodicCkpt is capable of mitigating failures
at a much smaller overhead than simple periodic checkpointing, and more importantly with better
scalability.

In both previous evaluations, we have always considered the checkpointing (and rollback recovery)
time proportional to the global amount of memory that needs to be saved in these checkpoints. This
is realistic, if the checkpoint needs to be stored in a remote place, to guarantee its availability after a
failure occurs. In this case, the interconnect (or the bandwidth capacity of the disks) eventually be-
comes a bottleneck, and the saving time becomes proportional to the number of computing resources
saving their state simultaneously. To mitigate the negative effect of this bottleneck, system designers
are studying a couple of alternative approaches. One consists of featuring each computing node with
local storage capability, ensuring through the hardware that this storage will remain available during
a failure of the node. Another approach consists of using the memory of the other processors to store
the checkpoint, pairing nodes as “buddies,” thus taking advantage of the high bandwidth capability
of the high speed network to design a scalable checkpoint storage mechanism [31, 32, 33, 34].

Thus, one might think reasonable to speculate that the checkpoint storage time will not increase
with the number of nodes, but will actually remain constant. This is the scenario we contemplate in
Figure 11. The scenario is identical to the previous scenario of Figure 10, but the checkpoint time
(C) and rollback recovery time (R) are both independent of the number of nodes that checkpoint,
and is fixed at 60s. One can see a noteworthy benefit on both periodic checkpointing protocols:
even at 1 million nodes, the waste due to the protocols and the few faults that do occur during the
execution (up to 6 failures on average during the whole execution) both add up to below 15%. At

20

International Journal of Networking and Computing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1k
α=0.56

10k
α=0.8

100k
α=0.92

1M
α=0.97

W
a

s
te

Nodes

PeriodicCkpt
Bi-PeriodicCkpt

ABFT PeriodicCkpt
Incremental

Figure 12: Total waste for ABFT&PeriodicCkpt, Inc&PeriodicCkpt, BiPeriodicCkpt and
PurePeriodicCkpt, when considering the weak scaling of an application with variable ratio of
time spent in a Library QR routine.

the same time, the ABFT technique continues to introduce its constant overhead (due to additional
computation) during the whole execution, and appears to present a waste that is almost constant
when the number of nodes increases.

Figure 11 shows that PurePeriodicCkpt and BiPeriodicCkpt are less efficient than ABFT-
&PeriodicCkpt at 1 million nodes, despite the perfectly scalable checkpointing hypothesis. To
reach comparable performance, we must reduce checkpointing overhead by a factor of 10 and use
C = R = 6s. Such low figures can only be achieved through new hardware (like NVRAM), and new
hierarchical checkpointing protocols.

6.4 Incremental checkpointing

In our comparison between ABFT-hybrid and checkpointing, the last optimization that we consider
is to employ incremental checkpointing during the Library phases (as detailed in Section 5). With
incremental checkpointing, the checkpoint data volume depends on the memory write access pat-
tern of the application, thus the computation of the optimal repartition of incremental checkpoints
requires knowledge of the algorithmic features of the Library phases. We present the results for
the right looking QR factorization (as described in Section 5.1).

In Figure 12, we consider an instantiation of an application that alternates General phases
and QR factorizations; the repartition of General versus QR phase durations α is set to 0.8 at
10,000 nodes, and varies according to an imbalance ratio n3/n2 (similarly to the setup employed in
Figure 10). The application dataset is scaled to the number of nodes to remain constant at 16GB
per node. We consider the case of a machine with one I/O node per 100 compute nodes, and an
individual I/O node bandwidth of 80Gb/s; the resultant values for C and R are approximately 25s
at any scale. The failure rate is set to 1 failure per day at 10,000 nodes (and scaled linearly with
the number of nodes).

As can be observed, the more conservative hypothesis made in this deployment regarding the
storage capacity and MTBF of components, result in a sharp increase in the waste incurred by peri-
odic checkpointing approaches. The incremental checkpointing approach departs from this behavior
and exhibits a better waste profile even for millions of nodes: the waste is reduced to less than
20%. Yet the ABFT composite approach still outperforms it by a significant margin. One can note

21

Composing resilience techniques: ABFT, periodic and incremental checkpointing

 0
 0.5

 1
 1.5

 2
 2.5

#
 C

k
p

t Ratio of number of Checkpoints (Incremental / Periodic)

10
0

10
1

10
2

10
3

10
4

10
5

1k 10k 100k 1M

E
x
p

e
c
te

d
 G

a
in

 o
n

 C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Nodes

Total time gain
I/O gain

Figure 13: Benefits from employing Inc&PeriodicCkpt over BiPeriodicCkpt in terms of com-
pletion time and I/O volume (QR routines).

that leveraging on knowledge about the behavior of the computational routines permits outstanding
gains in both cases, in the case of incremental checkpointing by better scheduling the checkpoints,
and in the case of ABFT by reducing the I/O pressure.

In order to further quantify the gain achieved by the dynamic programming scheduling of in-
cremental checkpoints, we compare the checkpoint costs incurred during the Library phase versus
the costs generated by a periodic approach. Note that since we compare only the costs during the
Library phase in this figure, we take the BiPeriodicCkpt approach, and ignore the Remain-
der memory altogether. Figure 13 presents this comparison (for the same deployment parameters
presented above). The top bar-graph outlines the difference in the number of checkpoints taken be-
tween Inc&PeriodicCkpt and BiPeriodicCkpt. Because in Inc&PeriodicCkpt, checkpoints
are smaller and thus less costly, the dynamic programming schedules more checkpoints, thereby
improving the resiliency of the application by reducing the average rollback incurred by failures.
Noteworthy, the distribution of these checkpoints over time are not periodic: as the operation pro-
gresses, it goes faster to achieve each task and a lower amount of memory is updated. The dynamic
program finds the optimal position of the checkpoints to become more and more frequent, reducing
the risk of re-execution in case of failure.

The second graph of Figure 13 presents the time difference and I/O cost difference between Bi-
PeriodicCkpt and Inc&PeriodicCkpt. Although the incremental approach takes more check-
points, the overall checkpointing volume is actually reduced, which translates into a major reduction
in the overall runtime. Overall, and as is the case for ABFT&PeriodicCkpt, leveraging knowl-
edge about the computational routines behavior is highly beneficial. Thanks to knowing the access
pattern and thereby the volume of each checkpoints taken at a particular step, the dynamic pro-
gramming of incremental checkpoints can reduce drastically the I/O pressure, the average rollback
incurred by each failures, which translates into massive gains on the overall runtime.

7 Conclusion

In this paper, we have formalized and quantified a novel method of composing fault tolerance ap-
proaches for applications that alternate between routines for which advanced, algorithm-aware fault
tolerance methods can be deployed, and opaque sections for which no particular features are promi-

22

International Journal of Networking and Computing

nent to leverage from a fault tolerance approach. In the resultant composition, each of these sections
is protected by its own mechanism, ABFT or incremental checkpointing in one case and generic check-
point/restart in the other. A performance model has been derived for such methods and thoughtfully
validated using a simulator developed for this scope. We have compared our composite approach with
a traditional periodic checkpointing approach using rollback and recovery, under different plausible
scenarios. Our model predicts that the cost of a “checkpoint only” approach will maintain a rea-
sonable overhead only under highly optimistic assumptions, where the checkpointing cost stagnates
when the number of computational resources increases. Under more realistic assumptions, where
the checkpointing cost increases with the number of resources, the composite approach will provide
significantly greater benefits compared with checkpoint/restart, by minimizing the waste and thus
increasing the platform throughput. We also consider an optimization of checkpoint/restart which
employs incremental checkpointing and leverage an intimate knowledge of the computing routine
memory access pattern to devise an optimal dynamic programming schedule of the checkpoints.
Despite the great improvements demonstrated over basic periodic checkpoint/restart, our weak scal-
ability study shows that the gain of the ABFT composite approach will continue to grow with the
increase in the number of computing resources, making it a more plausible and desirable approach
at very large scale.

Acknowledgements

The authors would like to thank the reviewers for their comments and suggestions. This work was
supported in part by the National Science Foundation (NSF #0904952 and #1063019), JST Japan,
the French Research Agency (ANR) through the Rescue project, and the Russian Scientific Fund,
Agreement N14-11-00190. Yves Robert is with Institut Universitaire de France.

References

[1] B. Schroeder and G. A. Gibson, “Understanding failures in petascale computers,” Journal of
Physics: Conference Series, vol. 78, no. 1, p. 012022, 2007.

[2] G. Zheng, X. Ni, and L. Kale, “A scalable double in-memory checkpoint and restart scheme
towards exascale,” in Dependable Systems and Networks Workshop (DSN-W), 2012, pp. 1–6.

[3] D. Kondo, B. Javadi, A. Iosup, and D. Epema, “The failure trace archive: Enabling comparative
analysis of failures in diverse distributed systems,” Cluster Computing and the Grid, IEEE
International Symposium on, pp. 398–407, 2010.

[4] J. Dongarra et al., “The International Exascale Software Project: a Call To Cooperative Action
By the Global High-Performance Community,” Int. J. High Performance Computing Applica-
tions, vol. 23, no. 4, pp. 309–322, 2009.

[5] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti, R. Brightwell, R. Riesen, P. G.
Bridges, and D. Arnold, “Evaluating the Viability of Process Replication Reliability for Exascale
Systems,” in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, 2011, pp. 44:1–44:12.

[6] G. Bosilca et al., “Unified model for assessing checkpointing protocols at extreme-scale,”
Concurrency and Computation: Practice and Experience, 2013. [Online]. Available:
http://dx.doi.org/10.1002/cpe.3173

[7] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for matrix operations,”
IEEE Trans. Comput., vol. 33, no. 6, pp. 518–528, 1984.

[8] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Characterizing the impact of soft errors
on iterative methods in scientific computing,” in Proc. Int. Conf. Supercomputing. ACM, 2011,
pp. 152–161.

23

Composing resilience techniques: ABFT, periodic and incremental checkpointing

[9] P. Du, A. Bouteiller et al., “Algorithm-based fault tolerance for dense matrix factorizations,”
in PPoPP. ACM, 2012, pp. 225–234.

[10] T. Davies, C. Karlsson, H. Liu, C. Ding, , and Z. Chen, “High Performance Linpack Benchmark:
A Fault Tolerant Implementation without Checkpointing,” in Proc. Int. Conf. Supercomputing.
ACM, 2011, pp. 162–171.

[11] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Fault tolerant preconditioned conjugate
gradient for sparse linear system solution,” in Proc. Int. Conf. Supercomputing. ACM, 2012,
pp. 69–78.

[12] E. Agullo, L. Giraud, A. Guermouche, J. Roman, and M. Zounon, “Towards resilient parallel
linear Krylov solvers: recover-restart strategies,” INRIA, Research report RR-8324, Jul. 2013.

[13] Z. Chen, “Algorithm-based recovery for iterative methods without checkpointing,” in Proceed-
ings of the 20th international symposium on High performance distributed computing, ser. HPDC
’11. New York, NY, USA: ACM, 2011, pp. 73–84.

[14] K. M. Chandy and L. Lamport, “Distributed snapshots : Determining global states of dis-
tributed systems,” in Transactions on Computer Systems, vol. 3(1). ACM, February 1985, pp.
63–75.

[15] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A survey of rollback-recovery
protocols in message-passing systems,” ACM Computing Survey, vol. 34, pp. 375–408, 2002.

[16] J. Plank, K. Li, and M. Puening, “Diskless checkpointing,” IEEE Trans. Parallel Dist. Systems,
vol. 9, no. 10, pp. 972–986, 1998.

[17] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, “Algorithm-based fault tolerance applied
to high performance computing,” Journal of Parallel and Distributed Computing, vol. 69, no. 4,
pp. 410–416, 2009.

[18] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca, and J. Dongarra, “Fault
tolerant high performance computing by a coding approach,” in PPoPP. ACM, 2005, pp.
213–223.

[19] J. W. Young, “A first order approximation to the optimum checkpoint interval,” Comm. of the
ACM, vol. 17, no. 9, pp. 530–531, 1974.

[20] J. T. Daly, “A higher order estimate of the optimum checkpoint interval for restart dumps,”
FGCS, vol. 22, no. 3, pp. 303–312, 2004.

[21] T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Distribution-free checkpoint placement algo-
rithms based on min-max principle,” IEEE TDSC, pp. 130–140, 2006.

[22] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien, “Checkpointing strategies for
parallel jobs,” in High Performance Computing, Networking, Storage and Analysis (SC), 2011
International Conference for, 2011, pp. 1–11.

[23] Z. Zheng and Z. Lan, “Reliability-aware scalability models for high performance computing,”
in Cluster Computing and Workshops, 2009. CLUSTER ’09. IEEE International Conference
on, 2009, pp. 1–9.

[24] G. Aupy, Y. Robert, F. Vivien, and D. Zaidouni, “Checkpointing algorithms and fault predic-
tion,” J. Parallel Dist. Computing, vol. 74, no. 2, pp. 2048–2064, 2014.

[25] D. R. Cox, Renewal Theory. Springer, 1967.

[26] O. Kella and W. Stadje, “Superposition of renewal processes and an application to multi-server
queues,” Statistics & probability letters, vol. 76, no. 17, pp. 1914–1924, 2006.

24

International Journal of Networking and Computing

[27] J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK benchmark: past, present and fu-
ture,” Concurrency Computation, vol. 15, pp. 803–820, 2003.

[28] E. D’Azevedo and J. Dongarra, “The Design And Implementation Of The Parallel Out-Of-Core
Scalapack LU, QR, And Cholesky Factorization Routines,” Concurrency Computation, vol. 12,
pp. 1481–1493, 2000.

[29] S. Toueg and Ö. Babaoglu, “On the optimum checkpoint selection problem,” SIAM J. Comput.,
vol. 13, no. 3, pp. 630–649, 1984.

[30] G. Bosilca, A. Bouteiller, T. Herault, Y. Robert, and J. Dongarra, “Assessing the impact of
ABFT and checkpoint composite strategies,” University of Tennessee, Research Report ICL-
UT-13-03, Sep. 2013.

[31] G. Zheng, L. Shi, and L. V. Kale, “FTC-Charm++: an in-memory checkpoint-based fault
tolerant runtime for Charm++ and MPI,” in Cluster Computing, 2004 IEEE International
Conference on. IEEE Computer Society, 2004, pp. 93–103.

[32] X. Ni, E. Meneses, and L. V. Kalé, “Hiding checkpoint overhead in HPC applications with a
semi-blocking algorithm,” in Cluster Computing (CLUSTER), 2012 IEEE International Con-
ference on. IEEE Computer Society, 2012, pp. 364–372.

[33] J. Dongarra, T. Herault, and Y. Robert, “Revisiting the double checkpointing algorithm,” in
APDCM 2013. IEEE Computer Society Press, 2013, pp. 706–715.

[34] R. Rajachandrasekar, A. Moody, K. Mohror, and D. K. D. Panda, “A 1 PB/s file system to
checkpoint three million MPI tasks,” in HPDC. ACM, 2013, pp. 143–154.

25

