
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 5, Number 1, pages 61–85, January 2015

Handling Non-determinism with Description Logics using a Fork/Join Approach

Jocelyne Faddoul

58 Peachtree Hill
Dartmouth, NS, B2W 0H8, Canada

Wendy MacCaull

St. Francis Xavier University
Antigonish, NS, B2G 2W5, Canada

Received: August 2, 2014
Revised: November 5, 2014

Accepted: December 3, 2014
Communicated by Akihiro Fujiwara

Abstract

The increasing use of Ontologies, formulated using expressive Description Logics, for time
sensitive applications necessitates the development of fast (near realtime) reasoning tools. Mul-
ticore processors are nowadays widespread across desktop, laptop, server, and even smartphone
and tablets devices. The rise of such powerful execution environments calls for new parallel and
distributed Description Logics (DLs) reasoning algorithms. Many sophisticated optimizations
have been explored and have considerably enhanced DL reasoning with light ontologies. Non-
determinism remains a main source of complexity for implemented systems handling ontologies
relying on more expressive logics.

In this work, we explore handling non-determinism with DL languages enabling qualified
cardinality restrictions. We implement a fork/join parallel framework into our tableau-based al-
gebraic reasoner, which handles qualified cardinality restrictions and nominals using in-equation
solving. The preliminary results are encouraging and show that using a parallel framework
with algebraic reasoning is worth investigating and more promising than parallelizing standard
tableau-based reasoning.

Keywords: Description Logics, Non-determinism, Fork/Join

1 Motivation

Simulating a human reasoning process requires that an extensive knowledge about the world be
represented and stored in a knowledge base. Among the things that need to be represented are:
objects, properties, and relations between objects. A complete representation of “what exists” in a
given domain forms an Ontology. Ontologies have now been adopted by many disciplines, such as
biology and e-science, as part of their integration into the Semantic Web, which is defined as a “web
of data” allowing machines to understand the meaning of and process the information on the World
Wide Web. Applications of the semantic web are numerous, wide ranging and have tremendous
potential for adding value in a vast array of situations which can take advantage of intelligence, i.e.,

61

Handling Non-determinism with Description Logics using a Fork/Join Approach

the capacity to reason over knowledge stored in a knowledge base such as an ontology. However, if
the application is time sensitive, the time required for reasoning can be prohibitive.

Description logics (DL) have gained a lot of attention in the research community as they provide
a logical foundation for the Web Ontology Language (OWL), defined by the World Wide Web
Consortium (W3C) as a standard for representing semantic links and knowledge on the Semantic
Web. An important feature of DL is that they allow one to represent knowledge not only for the
sake of representing it, but also to reason about it and make implicit knowledge explicit through the
use of reasoning services. For instance, consider a medical Ontology where Penicillins is described
as a sub-class of Antibiotics, and a patient X is asserted as taking Penicillins. DL reasoning services
infer that X is taking Antibiotics. Standard DL inference services, e.g., TBox classification, concept
satisfiability checking, instance checking, etc., have been extended with query answering in order to
extract information and drive applications such as web services and workflow management systems
[27]. The effectiveness of these reasoning services (correctness and speed) is subject to the complexity
of the Ontology (e.g, size, expressivity) used and the implementation of the reasoning strategy. For
many applications (e.g., associated with health services delivery or large scale mergence protocols)
these services are time sensitive, but require time consuming reasoning over complex and often large
ontologies.

There has been a great deal of research into optimizing DL reasoning strategies and in carv-
ing out fragments over which reasoning can proceed at a reasonable pace — but reasoning using
these strategies or over these fragments often does not scale to allow the use of large ontologies.
Reasoning for time sensitive tasks (e.g., those required in a clinical decision support system) still
requires severe restrictions on the expressivity, the complexity and/or the size of the ontology used.
The expressivity of the domain knowledge is often sacrificed in order to meet practical reasoning
performance. For example, the Lipid ontology used in [6] relies heavily on Qualified Cardinality
Restrictions: expressions of the form ≥ nR.C and ≤ nR.C. It is expressed using the DL ALCHIQ
using 715 concepts and 46 properties. For example, axiom (1) describes a complex lipid structure,
LC Hexaacylaminosugar, that has exactly 6 primary acyl chain.

LC Hexaacylaminosugar v≥ 6hasProperFat.Primary Acyl Chainu ≤ 6hasProperFat.Primary Acyl Chain
(1)

The comprehensive classification of Lipids [15] is expressed using the DL SHQ using 729 concepts
and 3 properties. Qualified Cardinality Restrictions (QCRs) are used heavily, and the full Lipids
ontology cannot be classified by existing reasoners within hours of CPU time. Hence the recent
popularity of lightweight ontologies, i.e., expressed using the extensions of the tractable DL EL.
Sacrificing the expressivity of the knowledge modelled is a limiting (and sometimes unacceptable)
compromise.

When it comes to handling ontologies that rely on the use of QCRs, algebraic reasoning, to the
best of our knowledge, remains the most promising approach. This has been shown in fragments
of DL using QCRs [17, 16], inverse roles [8, 32], and nominals [12, 11]. Practical implementations
of such algebraic tableau algorithms require carefully chosen optimizations in order to outperform
the highly optimized existing state of the art reasoners. Most algebraic tableau-based algorithms
proposed so far are double exponential in the worst case; their optimized implementations have been
tested on a suite of artificial or often adapted subsets of ontologies. The scalability of the algebraic
approach with real world and often large ontologies remains open.

The high performance computing (HPC) paradigm would seem to offer a solution to these prob-
lems, but progress using high performance computing methodologies has been challenging and slow
[26, 3, 39]. The techniques that have offered speedy solutions in other domains (e.g., for “number
crunching” in the physical sciences) do not suffice to crack the time bottleneck of reasoning tasks
required for effective use of ontologies. Work is needed to find techniques for this kind of computing.
Recently, there has been encouraging results [28, 2, 39, 36, 37]. The work considered so far, considers
parallelizing the TBox classification task [2], the Abox querying task [1], or the concept satisfiability
checking task [26, 28] using ontologies relying on the least expressive fragments of DLs. Parallelizing
algebraic reasoning to allow the handling of large ontologies using number restrictions needs further
investigation.

62

International Journal of Networking and Computing

Top concept > ∆I

Bottom concept ⊥ ∅
Atomic negation (¬A) ∆I \AI
Conjunction (C uD) CI ∩DI
Disjunction (C tD) CI ∪DI
Value restriction (∀R.C) {s ∈ ∆I | ∀t ∈ ∆I : 〈s, t〉 ∈ RI ⇒ t ∈ CI}
Existential restriction (∃R.C) {s ∈ ∆I | ∃t ∈ ∆I : 〈s, t〉 ∈ RI and t ∈ CI}
Qualified at-least restriction (≥ nR.C) {s ∈ ∆I | | {s | 〈s, t〉 ∈ RI} |≥ n}
Qualified at-most restriction (≤ nR.C) {s ∈ ∆I | | {s | (〈s, t〉 ∈ RI} |≤ n}

Figure 1: Syntax and Semantics of the DL ALCQ

In this work, we expand our ideas presented in [13, 14] and report a preliminary implementation.
Our approach consists of handling non-determinism inherent in tableau-based DL reasoning using a
parallel framework. We implement our framework into the prototype tableau-based algebraic rea-
soner, HARD [9]. Even though tableau-based DL reasoning for less expressive fragments has been
explored in a parallel framework [28, 26], algebraic tableau-based DL reasoning has only been ex-
plored sequentially. The paper is organized as follows: Section 2 introduces the basics of Description
Logics syntax, semantics, and tableau-based reasoning; Section 3 illustrates the non-determinism in
tableau-based reasoning, introduces algebraic tableau reasoning, and argues why algebraic reason-
ing is more suitable for parallelization; Section 4 illustrates the parallel framework used; Section 5
reports on experimental results; Section 6 reviews related work; and Section 7 concludes the work.

2 Preliminaries

Description Logic (DL) [19] is a family of knowledge representation languages used to represent
and reason about an application’s domain elements. DLs stem from Semantic Networks [33] and
Frames [29]. They are distinguished by their terminological orientation, their well defined logic-based
semantics, their decidable inference services, and available tools. The parallel framework discussed
in this paper has been designed and implemented to handle non-determinism arising in the so called
“algebraic ” tableau reasoning. In this section, we introduce the syntax and semantics of the DL
ALCQ as well as tableau-based reasoning.

2.1 Syntax and Semantics of ALCQ

To define the terminology of a certain knowledge base (KB), DL relies on the notions of “concepts”,
“roles”, and “individuals” combined using a set of operators (DL constructors) into structured and
formally well defined descriptions. A concept is used to denote a set of domain elements with
common characteristics. A role is used to denote a binary relationship between domain elements.
An individual is used to name elements within the represented domain.

The basic DL ALC is a syntactic variant of the modal logic K, where all roles are atomic and
complex concepts can be built using boolean operators (u, t, ¬), universal restriction (∀), and
existential (∃) value restriction on atomic concepts. The DL ALCQ extends ALC with qualified
cardinality restriction (Q). Let NC, NR, and NI be non-empty and pair-wise disjoint sets of concept
names, role names, and individual names, respectively. A is used to denote an atomic concept
(A ∈ NC), R is used to denote an atomic role (R ∈ NR). ALCQ concept expressions are defined using
the syntax rule shown in Figure1 where > and ⊥ are used to abbreviate (C t ¬C) and (C u ¬C),
respectively. Figure 2 shows a simple DL knowledge base describing the concepts Man, Child, Male,
and Father respectively.

63

Handling Non-determinism with Description Logics using a Fork/Join Approach

TBox axioms
Man v Person uMale
Child v Person u (Male t Female) u Offspring
Male v ¬Female
Father v Man u ∃hasChild.> u ∀hasChild.Child

ABox assertions
〈Joseph, Jonas〉 : hasChild
Joseph: Man

Figure 2: Basic DL knowledge base consisting of a TBox and an ABox.

DLs differ from their predecessors in that they are equipped with formal logic-based semantics.
An interpretation I is defined to give formal semantics. An interpretation is a pair I = (∆I , .I)
where ∆I is a non-empty set, called the domain of the interpretation, and .I is the interpretation
function. The interpretation function maps each atomic concept A ∈ NC to a subset of ∆I , each
atomic role R ∈ NR to a subset of ∆I ×∆I , and each individual a ∈ NI to an element of ∆I . The
interpretation function is extended to satisfy ALCQ concept expressions as shown in Figure1, where
n is a natural number ≥ 1.

Concepts, roles, and individuals represented using a DL language can be interrelated in such a
way that implicit knowledge can be derived from explicitly represented knowledge. Every standard
DL reasoning task can be reduced to a concept satisfiability check. For example, checking whether
a concept C subsumes a concept D (D v C?) can be reduced to checking the satisfiability of the
concept expression (Du¬C). An interpretation I is said to be a model of C, if CI 6= ∅, we say that
I satisfies C. The satisfiability of a concept C can therefore be decided by finding a model I for C.
If no such model exists, then the concept C is unsatisfiable.

Many reasoning methods were investigated to handle Dl inference services such as structural sub-
sumption (early 80s), tableau-based (1991), automata-based (2003) [4], semantic binary tree (2005),
and resolution-based (2006). In the following, we introduce tableau-based, which is most widely used,
and give an example which shows how the satisfiability of the concept Father as defined in Figure 2
can be decided using such methods.

2.2 Tableau Algorithms

The first DL tableau algorithm was designed for the DL ALC in 1991 [35] and later extended for
more expressive logics [5, 18, 21, 22]. In general, tableau algorithms are considered as goal-directed
decision procedures. They try to decide the satisfiability of a concept expression by constructing a
corresponding model. The idea is that a concept C is satisfiable if a model exists that corresponds to
an interpretation of C such that CI 6= ∅. Tableau algorithms work on concepts in Negation Normal
Form [20], they are characterized by an underlying data structure, a set of expansion rules, a number
of so-called clash-triggers, and sometimes a set of blocking strategies.

Definition 2.1 Negation Normal Form (NNF) A concept expression is said to be in NNF if the
negation (¬) appears only in front of concept names. NNF can be obtained by pushing negations
inwards [22] using DeMorgan’s law (1-2) and the following equivalences:

(1) ¬(C tD) ⇐⇒ ¬C u ¬D
(2) ¬(C uD) ⇐⇒ ¬C t ¬D
(3) ¬(¬C) ⇐⇒ C

(4) ¬(∀R.C) ⇐⇒ ∃R.¬C
(5) ¬(≥ nR.C) ⇐⇒ ≤ (n− 1)R.C
(6) ¬(≤ nR.C) ⇐⇒ ≥ (n+ 1)R.C

The Data Structure The data structure used to describe the model of a given concept C is usually
a directed graph G(V,E) referred to as a “completion graph”. V is a set of vertices representing
individuals in the domain, and E is a set of edges representing relations between individuals. Every
node x ∈ V is labeled by a concept expression L(x) that is satisfied by the represented individual.

64

International Journal of Networking and Computing

Every edge between two nodes, x and y, is labeled by a set, L〈x, y〉, of role names satisfying the
dependencies (Role successor-ship) between the two nodes. A symmetric binary relation 6= is used
to keep track of inequalities between two nodes. For most DLs, the construction of a model starts
by initializing a root node (x0) in G such that x0 must satisfy the concept expression C. This is
ensured by setting the label of x0 to C (L(xo) = {C}).

Definition 2.2 Role-Successor A node y is said to be a Role-Successor of a node x if there exists
an edge 〈x, y〉 with R in its label (R ∈ L〈x, y〉) for some R ∈ NR. The node y is said to be an
R-successor of x which is then said to be ancestor of y.

u-Rule If C uD ∈ L(x), x is not blocked, and {C,D} * L(x)
Then set L(x) = L(x) ∪ {C,D}

t-Rule If C tD ∈ L(x), x is not blocked, and {C,D} ∩ L(x) = ∅
Then set L(x) = L(x) ∪ {E} with E ∈ {C,D}

∃-Rule If ∃R.C ∈ L(x), x is not blocked, and there exists no y such that:
y is a R-successor of x with C ∈ L(y)
Then set L(〈x, y〉) = L(〈x, y〉) ∪ {R}, and
L(y) = L(y) ∪ {C}

∀-Rule If ∀R.C ∈ L(x), x is not blocked, and there exists y such that:
y is an R-successor of x, and C /∈ L(y)
Then set L(y) = L(y) ∪ {C}

choose-Rule If ≤ nR.C ∈ L(x), x is not blocked, and there exists y such that:
y is an R-successor of x with L(y) ∩ {C, ¬̇C} = ∅
Then set L(y) = L(y) ∪ {E} with E ∈ {C, ¬̇C}

≥-Rule If ≥ nR.C ∈ L(x), x is not blocked, and there are no y1, . . . , yn
R-successors of x with C ∈ L(yi), and yi 6= yj for 1 ≤ i ≤ j ≤ n
Then create n new nodes y1, . . . , yn as R-successors of x such that
for 1 ≤ i ≤ j ≤ n set yi 6= yj , and L(yi) = {C}

≤-Rule If ≤ nR.C ∈ L(x), x is not blocked, and there are y1, . . . , ym
R-successors of x with C ∈ L(yi), and m ≥ n+ 1
Then select yj and yi such that yj such that not yj 6= yi, and

Merge (yi, yj) and remove yi

Figure 3: Tableau expansion rules for ALCQ.

The Expansion Rules The graph G is gradually expanded according to some expansion rules
designed to preserve and construct the logical dependencies encoded in C. These expansion rules
(also known as tableau completion rules), correspond to constructors in the logic, they expand the
initial graph by describing sub-graphs of the completion graph before and after rule application.
In many cases, they only operate on a node and its direct neighbours. Figure 3 shows the tableau
expansion rules corresponding to the DL ALCQ.

65

Handling Non-determinism with Description Logics using a Fork/Join Approach

x0

x0

y0

y0

x

y

L(x0) = {Father,Man u ∃hasChild.> u ∀hasChild.Child}

Step1: u-Rule

L(x0) = L(x0) ∪ {Man, ∃hasChild.>, ∀hasChild.Child}

Step 2: ∃-Rule

L(y0) = {>}

Step 3: ∀-Rule

L(y0) = L(y0) ∪ {Child}

L(x) = {Father}

L(y) = {>,Child}

=⇒
hasChild L(〈x, y〉) = {hasChild}

Figure 4: Tableau expansion during a satisfiability test of the concept Father as defined in Figure 2.
The expansion on the left shows the step by step application of the expansion rules. The expansion
on the right, shows the final completion graph representing a model for the concept Father.

Some rules add new nodes (e.g., ∃-Rule), and others yield more than one possible outcome (e.g.,
t-Rule). The latter ones are known as non-deterministic rules. In order to ensure termination in
the case when cyclic descriptions are encountered (e.g., C v ∃R.C), the rules employ the notion
of blocking (see Definition 2.4). In practice, non-determinism means search and it is dealt with by
exploring the various possible models. For an un-satisfiable concept, all possible expansions will lead
to the discovery of an obvious contradiction known as a clash (see Definition 2.3), however, if at least
one expansion leads to a complete and clash-free completion graph, then the concept is satisfiable.

Treating QCRs is done using the ≤ −Rule, ≥-Rule, and the choose-Rule to ensure that individ-
uals satisfy the at-least and at-most restrictions expressed using this constructor. The main idea is
that at-least restrictions are treated by generating the required role-successors as new distinct nodes,
with additionally asserting that the newly created role-successors are also members of the qualify-
ing concept (C). At most restrictions are treated by non-deterministically merging role-successors
whenever the number or role-successors exceeds the number allowed by the restrictions. A create
and merge cycle is avoided using the inequality relations between nodes created to satisfy an at-least
restriction such that two nodes x and y cannot be merged if x 6= y. Also, in order to detect unsat-
isfiability of concepts such as (≥ nRu ≤ mR.C u ≤ mR.¬C) with n > m, the non-deterministic
choose-rule is used such that all R-successors are non-deterministically distributed over C or ¬C.

Some expansion rules require the merging of two nodes in order to satisfy an at-most restriction.
When a node x is merged with another node y (Merge (x,y)), y inherits all of x’s properties including
its label, inequalities, ancestors (incoming edges) and successors (outgoing edges). Therefore, the
label of x needs to be added to the label of y (L(y) = L(y) ∪ L(x)), all edges that lead to x are
removed so that they lead to y. The completion graph is then pruned by removing x and, recursively,
all blockable role-successors of x.

When no more rules are applicable, it means that all implicit knowledge has been made explicit
and the completion graph is said to be complete. In the case of a satisfiable concept C, a complete
and clash free completion graph is found and is said to be a completion model of C. Figure 4 shows
the step by step expansion of the completion model for the satisfiability of the concept Father as
defined in Figure 2.

Clash Triggers The tableau expansion algorithm stops either when no more rules are applicable
(i.e., the completion graph is complete) or when a clash is detected.

66

International Journal of Networking and Computing

Definition 2.3 Clash A node x is said to contain a clash when a logical dependency is violated such
as having x satisfy C and ¬C ({C,¬C} ⊆ L(x)), or when a node x that must satisfy an at-most
restriction (≤ nR) on its R-successors, and it already has m distinct R-successors with m > n.

Blocking In some cases, expanding the completion graph does not lead to a complete graph. This
can happen if the TBox axioms include cycles. For example, if a TBox T contains the axiom:
C v ∃R.C, then the satisfiability of C w.r.t. T will never stop because the tableau algorithm can go
on creating new individuals with repeating structure. These situations are handled using blocking
[5]; the idea is to block a node from applying rules if it needs to satisfy a concept expression that is
satisfied by one of its ancestors.

Definition 2.4 Blocked Node A node x is said to be directly blocked by a node y if it has a direct
ancestor node y such that L(x) ⊆ L(y). The node x is said to be blocked if it is directly blocked or
one of its ancestors is blocked.

Strategy of Rule Application The implementations of tableau algorithms have shown that
expansion rules often need to be applied according to a certain strategy in order to ensure termination
of the procedure. The general idea of the strategy is to apply shrinking rules (i.e., rules that result in
merging nodes) before any other rule, and to apply these rules to lower level nodes before applying
them to higher level nodes.

2.3 Complexity of DL Reasoning

Analyzing the complexity of DL reasoning is part of studying the inherent difficulty of its reasoning
services. Usually, a distinction is made between analyzing the computational complexity of an
inference service (e.g., checking the satisfiability of a certain concept), and analyzing the complexity
of the underlying reasoning algorithms to solve an inference service.

The computational complexity of DL inference services is usually determined based on worst-
case analysis of the size of a completion model, of a given knowledge base, and the time needed
to construct such a model. Clearly DLs that enable QCRs enjoy additional expressive power with
high computational complexity. QCRs are known to interact with other DL constructors, such as
nominals (O), and inverse role (I). Table 1 shows the complexity of different DLs as can be found
at the DL Complexity Navigator 1. The high worst-case complexity initially led to the conjecture
that expressive DLs might be of limited practical applicabilitiy.

DL Language Satisfiability Checking
ALC ExpTime-complete
ALCQ ExpTime-complete
ALCOQ ExpTime-complete
ALCOIQ NExpTime-complete
SROIQ NExpTime-hard

Table 1: Computational complexity of DL satisfiability checking using a general TBox.

Analyzing the efficiency of a DL reasoning algorithms consists of analyzing its soundness, com-
pleteness, and termination. While soundness is evaluated by making sure that the algorithm will
always find the correct answer, completeness means that the algorithm will explore every possible
case before returning an answer, and termination means that the algorithm will always terminate.
When studying the practical implication of a reasoning algorithm, termination is usually of a great
importance; a correct reasoning algorithm is of limited use if it is not guaranteed to terminate.
While worst-case complexity analysis serve as a theoretical estimate for the termination of a rea-
soning algorithm, the practical estimate is usually done through performance analysis on average
cases.

1http://www.cs.man.ac.uk/ezolin/dl/.

67

Handling Non-determinism with Description Logics using a Fork/Join Approach

A considerable gap was often observed between the theoretical presentation of a reasoning al-
gorithm and that of its practical implementation. When analyzing the practical implication of a
reasoning algorithm, one needs to distinguish between the theoretical efficiency of the algorithm, and
its practical efficiency. The theoretical efficiency is usually measured as the theoretical worst-case
complexity compared to the worst-case complexity of the inference problem. The practical efficiency
is usually measured as a typical case practical performance. Early experiments with DL systems in-
dicated that practical performance is a serious problem if the systems were not equipped with suited
optimizations. Most modern DL reasoners implement tableau-based algorithms together with a set
of sophisticated optimization techniques. In the remaining sections, we analyze non-determinism as
a major source of complexity with DL reasoning.

3 Non-Determinism with Expressive DLs

In practice, the poor performance of tableau algorithms is due to non-determinism in the expansion
rules, which results in search of different possible expansions of the completion graph. We illus-
trate how Qualified Cardinality Restrictions (QCRs) aggravate non-determinism in tableau-based
DL reasoning. We also outline how algebraic tableau reasoning extends tableau-based reasoning to
better handle QCRs and argue why parallelizing algebraic tableau reasoning is more promising. In
the following sections we outline a Fork/Join framework for handling non-determinism arising from
algebraic tableau reasoning.

QCRs introduce non-determinism in choosing a distribution (choose-Rule) for each role-successor
created to satisfy at-least restrictions, and when merging those role-successors is necessary to satisfy
at-most restrictions (≤-Rule). Such non-determinism can be aggravated when the number of nodes
created in a completion graph increases (either due to a large number of at-least restrictions ≥ nR.C,
or due to large numbers (n) used in these restrictions), possibly the number of rules applied to these
nodes increases and some of these rules might also be non-deterministic (See Examples 3.1, 3.2).
Moreover, in cases where an at-most restriction is violated, the non-determinism introduced when
merging two nodes can cause a blow up of the search space especially when the qualification used
with the at-most restriction also contains a disjunction (See Examples 3.2, 3.3).

3.0.1 Examples

The following examples illustrates the effect of non-determinism with QCRs on the tableau-based
reasoning algorithm introduced in Section 2.

Example 3.1 (Non-Determinism Due to The choose-Rule) When testing the satisfiability of
(≥ nR.Du ≤ mR.C), the tableau algorithm starts with a node x0 such that L(x0) = {(≥ nR.Du ≤
mR.C)}. After applying the u-Rule to x0, the label is extended to L(x0) = {(≥ nR.Du ≤ mR.C),≥
nR.D,≤ mR.C}. Applying the ≥-Rule, creates n distinct R-successors, y1, . . . , yn, of xo such that
L(yi) = {D} for each 1 ≤ i ≤ n. The choose-Rule non-deterministically assigns C, or ¬C to the
label of each R-successor of x0.

68

International Journal of Networking and Computing

x0

y1

y1

L(y1) ∪ {C}

y1

L(y1) ∪ {¬C}

y2 y3 yn

yn

L(yn) ∪ {C}

yn

L(yn) ∪ {¬C}

L(x0) = {(≥ nR.Du ≤ mR.C),≥ nR.D,≤ mR.C}

L(y1) = {D} L(yn) = {D}≥-Rule

choose-Rule

≥-Rule: create n R-successors of x0 such that L(〈x0, yi〉) = {R} for 1 ≤ i ≤ n.

choose-Rule: extend the label of each R-successor of x0 such that L(yi) = L(yi) ∪ E ∈ {C,¬C}.

Figure 5: Completion graph showing one source of non-determinism: the choose-Rule.

y1

y1 y1

y2

yn−1

yn yn

L(y1) = {D}

L(y1) = L(y1) ∪ {C} L(y1) = L(y1) ∪ {¬C}

L(y2) = L(y2) ∪ {¬C}

L(yn−1) = L(yn−1) ∪ {C}

L(yn) = L(yn) ∪ {C} L(yn) = L(yn) ∪ {¬C}

Figure 6: Completion graph expansion tree due to the choose-Rule.

The completion graph can therefore be expanded in 2n different ways, as shown in Figure 6,
based on the distribution of these R-successors. Having more than one at-most restriction, also
affects the expansion such that if there are q at most restrictions, then the total number of branches
becomes equal to 2n×q.

Example 3.2 (Non-determinism due to the choose-Rule and the ≤-Rule) This example
shows the effect of non-determinism due to the ≤-Rule when the number of R-successors, created to
satisfy at-least restrictions (≥ nR.D, ≥ pR.E), exceeds the number allowed by an at-most restriction
(≤ mR.C), (n+ p) > m. As shown in Figure 7, the ≥-Rule creates (n+ p) R-successors of x0 such
that y1, . . . yn are mutually disjoint and z1, . . . , zp are mutually disjoint. This means y-nodes cannot
be merged together, and z-nodes cannot be merged together either (to make sure the ≥ is always
satisfied and avoid a create and merge cycle known as a “yo-yo” effect). The choose-Rule non-
deterministically expands the completion graph by creating two branching points in the search space
for each R-successor of x0. Having (n + p) R-successors, means that the search space is expanded
with 2n+p branches. Since (n+p) > m, the ≤-Rule non-deterministically merges a yi node such that
C ∈ L(yi) with a zj node such that C ∈ L(zi) until (n+p) ≤ m. Assuming that the exceeding number
of R-successors is given as k =| m− (n+p) |, this means that k yi nodes need to be merged with k zj
nodes. The number of ways that the n R-successors (y1, . . . , yn) can be grouped into k R-successor

is defined as Ky = (n!)
(n−k)! and the number of ways that the p R-successors, z1, . . . , zp, can be grouped

69

Handling Non-determinism with Description Logics using a Fork/Join Approach

into k elements is defined as Kz = (p!)
(p−k)! . This means that the number of ways to merge k yi nodes

with k zj nodes is given as Kyz = (n!)
(n−k)!) ×

(p!)
(p−k)! . The nodes that can be merged are highlighted.

Due to non-deterministic rules, the completion graph is expanded in 2n+p ways (choose-Rule), and
Kyz ways (≤-Rule). Note also that having more at-least restrictions, not only affects the expansion
of the completion graphs by introducing more expansions due to the choose-Rule, but also introduces
more possible ways to merge excess R-successors.

x0

y1

y1 y1

y2 yn

yn yn

z1

z1 z1

z2 zp

zp zp

L(x0) = {≥ nR.D,≥ pR.E,≤ mR.C}

≥-Rule: create n R-successors of x0 such that L(〈x0, yi〉) = {R} for 1 ≤ i ≤ n.

≥-Rule: create p R-successors of x0 such that L(〈x0, zj〉) = {R} for 1 ≤ j ≤ p.

choose-Rule: extend the label of each R-successor of x0with E ∈ {C,¬C}.

≤-Rule: non-deterministically merge yi with zj until ≤ mR.C is satisfied.

Figure 7: Completion graph expansion showing two sources of non-determinism: the choose-Rule
and the ≤-Rule.

Example 3.3 (Non-determinism due to the choose-Rule, t-Rule, and ≤-Rule) This exam-
ple shows a source of non-determinism when handling QCRs using disjunctive descriptions to qualify
R-successors such as in the following concept description: (≥ nR.Du ≥ pR.E u ≤ mR.(A t B)).
As illustrated in Figure 8, in addition to the sources of non-determinism illustrated in Examples 3.1
and 3.2, the t-Rule introduces non-deterministic expansions of the labels of R-successors of xo and
doubles the number of nodes to be considered by the ≤-Rule.

3.1 Tableau-based Algebraic Reasoning

Tableau-based algebraic reasoning has been introduced to better handle the complexity of reasoning
with QCRs. The algorithm is hybrid; it relies on tableau expansion rules working together with an
integer programming solver (e.g., simplex solver). We outline how tableau-based algebraic reasoning
extends tableau-based reasoning introduced in Section 2 in terms of the underlying data structure,
expansion rules, clash-triggers. We also show the non-determinism introduced.

The Data Structure A concept model is represented using a compressed completion graph, which
is a directed graph G = (V,E,L,LE) where each node x ∈ V is labeled with L and LE where L(x)
denotes a set of concept expressions, and LE(x) denotes a set of inequations. Each edge 〈x, y〉 ∈ E
is labeled with a set, L(〈x, y〉), of role names. We denote by ξx the set of inequations in LE(x)
encoding the QCRs in L(x). An integer solution σ for ξx maps each variable v occurring in ξx to
a non-negative integer p such that σ is a distribution of role successors of x. The distribution is
consistent with the lower and upper bounds expressed in at-least (≥ nR.D) and at-most (≤ nR.C)
restrictions.

To decide the satisfiability of C, the algorithm starts with the compressed completion graph
G = ({x0},∅,{C}, ∅). Where the root node x0 ∈ V is such that C ∈ L(x0). Note that x0 represents
an arbitrary individual and all concepts in C are assumed to be in negation normal form.

70

International Journal of Networking and Computing

x0

y1

y1

y1 y1

y1

y2 yn

yn

yn yn

yn

z1

z1

z1 z1

z1

z2 zp

zp

zp zp

zp

L(x0) = {≥ nR.D,≥ pR.E,≤ mR.(A tB)}

choose-Rule: extend the label of each R-successor of x0with E ∈ {(A tB), (¬A u ¬B)}

t-Rule: extend the label of each R-successor of x0, having A tB in its label, with E ∈ {A,B}

≤-Rule: non-deterministically merge yi with zj until ≤ mR.(A tB) is satisfied

Figure 8: Completion graph expansion showing three sources of non-determinism: the choose-Rule,
the t-Rule, and the ≤-Rule.

The Expansion Rules The compressed completion graph G is then expanded by applying the
expansion rules given in Figure9 until no more rules are applicable or a clash occurs. When G is
complete and there is no clash, we have a pre-model and the algorithm returns that C is satisfiable.

The ≤-Rule and the ≥-Rule are responsible for encoding the qualified cardinality restrictions in
the label L(x) of a node x into a set (ξx) of inequations maintained in LE(x). An inequation solver is
always active and is responsible for finding a non-negative integer solution σ for ξx or for triggering
a clash if no solution is possible.

Each of the variables used in inequations represents the cardinality of a certain set P of role
successors. The set P is derived by applying the atomic decomposition technique on the set of
role names used with QCRs. For a complete overview about this technique and how it is used to
decompose the set of domain elements into disjoint partitions refer to [12].

In order to preserve completeness, the ch-Rule is used to check for empty partitions. Given a set
of inequations in the label (LE) of a node x and a variable v corresponding to a partition α(v) in
P, we distinguish between two cases:

• (i) The case when a partition must be empty; this can happen when restrictions of individuals
assigned to this partition trigger a clash.

• (ii) The case when a partition can have at least one individual; if a partition can have one
individual without causing any clash, this means that we can have n (n ≥ 1) 2 individuals also
in this partition without a clash.

Since the inequation solver is unaware of logical restrictions of filler (role successor) domains we allow
an explicit distinction between cases (i) and (ii). We do this by non-deterministically assigning ≤ 0
or ≥ 1 for each variable v occurring in LE(x).

The fil-Rule is used to generate role successors for a node x depending on the distribution
(solution) returned by the inequation solver. For a proof of correctness we refer the reader to [10].

Clash Triggers A node x in V is said to contain a clash if either:

2The value of n is decided by the inequation solver.

71

Handling Non-determinism with Description Logics using a Fork/Join Approach

u-Rule If C uD ∈ L(x), and {C,D} * L(x)
then set L(x) = L(x) ∪ {C,D}.

t-Rule If C tD ∈ L(x), and {C,D} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {C} or set L(x) = L(x) ∪ {D}.

∀-Rule If ∀R.C ∈ L(x) and R ∈ L(〈x, y〉) with C /∈ L(y)
then set L(y) = L(y) ∪ {C}.

∀(\)-Rule If ∀(R\S).C ∈ L(x), and there exists y such that R ∈ L(〈x, y〉) and S /∈ L(〈x, y〉)
then set L(y) = L(y) ∪ {C}.

≤-Rule If (≤ nR) ∈ L(x) and ξ(R,≤, n) /∈ LE(x)
then set LE(x) = LE(x) ∪ {ξ(R,≤, n)}.

ch-Rule If there exists v occurring in LE(x) with {v ≥ 1, v ≤ 0} ∩ LE(x) = ∅
then set LE(x) = LE(x) ∪ {v ≥ 1} or set LE(x) = LE(x) ∪ {v ≤ 0}.

≥-Rule If (≥ nR) ∈ L(x) and ξ(R,≥, n) /∈ LE(x)
then set LE(x) = LE(x) ∪ {ξ(R,≥, n)}.

fil-Rule If there exists v occurring in LE(x) such that
(i) σ(v) = m with m > 0, and
(ii) there are no m nodes y1 . . . ym with L(〈x, yi〉) = α(v) for 1 ≤ i ≤ m

then create m new nodes y1 . . . ym and
set L(〈x, yi〉) = α(v) for 1 ≤ i ≤ m.

Figure 9: Tableau expansion rules for algebraic reasoning with the DL ALCQ

• (i) {C,¬C} ⊆ L(x), or

• (ii) the set of inequations ξx ⊆ LE(x) does not admit a non-negative integer solution.

Case (ii) is decided by the inequation solver. When no rules are applicable or there is a clash, a
compressed completion graph is said to be complete.

Strategy of Rule Application In order to preserve the correctness of the algorithm, we assign
the fil-Rule the lowest priority; all other rules can be fired in arbitrary order. Complete proofs of
soundness, completeness, and termination of the algebraic reasoning tableau can be found in [12].

3.1.1 Non-determinism with QCRs

In the case of the algebraic tableau algorithm for the DL ALCQ, non-determinism due to disjunctive
descriptions (t) is handled similar to the case of standard tableau. However, handling QCRs relies on
the use of the atomic decomposition technique [31], which computes disjoint partitions by considering
all possible interactions between domain elements. As shown in Figure10, applying the ch-Rule and
the t-Rule leads to independently constructing completion graphs for each rule choice. Even though
the number of choices for the ch-Rule is fixed to 2, the number of times this rule is fired depends on
the number of variables used for the inequations. This means that the number of qualified cardinality
restrictions within a concept expression affects the number of times this rule is applied. In [9], it
was reported that the order in which the variables are selected for this rule affects performance.
Applying this rule for all the variables before deciding a satisfiability check is a major source of
performance degradation. Similarly to the t-Rule, exploring all choices can significantly exhaust
the memory and time required to perform a satisfiability check. Let Nv denote the total number of
variables used by the atomic decomposition technique. Nv is calculated as 2r, where r denotes the
number of qualified cardinality restrictions. In the worst case, when all possible completion graphs

72

International Journal of Networking and Computing

x

x

x

LE(x) ∪ {v ≥ 1}

x

LE(x) ∪ {v ≤ 0}

x x x

x x

(C1 t C2 t . . . t Cn) ∈ L(x)

L(x) ∪ C1 L(x) = {Cn}≥-Rule

ch-Rule

t-Rule: extend the label of the node x such that L(x) = L(x) ∪ E ∈ {C1, C2, . . . , Cn}.

ch-Rule: extend the equations label of the node x such that LE(x) = LE(x) ∪ E ∈ {v ≥ 1, v ≤ 0}.

Figure 10: Non-deterministic expansions with ch-Rule and t-Rule

are explored, the ch-Rule is applied 22
r − 1. This means that the ch-Rule is responsible for a double

exponential blow up of the search space of the algorithm. In theory, the worst-case complexity due
to non-determinism is aggrevated compared to a standard tableau-based reasoning algorithm.

On the other hand, this handling of domain elements, as shown in Figure 10, results in only one
additional source of non-determinism rather than the two sources for handling qualified cardinality
restrictions with the standard tableau. We argue that tableau-based algebraic reasoning appears to
have a better potential for parallelization than standard tableau for the following reasons:

• having less sources of non-determinism (2 instead of 3) means less overhead in managing
concurrent execution of non-deterministic rules. This also means that adopting optimizations
such as dependency directed backtracking becomes more fine grained and less complicated.

• the ch-rule always fires for two choices. This means that the search trees resulting from
the distinct branches have similar structure which facilitates load balancing between parallel
expansions of the search tree. Load balancing is a common goal in parallel computing where
unequal thread workloads can easily diminish the performance gain of parallelization.

• satisfying qualified cardinality restriction is delegated to an inequation solver and can be done
in isolation from tableau expansion. This means that the task of satisfying the inequations
can be delegated to the use of separate threads, or even FPGAs [37] and GPUs (Graphical
Processing Units).

• the use of “compressed completion graph” consisting of proxy nodes representing sets of domain
elements instead of completion graphs consisting of a node representing each domain element
allows the use of a smaller data structure representing the completion model. This means that
a smaller amount of data needs to shared among and communicated between parallel tasks
thus reducing the communication overhead between threads.

In the following section we illustrate our parallel framework for handling non-determinism with
algebraic tableau-based reasoning.

4 Parallelizing Non-determinism

Tableau-based reasoning has been the most common choice for Description Logics tools. In the
previous sections, we introduced the core elements of a tableau-based reasoning algorithm and those
of a tableau-based algebraic reasoning algorithm for satisfiability checking. A satisfiability check is
at the core of most DL reasoning services. As illustrated in Section 2, a satisfiability check works

73

Handling Non-determinism with Description Logics using a Fork/Join Approach

x

x

x

fork

x

fork

x x x

x

fork

x

fork

(C1 t C2 t . . . t Cn) ∈ L(x)

fork

joinjoin

joinjoin

join

join join

≥-Rule

ch-Rule

Figure 11: Fork/Join handling of non-deterministic completion graph expansions.

by constructing a model represented using a completion graph. The search for a model requires
completion graph expansion using tableau rules, some of which are non-deterministic. Given a
sequential execution, non-deterministic choices are explored upon clash-detection.

The previous section showed how non-determinism in tableau expansion rules can become a
major source of complexity for such reasoning algorithms. On the other hand, nodes belonging to
graph expansions due to non-deterministic choices do not exchange information. We use this feature
and extend completion graph expansion by handling non-deterministic choices in parallel using the
Fork/Join framework. In this framework, non-deterministic choices can be expanded concurrently
and the search for a model halts if any of the expansions returns a clash-fee model. We choose
to explore this framework in tableau-based algebraic reasoning because we believe that it is more
amenable for parallelization.

4.1 The Fork/Join Framework

The Fork/Join parallelism framework is based on Doug Lea’s work [25] and supports recursive,
divide-and-conquer parallelism. This parallel framework was implemented as part of the Java Spec-
ification request JSR166 to provide concurrency utilities and has been integrated as part of the
standard Java Concurrency library since Java 7. This framework abstracts the handling of tasks
and thread management allowing developers to focus more on the development of the parallel algo-
rithm and its implementation.

The Fork/Join framework expresses parallelism using two primitives: fork and join. A fork
operation starts the execution of a task in parallel with its parent creator. The join operation
merges control upon completion of tasks by both the parent (invoking the a fork operation) and
child tasks.

We implement our Thread Pool design [13] using a pool, the ForkJoinPool, of worker threads.
Using a thread Pool allows controlling the continuation of tasks. With the ForkJoinPool, each worker
thread has its own dequeue. When a task generates a new subtask using the fork operation, the
thread (parent) pushes the subtask onto the head of its dequeue. The tasks that are currently being
executed can also generate new tasks using fork. The newly generated tasks are also added to the
dequeue. This task creation is ideal for handling non-deterministic rule application as shown in
Figure11 because one cannot determine beforehand the number of graph expansion tasks until a
non-deterministic rule becomes applicable. Using the number of variables generated by the atomic
decomposition technique, one could possibly estimate the number of tasks needed to handle the
ch-rule. However, in the case of the t-Rule this is not possible. The Fork/Join pool of tasks is
usually constructed such that the level of parallelism depends on the number of available processors.

Instead of implementing a Leader/Followers handling of thread management as suggested in [13],
we rely on the work-stealing behaviour of threads used by the Fork/Join framework. When a worker
thread has completed execution of a certain task, it can fetch the next task from its dequeue. If the
thread’s dequeue is empty, it steals another task from the tail of another thread’s dequeue. This

74

International Journal of Networking and Computing

ForkJoinTask〈V 〉

RecursiveTask 〈V 〉

compute() : 〈V 〉

CCGExpander

currentGraph: CCGraph

compute() : Boolean

CCGraph

graphindex: Integer

ApplyTableauRules(): Boolean

AbstractExecutorService

ForkJoinPool
EdgeProxyNode

conceptLabel

Figure 12: Diagram depicting the relation between the CCGraph and the ForkJoinTask classes.

means no thread is waiting in the pool to be assigned a new task. Such behaviour can maximize
throughput while minimizing contention.

4.2 Parallel HARD

The parallel framework described in the previous section is implemented in HARD (Hybrid Algebraic
Reasoner for Description Logics), which is a prototype DL reasoner implementing the algebraic
tableau reasoning algorithm for the DL SHOQ3, and is equipped with the optimizations discussed
in [9].

Figure12 shows the relations between the classes responsible to implement the Fork/Join frame-
work. When a satisfiability check for a concept expression E is initiated, a CCGraph object is created
such that it includes a ProxyNode, pNode, with E added to pNode.conceptLabel. A ForkJoinPool
object is created and initiated with a new CCGExpander task, which is also a RecursiveTask. This
means that when the CCGExpander task is invoked, the compute() method is executed. Algorithm
1 illustrates how this method is used to decide the satisfiability of E using ForkJoinTasks.

The CCGExpander distinguishes between deterministic (u-Rule, ∀-Rule, ∀\-Rule, ≤-Rule, ≥-
Rule, and fil-Rule) and non-deterministic rules (ch-Rule and t-Rule) such that the tasks of applying
tableau rules are split recursively until satisfiability of the original concept expression, E, can be
decided. The following task splitting strategy is adopted:

• In the case where the applicable rule at a given node is deterministic. This means that the
graph expansion task is simple enough to be executed sequentially using ApplyTableauRules()
method.

• In the case where the applicable rule at a given node is non-deterministic, and must explore n
choices. This means that the graph expansion task can be split into n CCGExpander subtasks
that can run concurrently. A CCGExpander task is created for each possible choice of the
non-deterministic rule. For example, in the case of the ch-Rule the CCGExpander task is split
into 2 tasks using the fork() operation. Each task is added to the list and a fork operation is
invoked. These tasks are distributed across threads and are run in parallel. If any of the tasks
succeeds in creating a complete and clash-free model, then the satisfiability can be decided
and the original concept expression is satisfiable. Otherwise, (if none of the tasks returns a
positive answer) the original concept expression is unsatisfiable.

The ability to dynamically handle and generate new tasks is crucial because the tasks cannot be
anticipated until a rule becomes applicable. The work stealing algorithm is a key feature anticipated
to enable dynamic load balancing.

3The DL SHOQ extends the DL ALCQ with transitive roles (S) and nominals (O).

75

Handling Non-determinism with Description Logics using a Fork/Join Approach

Algorithm 1 CCGExpander.COMPUTE()

if a deterministic rule is applicable then
return currentGraph.ApplyTableauRules();

else if a non-deterministic rule is applicable then
List〈RecursiveTask〈Boolean〉〉 forks = new LinkedList〈〉();
for each applicable choice do

CCGExpander task = new CCGExpander(currentGraph, nextDDBGraph);
forks.add(task);
task.fork();

end for
for each task in forks do

if task.join() == true then
return true

end if
end for
return false

end if

4.3 Optimizations

The sequential version of the HARD reasoner outperformed most existing DL reasoners in handling
complex satisfiability tests, where the concept expressions used QCRs. Such results were possible due
to key optimization techniques discussed in [11, 9] such as lazy partitioning and the use of noGood
variables. We analyze whether these optimizations can still be adopted in the parallel framework.

Preprocessing Optimizations The optimizations used before applying tableau expansion rules
and which aim at bounding the size of the search space using role hierarchy relations, and disjointness
relations do not interfere with the task splitting adopted by our Fork/Join framework. Therefore,
such optimizations can still be used.

Look Ahead Optimizations for Backtracking The optimizations used to reduce the size of
the search space by discarding choice points as soon as a non-deterministic rule is applicable can
also be adopted. For example, the t-Rule Look Ahead optimization discards a choice point when
the t-Rule is applied to a node x if this choice points is known to lead to a clash.

Look Back Optimizations for Backtracking Back-jumping or conflict-directed backtracking
are improved backtracking methods adapted to DL reasoning as dependency directed backtracking
(DDB)[23]. Adopting existing DDB techniques for DL reasoning helps prune the search space due
to the t-Rule but not the choice points due to the ch-Rule, which is the rule responsible for the
double exponential blow up of the search space (as shown in Section 3.1.1). The sequential version
of the algebraic tableau reasoner implements backtracking during two phases:

• Back-jumping phase: during this phase, an adapted form of DDB analyzes the source of a
clash and decides how far to backtrack.

• Learning phase: after consulting the source of a clash, the algorithm can learn that a certain
partition must be empty and assigns the variable for this partition as a noGood variable. This
learned information is recorded as a new constraint in form of global variables.

Adopting these optimizations in our parallel framework requires the use of shared data among
threads. For example, in order to enable the Learning phase optimizations, multiple threads require
access (read/write) to the partition variables either to set the learned constraint, or to check if a cer-
tain variable is a noGood. We use the AtomicBoolean, from the java concurrency library, to manage
the use of noGood variables. Once a partition is learned to be empty, the corresponding variable is
updated atomically using the compareAndSet operation. This handling of variables allows a better

76

International Journal of Networking and Computing

C1 v ≥ 4nr.> u ≥ 2nr.C1 u . . .u ≥ 2nr.Ci

u ≤ nr.(¬C1 t ¬C2) u . . .u ≤ nr.(¬Ci t ¬Ci+1)

C2 v (≥ 4nr.>t ≥ 2nr.C1 t · · · t ≥ 2nr.Ci)
u ≤ nr.(¬C1 t ¬C2) u · · · u ≤ nr.(¬Ci t ¬Ci+1)

C3 v ≥ 4nr.> u ≥ 2nr.C1 u · · · u ≥ 2nr.Ci

u(≤ nr.(¬C1 t ¬C2) t · · · t ≤ nr.(¬Ci t ¬Ci+1))

Figure 13: Concept descriptions relying on the use of QCRs.

throughput, and a resistance to deadlocks and synchronization problems between threads. Designing
an efficient solution to the shared data required for the applicability of the optimizations used for a
Back-jumping phase needs further investigation. Also, we do not consider the optimizations aimed
at handling the nominals constructor such as Lazy Partitioning, Lazy Nominal Generation. As a
preliminary experiments, we only consider parallel HARD for the DL ALCQ.

5 Preliminary Experiments

Before implementing the Fork/Join parallel framework to our HARD reasoner, we converted HARD
to rely on the latest OWL API4 using JAVA7, which is required to enable the Fork/Join framework.
Parallel HARD is implemented as a shared-memory program using the java.concurrency library.
HARD preferences allow users to select a sequential execution or a parallel execution of the tableau-
rules, while also specifying the maximum number of threads to be used by the ForkJoinPool.

We ran preliminary experiments on a standard MacBook Pro with 2.66GhZ Intel Core 2 Duo
and 4GB main memory running OS X version 10.9.1. We set the number of worker threads in the
Fork/Join pool to default. We set the maximum java heap size to 2GB and we use the default
settings for the garbage collector. The test cases used were mainly those used to evaluate the
sequential version of HARD in [9]. Some of the results of these test case are shown in Figure14a. We
also ran preliminary experiments on Glooscap, a parallel HP AMD Opteron Linux cluster provided
by ACEnet. Glooscap consists of 180 nodes with 220 cores in total, the processors on these nodes
range between 2.3-2.7 GHz Dual-Core AMD Opteron; Gigabit Ethernet. Some of the results of these
test case are shown in Figure14b and in Figure15.

Each test case consists of an .owl file representing an OWL ontology, in the RDF/XML format,
modelled using Protégé 4.1.5 The run-time of each test is reported in milliseconds as the average
run-time of three to five separate executions of the test using HARD. Each run-time represents the
time needed for HARD to perform a concept satisfiabilty test. The reported time is in milliseconds,
and the TimeOut is set to 10 minute (600000 ms). As a preliminary evaluation, we test parallel
HARD against The number of qualified cardinality restrictions used, and The satisfiability versus the
unsatisfiability of the given concept expression.

5.0.1 Testing The Number of Qualified Cardinality Restrictions

It was shown in [9] that the complexity of the tableau-based algebraic algorithm implemented by
HARD is characterized by a double exponential function of the number of QCRs, q. It is therefore
expected that as the number of QCRs increases, the performance of HARD degrades. Also, q affects
the number of variables needed to solve the total number of inequations encoded. This means that q
affects the number of times the ch-Rule is applicable. The effect of increased QCRs in descriptions

4Last modified 2014-01-18 and designed to support OWL 2.0.
5http://protege.stanford.edu/

77

Handling Non-determinism with Description Logics using a Fork/Join Approach

1 1.5 2 2.5 3 3.5 4 4.5 5
101

102

103

104

105

106

value of i in CQCR−ALCQ

R
u

n
ti

m
e

in
m

il
li

se
co

n
d

s

Sequential-C1

Parallel-C1

Sequential-C2

Parallel-C2

Sequential-C3

Parallel-C3

(a) The maximum number of threads is fixed to 2.

1 1.5 2 2.5 3 3.5 4 4.5 5
101

102

103

104

105

106

value of i in CQCR−ALCQ

R
u

n
ti

m
e

in
m

il
li

se
co

n
d

s

Sequential-C2

Parallel-C2

Sequential-C3

Parallel-C3

(b) The maximum number of threads is fixed to 12.

Figure 14: Effect of increasing the number of QCRs in a satisfiable concept expression.

is tested using the concepts C1, C2, C3 as described in Figure13. With C1, the number of QCRs is
increased within a conjunctive description, whereas with C2 and C3, the number of QCRs is increased
within disjunctions.

The effect of increasing the number of QCRs on reasoning performance is shown in Figure14.
As the number i increases, the number of QCRs increases as well as the number of disjuncts for the
t-Rule. The results clearly show that as the number of disjuncts increases, a parallel framework
can decide the satisfiability more quickly than a sequential framework. The results also show that
as the number of disjuncts increases within a disjunctive expression, the parallel framework might
even achieve a super linear speedup, as shown in Figure15. A super linear speedup might be due
to the cumulative effect of handling the ch-Rule and the t-Rule concurrently. The speedup factor
is calculated based on the following formula S = T

Tn
where T is the time reported sequentially, and

Tn is the time reported using n threads. We also noticed that with the test cases where QCRs
were increased in a conjunctive expression (i.e., case of C1), the parallel framework was as quick as a
sequential one. This might be an indication that the performance is gained due to the parallelization
of the t-Rule.

78

International Journal of Networking and Computing

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

value of i in CQCR−ALCQ

sp
ee

d
u

p
fa

ct
o
r

n=2

n=4

n=6

n=8

n=10

n=12

Figure 15: Effect of increasing the number of QCRs on the speedup factor achieved. n represents the maximum
number of threads used in the thread pool.

5.0.2 Satisfiable Versus Unsatisfiable Concepts

The effect of satisfiable and unsatisfiable test cases is checked using a series of test cases which decide
the satisfiability of the following concept:

CBack−ALCQ v ≥ 3r.D1 u . . .u ≥ 3r.Diu ≤ 3i− 1r.>
Dq v¬Dp for all q < p

CBack−ALCQ is satisfiable if a completion graph can be constructed where a node a has 3i r-
successors such that, for a given value of i, 3 r-successors satisfy each ≥ 3r.Di and the total number
of these r-successors cannot exceed 3i− 1. This means that some r-successors must satisfy (Dq u Dp)
for some 1 ≤ p, q ≤ i, however this is not possible because all Dp and Dq are disjoint. This renders
the concept CBack−ALCQ unsatisfiable. The complexity of this concept is due to the effect of non-
determinism which requires backtracking in order to explore all possibilities. In the case of a tableau
algorithm, backtracking is involved each time an r-successors satisfying Dp is merged with an r-
successor satisfying Dq. With algebraic reasoning, backtracking is involved each time a distribution
of individuals puts ri-successors and rj-successors in the same partition (i.e the ch-Rule assigns
the corresponding variable ≥ 1). Notice however that CBack−ALCQ does not rely on any disjunctive
descriptions. This means that non-determinism is due to the ch-Rule for algebraic tableau reasoning,
and the non-determinism in merging individuals for standard tableau reasoning. Notice that the
numbers used are very small, this means that in the case where individuals are distributed over
distinct partitions, the ch-Rule might perform as many non-deterministic choices as the ≤-Rule for
merging individuals. Even though handling this source of non-determinism using algebraic tableau
reasoning was shown to be more efficient than standard tableau reasoning[9], a parallel framework
did not improve the effect of non-determinism due to the ch-Rule in this case.

A more complicated test case is considered where disjunctive QCRs are used with disjunctive
qualifications.

CBack−disjunctive−ALCQ v ≥ (j + 1)r.D1 u . . .u ≥ (j + 1)r.Di

u ≤ jr.(D1 t D2)t ≤ jr.(D2 t D3) t . . .t ≤ jr.(Di−1 t Di)
Dq v¬Dp for all q < p

Non-determinism in tableau reasoning now has three sources: the choose-Rule (or ch-Rule for
algebraic reasoning), the t-Rule, and non-determinism in merging individuals exceeding the number
in the at-most restriction. Since each one of t-Rule and choose-Rule rules is applicable to each

79

Handling Non-determinism with Description Logics using a Fork/Join Approach

created individual, the greater the size of j, the less efficient the reasoning; Figure 16 shows how
increasing j with just one number affects performance of the three well known tableau-based DL
reasoners; Fact++6, Hermit7, and Pellet8.

2 2.5 3 3.5 4 4.5 5
101

102

103

104

105

106

value of i in CBack−disjunctive−ALCQ

R
u

n
ti

m
e

in
m

il
li
se

co
n

d
s

Fact++ (j=3)

Fact++ (j=2)

Hermit (j=3)

Hermit (j=2)

Pellet (j=3)

Pellet(j=2)

Figure 16: Effect of backtracking with CBack−disjunctive−ALCQ.

We focus on the effect of non-determinism and backtracking and run the test with j = 3. The
interaction between non-determinism in the choose-Rule and the t-Rule blows up the search space
of tableau reasoning and the standard DL reasoners time out for i ≥ 2 (Hermit, Pellet) and i ≥ 4
(Fact++). Whereas, the algebraic approach allows a better scalability because of two main things:
(1) the ch-Rule is applied for every variable, which could represent n individuals, which means
that the semantic split over the qualifications used in at-most restrictions is done over groups of
individuals rather than for each individual as is the case with the choose-Rule. Non-Determinism in
concept descriptions does not interact with non-determinism in distributing individuals among the
restrictions used as qualifications in at-most restriction.

6http://owl.man.ac.uk/factplusplus/
7http://hermit-reasoner.com
8http://clarkparsia.com/pellet

80

International Journal of Networking and Computing

2 2.5 3 3.5 4 4.5 5
101

102

103

104

105

106

value of i in CBack−disjunctive−ALCQ

R
u

n
ti

m
e

in
m

il
li
se

co
n

d
s

2 threads

4 threads

8 threads

16 threads

32 threads

100 threads

Figure 17: Effect of Non-determinism with CBack−disjunctive−ALCQ.

The results are shown in Figure17, due to a Java limitation and memory problems we could only
test the cases for i < 5. Although HARD performs better than other non-algebraic reasoners, we
noticed that the order in which the ch-Rule is applied has a dramatic effect on performance even in a
parallel execution. Even though the parallel execution always outperformed a sequential execution,
we observed runs where HARD was able to return results much faster even for the same number of
threads. The difference in run-times was associated with a different order in which the ch-Rule was
applied because it interacts with the effect of the optimizations responsible for pruning the search
space after analyzing clash sources. In fact, the sooner clashes are discovered the more efficient is
the pruning of the search space. A similar observation was reported with the sequential version of
HARD. It seems as if designing some heuristics to guess the order in which to apply the ch-Rule is
worth investigation and comparison with respect to a parallel execution.

We also performed test cases where the concept expression is unsatisfiable, either because the set
of inequations does not admit a solution or because the logical expressions do not result in a clash
free model. The test cases that we used were also from [9]. On average, both versions of HARD
(sequential, and parallel) decided the satisfiability of these test cases in less than a second. We plan
to extend these test cases in order to test the scalability of the framework illustrated in this paper.
A thorough investigation on the speedup, efficiency and overhead of the parallel framework is work
in progress. The preliminary results are encouraging and show that using a parallel framework with
algebraic reasoning is worth investigating and more promising than parallelizing standard tableau-
based reasoning.

6 Related Work

A parallel algorithm for description logics reasoning was first considered in 1995 [7], limited scala-
bility results were possible due to hardware limitations. Further results and research activity have
been reported in this area since the work presented in [26], where non-deterministic choices in core
satisfiability test were explored concurrently. The DL considered (SHN) did not handle qualified
cardinality restrictions and non-determinism was mainly due to disjunctions. A thread pool de-
sign was implemented to handle thread management, and tasks were stored in a priority queue.
Encouraging results were reported even though no work stealing algorithm between threads was im-
plemented. In [28], a parallel search engine was used to parallelize a lean DL reasoner implementing

81

Handling Non-determinism with Description Logics using a Fork/Join Approach

tableau rules for the DL ALC. Even though some speedup was reported, it is not clear whether
the results could be adopted in a full DL reasoner for ALC. Parallelizing conjunctive expansions
(u-Rule) was recently explored in [40], where moderate speedup is reported.

More work can be found on exploring parallel programming in the context of the classifica-
tion task. Techniques using the MapReduce algorithm to classify EL+ ontologies [30] and fuzzy
EL+ ontologies [42] have been proposed with no empirical evaluation. Concurrent classification
of lightweight ontologies has also been considered in the context of consequence-based reasoning
[24] where an impressive speedup was achieved. Tableau-based concurrent classification of more
expressive ontologies has been recently reported in [3, 2, 41], where lock-free algorithms with lim-
ited synchronization have been used in a multi-core environment, and in [39] where specialized data
structures have been proposed to optimize the use of a shared memory environment. However, only
less expressive fragments of DL have been considered. Parallel reasoning has also been investigated
in the context of distributed resolution reasoning [34] about interlinked ontologies as an alternative
to centralized tableau-based reasoning (DL ALCHIQ).

Parallelizing has been considered in [36] by examining a data partitioning approach and a rule
partitioning approach. WebPIE [38] is another parallel inference engine which has shown consider-
able performance results. WebPIE reasoning is based on the MapReduce programming model and
is implemented using the Hadoop framework. One might argue that the MapReduce programming
model also allows dividing a tasks into subtasks and could be explored in our reasoner. However,
MapReduce does not allow task divisions to be done dynamically. This means that the number of
tasks must be decided a priori. Another difference between using Fork/Join and MapReduce is re-
lated to inter-task communication. Fork/Join allows such communication, in contrast to Map tasks
in Hadoop, which are completely independent until the output of Map tasks are reduced. This fea-
ture might be crucial to adopt some optimization techniques like dependency directed backtracking.

7 Outlook

We have described our experience in implementing a parallel handling of non-determinism in the
algebraic tableau algorithm for the DL ALCQ. We build on the ideas presented in [13] and adopt
the Fork/Join parallel execution paradigm to allow the execution of non-deterministic rules on inde-
pendent cores. This parallel framework allows splitting the tasks of completion graph expansion into
parts that are partially evaluated and then combined together to return the final result. Fork/Join
allows a divide and conquer style of dividing tasks. This means that the number of tasks created is
not determined a priori, it is computed dynamically and recursively as each tasks unfolds.

For this implementation, we support the DL ALCQ. An initial evaluation reveals encouraging
results particularly with test cases where the concept expression relies on disjunctive restrictions.
We plan to extend this work to handle the full expressivity of the DL SHOQ, where the com-
plexity of reasoning due to the interaction between nominals (O) and qualified cardinality restric-
tions (Q) might require extra efforts to parallelize the algebraic tableau reasoner. Even though
non-determinism remains due to the same tableau expansion rules, the solutions provided by the
inequation solver have a global scope within the satisfiability check, whereas, with ALCQ the so-
lutions provided by the inequation solver are local to a certain node within the completion graph
for a given satisfiability check. This might require the handling of communications between tasks
running disjunctive expansions, and a more complex implementation.

8 Acknowledgments

We greatly acknowledge the thoughtful feedback by Professor Volker Haarslev on an earlier version
of the manuscript. Computational facilities are provided by ACEnet, the regional high performance
computing consortium for universities in Atlantic Canada. ACEnet is funded by the Canada Foun-
dation for Innovation (CFI), the Atlantic Canada Opportunities Agency (ACOA), and the provinces
of Newfoundland and Labrador, Nova Scotia, and New Brunswick. The second author acknowledges
support from NSERC.

82

International Journal of Networking and Computing

References

[1] Juan Esteban Maya Alvarez. Query engine for massive distributed ontologies using mapreduce.
Master’s thesis, Technische Universitat Hamburg-Harburg, 2010.

[2] Mina Aslani and Volker Haarslev. Parallel tbox classification in description logics - first ex-
perimental results. In Helder Coelho, Rudi Studer, and Michael Wooldridge, editors, ECAI
2010 - 19th European Conference on Artificial Intelligence, volume 215 of Frontiers in Artificial
Intelligence and Applications, pages 485–490, Lisbon, Portugal, August 16-20, 2010. IOS Press.

[3] Mina Aslani and Volker Haarslev. Concurrent classification of owl ontologies - an empirical
evaluation. In Yevgeny Kazakov, Domenico Lembo, and Frank Wolter, editors, Proceedings of
the 2012 International Workshop on Description Logics, DL-2012, volume 846, Rome, Italy,
June 7-10, 2012.

[4] Franz Baader, Jan Hladik, Carsten Lutz, and Frank Wolter. From tableaux to automata for
description logics. volume 57, pages 247–279, Amsterdam, The Netherlands, The Netherlands,
2003. IOS Press.

[5] Franz Baader and Ulrike Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69:5–40, 2001.

[6] Christopher JO Baker, Rajaraman Kanagasabai, Wee Tiong Ang, Anitha Veeramani, Hong
Low, and Markus R Wenk. Towards ontology-driven navigation of the lipid bibliosphere. In
Sixth International Conference on Bioinformatics, volume 9. BMC Bioinformatics, 2008.

[7] Frank W. Bergmann and J. Joachim Quantz. Parallelizing description logics. In 19th Ann.
German Conference on Artificial Intelligence, LNCS, pages 137–148. Springer-Verlag, 1995.

[8] Yu Ding. Tableau-based Reasoning for Description Logics with Inverse Roles and Number Re-
strictions. PhD thesis, Concordia University, 2008.

[9] Jocelyne Faddoul. Reasoning Algebräıcally with Description Logics. PhD thesis, Concordia
University, Montreal, Canada, 2011.

[10] Jocelyne Faddoul, Nasim Farsinia, Volker Haarslev, and Ralf Möller. A hybrid tableau algorithm
for ALCQ,. In Franz Baader, Carsten Lutz, and Boris Motik, editors, Proceedings of the 21st
International Workshop on Description Logics (DL 2008), Dresden, Germany, May 13-16,
2008, volume 353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[11] Jocelyne Faddoul and Volker Haarslev. Optimizing algebraic reasoning for description logics
with qualified cardinality restrictions and nominals. Submitted for review, page 50 pages.

[12] Jocelyne Faddoul and Volker Haarslev. Algebraic tableau reasoning for the description logic
SHOQ. Journal of Applied Logic, 8(4):334–355, 2010.

[13] Jocelyne Faddoul and Wendy MacCaull. Parallelizing algebraic reasoning for the description
logic SHOQ. In Proceedings of the 4th Canadian Semantic Web Symposium, pages 20–23.
CEUR, 2013.

[14] Jocelyne Faddoul and Wendy MacCaull. A parallel framework for handling non-determinism
with expressive description logics. In 28th International Parallel and Distributed Processing
Symposium Workshops. IEEE, 2014.

[15] Eoin Fahy, Shankar Subramaniam, H. Alex Brown, Christopher K. Glass, Alfred H. Merril Jr.,
Robert C. Murphy, Christian R. H. Raetz, David W. Russell, Yousuke Seyama, Walter Shaw,
Takao Shimizu, Friedrich Spener, Gerrit van Meer, Michael S. VanNieuwenhze, Stephen H.
White, Joseph L. Witztum, and Edward A. Dennis. A comprehensive classification system for
lipids. In Journal of LIPID research, volume 46, pages 839–62, 2005.

83

Handling Non-determinism with Description Logics using a Fork/Join Approach

[16] Nasim Farsiniamarj and Volker Haarslev. Practical reasoning with qualified number restrictions:
A hybrid abox calculus for the description logic. AI Communications, 23(2-3):205–240, 2010.

[17] Volker Haarslev, Martina Timmann, and Ralf Möller. Combining tableaux and algebraic meth-
ods for reasoning with qualified number restrictions. In Proceedings of the International Work-
shop on Description Logics (DL’2001), Aug. 1-3, Stanford, USA, volume 49 of CEUR Workshop
Proceedings, pages 152–161, 2001.

[18] Jan Hladik and Jörg Model. Tableau systems for SHIO and SHIQ. In Proceedings of the 2004
International Workshop on Description Logics (DL2004), 2004.

[19] Ian Horrocks. The Description Logic Handbook: Theory, Implementation, and Applications,
chapter Basic Description Logics, pages 47–100. Cambridge University Press, 2003.

[20] Ian Horrocks. The Description Logic Handbook: Theory, Implementation, and Applications,
chapter Implementation and optimisation techniques, pages 306–346. Cambridge University
Press, 2003.

[21] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In Proc.
of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006),
pages 57–67. AAAI Press, 2006.

[22] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D) description logic. In
Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001),
pages 199–204. Morgan Kaufmann, Los Altos, 2001.

[23] Ian Horrocks and Stephan Tobies. Optimisation of terminological reasoning. LTCS-Report
LTCS-99-14, LuFG Theoretical Computer Science, RWTH Aachen, 1999.

[24] KazaKov and Simancik. Concurrrent classification of el ontologies. In 10th International Se-
mantic Web Conference, 2011.

[25] Doug Lea. A java fork/join framework. 2000.

[26] Thorsten Liebig and Felix Müller. Parallelizing tableaux-based description logic reasoning. In
The 2007 OTM Confederated International Conference on the Move to Meaningful Internet
Systems, pages 1135–1144, Berlin, 2007. Springer-Verlag.

[27] Wendy MacCaull and Fazle Rabbi. NOVA Workflow: A Workflow Management Tool Targeting
Health Service Delivery. In International Symposium on Foundations of Health Information
Engineering and Systems (FHIES - 2011), volume 7151 of Lecture Notes in Computer Science,
pages 75–92. Springer, 2012.

[28] Adam Meissner. Experimental analysis of some computation rules in a simple parallel reasoning
system for the alc description logic. International Journal of Applied Mathematics and Computer
Science - Semantic Knowledge Engineering, 21(1):83–95, March 2011.

[29] Marvin Minsky. A framework for representing knowledge. In J. Haugeland, editor, Mind Design:
Philosophy, Psychology, Artificial Intelligence, pages 95–128. MIT Press, Cambridge, MA, 1981.

[30] Raghava Mutharaju, Frederick Maier, and Pascal Hitzler. A MapReduce algorithm for el+. In
23rd International Workshop on Description Logics, pages 464–474, 2010.

[31] Hans Jürgen Ohlbach and Jana Koehler. Modal logics description logics and arithmetic rea-
soning. Artificial Intelligence, 109(1-2):1–31, 1999.

[32] Laleh Roosta Pour. Algebräıc reasoning with the description logic SHIQ. Master’s thesis,
Concordia University.

84

International Journal of Networking and Computing

[33] Ross Quillian. Word concepts: A theory and simulation of some basic semantic capabilities,
volume 12 of Behavioral Science, pages 410–430. September 1967.

[34] Anne Schlicht and Heiner Stuckenschmidt. Distributed resolution for expressive ontology net-
works. In Web Reasoning and Rule Systems, 3rd International Conference (RR-2009), pages
87–101, Chantilly, VA, USA, October 2009.

[35] Manfred Schmidt-Schaub and Gert Smolka. Attributive concept descriptions with complement.
Artificial Intelligence, 48(1):1–26, 1991.

[36] Ramakrishna Soma and V.K. Prasanna. Parallel inferencing for owl knowledge bases. In 37th
International Conference on Parallel Processing - ICPP’08, pages 75–82, 2008.

[37] Prasad Subramanian. A field programmable gate array based finite-domain constraint solver.
Master’s thesis, School of Graduate Studies, Utah State University, 2008.

[38] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, and Frank van Harmelen. Webpie: a web-
scale parallel inference engine using mapreduce. Web Semantics: Science, Services and Agents
on the World Wide Web, 10, 2012.

[39] Kejia Wu and Volker Haarslev. A parallel reasoner for the description logic ALC. In Yevgeny
Kazakov, Domenico Lembo, and Frank Wolter, editors, Proceedings of the 2012 International
Workshop on Description Logics, DL-2012, volume 846 of CEUR Workshop Proceedings, Rome,
Italy, June 7-10, 2012. CEUR-WS.org.

[40] Kejia Wu and Volker Haarslev. Exploring parallelization of conjunctive branches in tableau-
based description logic reasoning. In Proceedings of the 2013 International Workshop on De-
scription Logics, 2013.

[41] Kejia Wu and Volker Haarslev. Parallel owl reasoning: Merge classification. In The Third Joint
International Semantic Technology Conference, 2013.

[42] Zhangquan Zhou, Guilin Qi, Chang Liu, Pascal Hitzler, and Raghava Mutharaju. Reasoning
with fuzzy-EL+ ontologies using mapreduce. In Luc De Raedt et al., editor, ECAI 2012 - 21st
European Conference on Artificial Intelligence, pages 933–934. IOS Press, 2012.

85

