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Abstract

In this paper we describe our performance-breakdown model for GPU programs. GPUs are
a popular choice as accelerator hardware due to their high performance, high availability and
relatively low price. However, writing programs that are highly efficient represents a difficult
and time consuming task for programmers because of the complexities of GPU architecture and
the inherent difficulty of parallel programming. That is the reason why we propose the Linear
Performance-Breakdown Model Framework as a tool to assist in the optimization process. We
show that the model closely matches the behavior of the GPU by comparing the execution time
obtained from experiments in two different types of GPU, an Accelerated Processing Unit (APU)
and a GTX660, a discrete board. We also show performance-breakdown results obtained from
applying the modeling strategy and how they indicate the time spent during the computation in
each of the three Mayor Performance Factors that we define as processing time, global memory
transfer time and shared memory transfer time.

Keywords: GPGPU, OpenCL, APU, Performance Modeling

1 Introduction

The Graphic Processing Unit (GPU) is a computer device originally designed as specialized hardware
that freed the CPU from computational-heavy graphic-related task. However since the beginning
of the 21st century computer programmers realized that the rate at which the GPU could perform
floating-point operations was higher than that of the CPU by a wide margin. There was a drawback:
the only way to program the GPU was by using graphics-related programming languages and APIs,
making it difficult and non-intuitive. Nonetheless, the results of using the GPU for general-purpose
computations were good and the new field of General Purpose Computations on GPU (GPGPU) was
born. Because of its initial success, many research communities and GPU vendors joined the efforts
to make GPGPU available for more all programmers and not only those with computer graphics
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knowledge. As a result, the development of GPU-specific programming models like like CUDA [6]
and OpenCL which targets any accelerator hardware and multi-core and many-core processors [10]
have made GPU programming more accessible and enabling features that allow its application in
more areas besides graphics processing.

GPUs are made up of a large number of Processing Elements (PE ) (the exact number varies in
each GPU model, but it is typically several hundreds) that allow a high level of parallelism, which is
one of the sources of their high computational throughput, thus achieving high performance is the
main purpose of recurring to GPGPU. It is desirable that programs use the GPU are as efficient as
possible, inefficient use of the hardware results in detriments in performance which is contradictory
to the original objective. It is, however, due to GPU’s complex architecture that it is difficult and
time consuming to develop GPU programs that make full use of the potential of the hardware the run
on. Despite the existence of general programming models and tools for GPU programming, writing
correct, efficient programs for GPUs is a difficult, time consuming task. The reason of the difficulties
is that GPUs are highly sophisticate hardware designed to create and manage thousands of parallel
threads, sophistication that is achieved through architectural complexity. There is a user-managed
memory hierarchy that is different of that of the CPU, race conditions, multi-port memory, add
complexity that is responsibility of the programmer.

We recognize the need of attacking the problem of the difficult and time-consuming task of
producing optimal GPU kernel programs and attack it by developing a tool that can be used as a
guide to understand the behavior of an application when executing in a GPU device. We present
our Linear Performance-Breakdown Model, a performance modeling tool that shows the bottlenecks
to the programmer to aid in the optimization process.

The rest of this document is organized as follows: In section 2 we present an overview of the
OpenCL programming model and its relationship with GPU hardware. We describe our proposed
Linear Performance-Breakdown Model and the framework. Section 4 presents the results obtained
from applying our framework to three case studies, Single-precision General Matrix Multiplication,
Fast Fourier Transform and Reduction. A review on the literature related to this study is presented
in Section 5. Finally, in section 6 we present the conclusions drawn from this work and a brief
description of the intended future work regarding the LPBM framework.

2 GPU Programming Model

In order to program the GPU for general purpose computations, a special API is necessary. For
our experiments we opt to use OpenCL. By using OpenCL, it is possible to run the same program
in GPUs from different vendors. This enables us to perform experiments in GPU with different
architectures. To help clarifying our model methodology, in this section we describe the OpenCL
programming model and its relationship with the architecture of the GPU. This is necessary to
understand how GPU are constituted and how the different concepts in the programming model are
related to the performance achieved by GPU kernels.

The execution of a GPU kernel typically starts from the CPU in a program that is commonly
referred as host program. The host program prepares necessary resources in the host computer, like
system memory to store the data that will be sent to and from the GPU as input and output data;
as well as compile and send to the GPU the kernel program file, that is the file that contains the
source code of the program that will be executed in the GPU. Once the kernel code is compiled, the
host program can send kernel code and data to the GPU for its execution.

Figure 1 shows a block diagram of the GPU architecture at its basic level. Modern GPUs
architecture follows a hierarchical block mode in which the top level is made of vector processors,
called Compute Units (CU ) that operate in a Single Instruction Multiple Data (SIMD) fashion.
Down to the next level, each CU contains an array of Processing Cores (PE ). All the PEs inside a
CU are able to communicate through an on-chip, programmer-managed memory known as shared
memory. [16, 21].

When a kernel is submitted to the GPU for execution a index space containing all the Work-
Items, specified in the kernel program, is created. Each Work-Item will have a coordinate which
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Figure 1: General block diagram of a GPU device. A GPU can be regarded as a collection of
Compute Units, which in turn are constituted by an array of Processing Cores.

purpose is to provide a means for Work-Items to distinguish from each other and for the programmer
to control which data elements each Work-Item must operate on. It is then responsibility of the
programmer to divide the work to be done and ensure each Work-Item is correctly indexed and
accessing the correct data elements.

GPU and CPU support threads in very different ways. The CPU has a small number of registers
per core that are used to execute any task given to the CPU. Context switching on CPUs is expensive
in terms of time because the state of all registers for the current task must be saved to memory and
the register states for the next task must be loaded back, an operation that can cost a high number
of cycles. On the other hand, GPUs have multiple banks of registers, and each bank is assigned to
a different task. A context switching involves a bank selector instead of expensive RAM loads and
stores, making context switching less time-consuming. The impact of this mechanism is that the
GPU uses the fast context-switching ability coupled with the capability to manage a large number
Work-Item to hide data latency. However, it is important to consider that even though the number
of register banks is large, it still has a limit that directly impacts the number of Work-Items that
can reside in a Computing Unit at any given moment. Work-Items are grouped unto a larger logical
instance called Work-Group. The most important aspect of Work-Groups, is that communication is
enabled across Work-Items only if they belong to the same Work-Group.

When a Work-Group is created within a program, all Work-Items in that Work-Group are as-
signed to the same CU. The purpose is to ensure scalability, allowing a program to run across
different generations of GPUs with different number of CUs. A kernel program can run on a GPU
device with any arbitrary number of CUs, the GPU’s scheduler will distribute groups to all avail-
able units. This translates to the general rule that more CU reduce computation time as more
work is done in parallel. Unfortunately more factors intervene to determine the actual computation
time. Although the vector processors can process an arbitrary number of Work-Items within some
constraints, the scheduler cannot schedule an arbitrary number of Work-Items for execution. The
number of Work-Items that can be scheduled for execution is known as Wave-Front (WF). The WF
size is different for each GPU vendor, in current generation hardware, for AMD devices, the WF
size is 64 Work-Items whereas for Nvidia hardware is 32. This means that if some number different
from the WF size needs to be executed, the schedulers will still create 64 Work-Items and since not
all of them have useful work to perform, some will be idle. The result is Processing Elements being
idle during some cycles, reducing the efficiency of the GPU.

Although slower than the register file, shared memory is larger and most importantly, it is
accessible to all Work-Items in the same Work-Group. All CUs in the GPU have access to the
global memory that is the largest and slowest of all the memory types in a GPU. GPU’s global
memory have the characteristic of featuring a very high bandwidth which is achieved by partitioning
the memory cell into several banks, known as partitions. Figure 2 shows a description of how the
different concepts in the OpenCL standard map to the correspondent GPU hardware component.
For example, a Work-Item executes in a PE and each Work-Group is assigned to a CU.

For the experiments presented in this paper we use two GPUs which feature different architec-
tures, an AMD Accelerated Processing Unit (APU) and a NVIDIA GeForce series GTX 660. The
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Figure 2: Correspondence between OpenCL concepts and the GPU hardware.

distinguishing characteristic between these devices is that the APU is an integrated GPU and the
GTX is a discrete GPU board.

Figure 3: Block diagram of an APU. The memory connections and placement of computing cores
as well as the speed of the memory buses are shown

The architecture of an integrated GPU is shown in Figure 3. An APU is a special type of
computer processor in which the GPU cores are built into the same silicon chip as the CPU cores.
Integrated designs like the APU do not need to make use of the PCIe port to transfer data between
CPU and GPU memory spaces. Instead, the main system memory is used for both, CPU and
GPU memory spaces. The only operation that needs to be performed is reserving a memory block
for exclusive GPU use when a GPU program is launched. When data between GPU and CPU is
transferred, data is moved from one RAM location to the other. However, if pinned memory is used,
it is possible to make a memory mapping, where the GPU and CPU can read and write to the same
memory area, the transfer step is skipped and the cost of the transfer is now the overhead of the
mapping which is usually much lower than the time of an actual transfer between different memory
locations. On the other hand discrete GPUs, like the GTX 660, are GPUs that are contained into
its own electronic board. The block diagram of a discrete GPU can be seen in Figure 4. The GPU
board is attached into the host computer system using the PCI express port. The advantage of a
discrete board is that there is neither, space nor transistor count limits to build the GPU chip, which
is the reason discrete GPU are generally more powerful than integrated GPUs. Discrete boards have
their own on-board memory storage, typically implemented using GDDR technology and ranging
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from 512 MB up to 2GB on commercial-level boards[6]. Since a discrete board is far from the main
system memory, and separated by the PCIe port, the time needed to transfer data between the on-
board GDRAM and the main system memory is significant. Such impediment is one of the major
reasons GPU technology cannot be widely adopted to accelerate any arbitrary computation. If a
program requires a memory transfers of small quantity of data, the long data transfer overhead time
overcomes the advantage of the high throughput offered by the GPU.

Figure 4: Block diagram showing how a discrete GPU board is attached to a host system. The
memory buses speed is indicated by the colored arrows.

At the lowest memory hierarchy level, GPUs feature multiple banks of registers, and each bank
is assigned to a different task. A context switching involves a bank selector instead of expensive
RAM loads and stores, making context switching less time-consuming in a GPU. However, the
number of banks is limited, and it imposes a limit on how many Work-Groups can be executed
concurrently, making this mechanism an important performance factor. In the next section we
describe the framework on which our modeling methodology is based. The framework features
several modules that perform specific tasks related to building the model from the source code and
obtain the performance-breakdown.

3 LPBM Framework

In this section we describe our proposed modeling strategy, the Linear Performance-Breakdown
Model LPBM. We also describe the framework we developed to use the LPBM as a GPU kernel
optimization tool. Our framework for the LPBM consist of a group of modules that interact with
each other to process a GPU program and produce a Performance-Breakdown graph. The framework
takes the host and kernel code as input, follows several steps to process the relevant information
in the files that compose the GPU program and produces profiling information that is used to
obtain the Performance-Breakdown formula. The modules that make up the framework are the
Auto-Profiling Module(APM), the Performance Formula Generation Module (PFGM), the Linear-
Regression Module(LRM) and the Performance-Breakdown Extraction Module (PEM). The modules
are responsible of obtaining all the necessary information to calculate the breakdown of performance
from the kernel code in the local machine. Figure 5 shows a block diagram of the framework modules,
showing inputs and outputs of each module.

In the rest of this section, we describe each module, their necessary inputs and outputs, and the
functions they perform.
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Figure 5: LBPM Framework block diagram. The modules that make up the framework are depicted.
The framework is a semi-automated system, it requires the user intervention.

3.1 Auto-Profiling Module (APM)

For our LPBM framework like in other modeling methods, in order to extract the breakdown of
performance, program parameter information and machine parameter information are necessary [17].
In our system, the machine information is obtained using a list of known GPU device specifications
that are available in the documentation of the hardware provided by the GPU manufacturers, in
addition to information available using the OpenCL function clGetDeviceInfo as well as parameters
defined in the program code. Program parameters include register usage, wavefronts in the kernel
launch, etc. Program parameter information is obtained by the Performance Formula Generation
Module. The LPBM Framework requires kernel program profiling data to calculate the regression
coefficients that are used for breakdown of performance calculation. This profiling data must be a
set of measured execution times with different Work-Group settings. The purpose of the APM is
the gathering of the profiling information. Execution time of a program contains both, system and
program information and, as expected, depends on the GPU device and the program code, where
most of the characteristics are defined by the kernel program.

To correctly identify the relevant information from the kernel code, the APM requires the pro-
grammer to prepare the source code. First, The Command Queue that will make the call to the
clEnqueueNDRangeKernel function must be created with the enable profile information option set.
This instruct the Command Queue to gather profiling information that is used to obtain the exe-
cution time information. Second, the correspondent code must be added before and after the call
of kernel execution functions to compute and print out the gathered information and thus allow
the APM to collect the execution data. A last adjustment involves the variable or constant used
to determine the local and global-work size in the host code. Such variables or constant must be
changed to a predefined variable names, LWS and GWS, that stand for Local Work Size and Global
Work Size respectively. This is necessary to conform with the module in our framework and enable
it to define sets of different values for both, local and global work size and gather the execution time
information.

The implementation of this module is through shell scripts. The shell script specifies the global
and local sizes at compile time using the gcc flag -D. The module then generates a set of program
runs with the different parameters and collects the profiled data (execution time against Work-Group
size). As mentioned previously, it makes use of both, kernel and host code files as input, and the
output is a data file that contains the profiling information organized in a line-wise order. The
included information will be the settings of global and global work size plus the timing information
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in nanoseconds obtained from the OpenCL API facilities.

3.2 Performance Formula Generation Module (PFGM)

The execution time of a computer program is difficult to predict in modern processors. Out-of-order
execution, branch prediction, sophisticated caches systems and other improvements are difficult
to model due to their non-deterministic nature. However, we consider that even though a large
number of factors and the complex interactions that they present determines the real performance
of a computation in GPUs, it is possible to work with the assumption that among all factors, there
are three of them that have the largest impact on the execution time of any kernel program. In
a computer, the total execution time of a program be calculated as the sum of the time used for
computations and the time used for data transfers. In a GPU system, because there is a clear
difference between the two levels of memory, data transfers are in turn divided into global memory
to shared memory transfers, and shared memory to private memory transfers. Thus, we define the
Major Performance Factors (MPF ) as the transfer time between global and local memory (Global-to-
Shared Transfer G2ST ), the transfer time between the local and private memory (Shared-to-Private
Transfer S2PT ), and the time for floating-point operations (Processing Units Time PUT ). The
reason for choosing the MPF is that because of the increasing gap between CPU and memory
performance, the execution time of programs in modern computers is largely dominated by the
data transfers time[18]. In the case of GPUs the only difference is that the memory hierarchy is
an heterogeneous, multi-level structure that combines different memory technologies. Typically the
memory levels that can be found are the global memory, off-chip memory implemented using GDDR
technology. Global memory is large, with capacity in the order of GB, but access latency is high.
The next level is the Shared memory, on-chip memory implemented with SDRAM technology. It is
faster than global memory by an order of magnitude but also much more limited capacity, typically
in the order of kB. The last memory hierarchy level is the private memory, the closest memory
to the processing units and the fastest memory type. To determine the performance formula for
each performance factor (PUT, G2ST, S2PT ) it is necessary to analyze the kernel program. To
achieve an automatic code analysis the source code is transformed into an Abstract Syntax Tree
(AST), which is the first task performed by this module. This is done using the python extension
PyCParser [3]. After generating the AST of the program code, this module locates the relevant
variables i.e. those qualified as global memory-residing and local memory-residing variables, and the
control loops (such as for loops) to determine the performance formulas. It needs the host and kernel
program codes as input and generates an Abstract Syntax Tree for each. The trees are transversed
in order to locate the key control loops, variables and function calls; information used to discover
movement of data between the different levels of the memory hierarchy and determine the formulas
for each performance factor as output.

3.2.1 Performance Factors and Performance Formula designation

A simple formula for modeling the execution time of any given algorithm in a computer system can
be obtained by dividing the number of clock cycles required by the algorithm and the duration of one
clock cycle. For simplicity, we measure elapsed time instead of clock cycles. Taking one step ahead
in the analysis of computation time, The time required to complete an algorithm can be divided
into the time spend into performing numerical computations and time spend copying data from one
level of the memory hierarchy to another as shown in equation 1.

RunningTime = ComputationTime + DataTransferTime (1)

A more refined model suited for GPU computations considers that the data transfers in a GPU
are divided into two categories. The first category refers to the data transfers from global memory
to shared memory, the second, from the shared memory to the private memory, i.e. the registers
of the processing cores. In our model we do not consider transfers between system memory and
global memory because, in the case of discrete GPUs, they cannot be avoided as the GPU and main
system memory are separated from each other; and in the case of integrated GPUs, zero-copy data
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buffers are be used, which eliminates any transfer. For that reason host-device memory transfers
are not considered, being this the main advantage of an APU system [7]. An important observation
is that it is not possible to measure with perfect accuracy the time elapsed for either the floating
point operations or the memory transfers. Taking this into consideration, we obtain equation 2 that
its a linear combination of three terms.

RunningTime =α1 · ComputationTime+

α2 · LocalMem.TransferTime+

α3 · GlobalMem.TransferTime (2)

The α parameters in the equation define the weight of each individual Mayor Performance Factor
in the equation. They also help to interpret the breakdown of the performance, indicating which
component represents a greater contribution to the total processing time so that optimization efforts
can be applied in the correct direction. As a starting point for constructing the formulas that make
up the performance factor formulas, let us consider the case where the system runs under a sequential
execution style. In such sequential system, the total execution time can be estimated as the number
of floating-point operations necessary to finish the task. This would yield the total amount of
Time Slots to complete the execution of an algorithm, and by multiplying the number of times
slots by the execution time of a single time slot, we can have an estimate of the computation time.
However, in a multi-core system such as the GPU, operations are executed with a certain degree of
concurrency. The degree of concurrency that can be achieved depends not only on the capabilities
of the hardware, but also the program characteristics. Each GPU has an upper limit of wavefronts
that can be executing concurrently in the device. That number and the actual number of concurrent
wavefronts being executed when a kernel is running are different under ordinary situations. The
reason is that Work-Items will require a given number of registers when they are executed and if
there is not enough register to service several wavefronts at the same time, the effective number of
wavefronts executed concurrently will be reduced. The exact number of registers per Work-Item
depends on the program code. It follows to calculate the concurrency level, the total number of
Wave-Fronts required to execute all the Work-Items in a kernel launch is calculated. Knowing that
value, the total number of Wave-Fronts that can be executed concurrently in the GPU. There is
a number of factors that affect the actual level of parallelism achievable. The resource usage per
Work-Item (registers and shared memory) and the number of CU in a device are the most notorious.
Taking this into consideration will yield an estimate of the time slots required to complete a kernel
execution. The maximum number of Wave-Fronts that can be executed concurrently in the GPU.
To determine total amount of Wave-Fronts that can be executed at the same time across the GPU,
we must know how many Wave-Fronts can be executed in a single CU. The maximum number of
concurrent Wave-Fronts value depends on per Work-Group memory needs. With that information
it is possible to calculate how many Work-Groups can reside in a CU, then the total amount of
Work-Group that can execute concurrently across the GPU is the obtained value multiplied by the
amount of CUs in the GPU. We will refer to this value as Concurrency Level, it is be one of the
most important values that determine the execution time of a kernel program.

3.2.2 Processing Units Latency

During execution not all Work-Groups run necessarily concurrently. Each Work-Group is assigned
to a Compute Unit (CU) where it is executed until the completion of all its instructions. Each
CU maintains the context for multiple blocks. Different Work-Groups assigned to each CU will be
swapped in and out of execution to hide the latency of memory operations. The maximum number
of blocks that are executed concurrently per CU is a combination of device properties and kernel
characteristics. It is crucial to evaluate the impact on the in-flight blocks that can be executed in a
CU of tuning parameters in kernel programs as the performance impact of this idling is a reduced
computational throughput.

In a computer system, the total execution time of a program can be estimated as the number
of floating-point operations necessary to finish the task. This would yield the total amount of
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Figure 6: Wavefronts are the smallest scheduling unit. In this figure we can observe a single Work-
Group composed by two Wave-Fronts. Because the Work-Group size is not a integer multiple, some
Work-Items do not perform useful work.

Time Slots to complete the execution of an algorithm, and by multiplying the number of times
slots by the execution time of a single time slot, we can have an estimate of the computation time.
However, in a multi-core system such as the GPU, operations are executed with some degree of
concurrency. The key is to estimate the degree of concurrency that can be achieved by taking into
account the capabilities of the hardware. An important parameter is the total number of Wave-
Fronts required to execute all the Work-Items in a kernel launch, and in turn, the total number of
Wave-Fronts that can be executed concurrently in the GPU. There is a number of factors that affect
the actual level of parallelism achievable, however the influence of such factors is not as critical as
the hardware resources mentioned. Taking this into consideration will yield an estimate of the time
slots required to complete a kernel execution. The maximum number of Wave-Fronts that can be
executed concurrently in the GPU is determined by the resources needed by each Work-Item and
those available in each CU, these resources are the number of registers and the size of the Local
Data Store (LDS), a especial portion of memory inside each CU[20]. We define this factor in terms
of the number of floating-point operations necessary to perform the task (BigO complexity) and the
level of concurrency (Eq. 3).

ProcessingUnitsTime =
BigOcomplexity

ConcurrencyLevel
(3)

In turn, the level of concurrency is determined by the number of Wave-Fronts in the ND-Range
WavefrontsNDRange and the Maximum number of these Wave-Fronts that can be scheduled for
execution at the same time across the GPU WavefrontsMaxConcurrent as shown in Eq.4.

ConcurrencyLevel =
WavefrontsNDRange

WavefrontsMaxConcurrent
(4)

3.2.3 Global-to-Shared Memory Latency

The global memory is the outermost level in the hierarchy and hence the slower memory. The
number of memory transactions and how they occur from global memory to shared memory is very
important. Work-Group size and memory access pattern have a strong impact on this Performance
Factor. Global memory instructions are issued in order and a Work-Item will stall if the data to
operate with is not ready, the GPU needs enough Work-Items to have a large pool of Wave-Fronts to
swap in and out of execution to hide latency [5, 13]. However, the interaction between Work-Group
size and performance is complex because not only there is the need for enough Work-Items, but also
it is important to have enough memory transactions in flight to saturate the memory bus and fully
utilize its bandwidth. Furthermore, irregularities like memory camping, where consecutive elements
access memory location which memory bank interface is the same. We define this predictor in terms
of the work set size N , the number of Wave-Fronts in a Work-Group WFwg, and the Work-Group
size WGsize (Eq.5).

G2ST =
N ·WFwg

WGsize
(5)
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3.2.4 Shared-to-Private Memory Latency

Once data has been moved to the global memory, it has to be transferred to the Private memory
so it can be readily available for execution by the PE inside the CUs. Shared memory is faster to
access than global memory, but access patterns must be aligned to be efficient [20]. We define this
factor as a function of the total number of Work-Groups in the NDRange WGtotal and the maximum
concurrent Wave-Fronts WavefrontsMaxConcurrent as show in Eq.6.

S2PT =
WGtotal

WavefrontsMaxConcurrent
(6)

3.3 Building the Performance Factor Formulas

Memory transfers in GPU kernels can be identified by observing assignment statements in the
source code. As mentioned previously, the module locates all assignments in the kernel program
code, locating all the memory transfers that are to take place when the program is executed. Each
assignment instance is classified according to the left, and right side of the assignment and the type
of the variables that appear in each side. We classify the memory transfers in relation to the slowest
memory type involved in the assignment. Because of their limited size, The used amount of shared
and private memory, not only the access pattern but also the amount used by the kernel program
greatly influence the execution time. Once the three predictors have been defined, we integrate them
into a linear combination formula. Table 1 shows a summary of the performance predictors used to
calculate the MPFs.

Table 1: Summary of performance predictors

Symbol Meaning
WFsize Wavefront size
WGsize Work-Group size
WGtotal Total number of Work-Groups
WFwg Wave-Fronts in a Work-Group
WFndr Wave-Fronts in the ND range
GPwg GP registers per Work-Group
WFmax Max. number of concurrent Wave-Fronts

3.4 Linear Regression Module (LRM)

If we consider that the performance formulas as a math expressions were coefficients that will have
some predictors affect them in a directly proportional way and other predictors affect them in a
inversely proportional way, we can define a meta-formula for the performance-breakdown. The
exact rate at which the predictor affect the performance factor is given by a complex and non-
deterministic interaction of factors that depend on the original program code. Using Regression as
a tool to find the impact of this factors and allow the calculation of the performance-breakdown is
the objective of this module. Once the profiling information is available, the regression coefficients
are calculated by this module. This module uses the profiling information and the performance
formula to calculate the Regression Coefficients by applying the Least Squares Method with non-
negativity constraint. The process is carried out using the R language [9] and its module nnlsm.
The factors are essential to capture the performance characteristics of programs and allow us to
define a suitable performance model. Each of the three performance predictor formulas are defined
independently from each other and they are integrated into a linear combination formula using the
Least Squares Method described above to approximate the model curve to the experimental data.
To integrate the performance factors we follow a general approach where the response of the system
is modeled as a weighted sum of predictor variables plus random noise[17]. We have a subset of n
observations for which values of the system response (execution time) are known. Let us denote the
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vector of responses as y = y1, . . . , yn. For a point i in this space, let yi denote its response variable
and xi = xi,1, . . . , xi,p denote its p predictor. In our model p = 1, 2, 3 each representing one of
the computation steps described previously. Let P = 1, 2, 3 denote the set of regression coefficients
used in describing the response as a linear function of predictors as shown in Equation 7. g(xi,k)
are the functions defined for each of the predictors. Each predictor function is defined from GPU
architecture parameters and kernel program parameters.

f(yi) =

p∑
j=1

αjgj(xi,k) (7)

3.5 Performance Breakdown Extraction Module (PBEM)

This is the last module in the framework. It calculates the performance-breakdown using the regres-
sion coefficients obtained by the LRM and the performance formula determined by the CLPM. The
output is a bar graph that shows the decomposition of total execution time into the time attributed
to each of the MPFs. This module produces the final output of the framework, a bar graph where
the user can observe the performance-breakdown graph.

4 Case Studies

This section presents the results obtained from applying our model to three different kernel routines,
Single-precision General Matrix Multiplication (SGMM) which kernel is obtained from the sample
code found in [21], The Fast Fourier Transform (FFT) using a kernel obtained from the sample code
found in [22] and Reduction which kernel programs is taken from obtained from the SHOC Bench-
mark suite, a collection of benchmark programs testing the performance and stability of systems
using accelerator computing devices for general purpose computing[1].

In all the experiments we employ two GPU devices whose characteristics are summarized in table
2. The results for both GPU are calculated using the same model and the correspondent profiled
execution times as input. We run the programs 1000 times and the execution time used to train the
model is an average of all the measured timings for each tile size.

Table 2: GPU Characteristics

GPU Model AMD A8-3820 Nvidia GTX 660
GPU type Integrated Discrete
Clock freq. 3.0 GHz 1.0 GHz

Compute Units 5 5
Device Memory 256 MB 2 GB
Local Memory 32 kB 512 kB

4.1 Single-precision General Matrix Multiplication

For our first case study, we use a SGMM program. This kernel program takes two matrices and
compute the matrix product. Listing 4.1 shows the kernel code used in this experiment. The
program was run with all the possible ranges of values for local work size for a matrix size of
1000-by-1000. The local work size values range is from 1 to 16. It is not possible to create
a tile of a width larger than 16 because of the limit of Work-Groups size that is 256 elements.
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(a) Execution time. (b) Performance breakdown graph.

Figure 7: Results of the SGMM on the APU.

(a) Execution time.
(b) Performance breakdown graph.

Figure 8: Results of the SGMM on the GTX660

Listing 1: SGMM kernel with tiling

float output value = 0;
for(int m = 0; m < Width/TILE WIDTH; m++) {
// Global − Local memory transfers
local tile a[ty][tx] =
input a[Row ∗ Width + (m ∗ TILE WIDTH + tx)];
local tile b[ty][tx] =
input b[(m∗TILE WIDTH + ty) ∗ Width + Col];
barrier(CLK LOCAL MEM FENCE);

// Local − Private memory transfers
for(int k = 0; k < TILE WIDTH; k++)

// Processing Units time
output value += local tile a[ty][k] ∗ local tile b[k][tx];

}
barrier(CLK GLOBAL MEM FENCE);
output[Row ∗ Width + Col] = output value;

In our algorithm we work with single precision floating-point numbers grouped in tiles ranging
from one elements to blocks of 16 by 16 elements, to store the values for our MMM kernel, we need
at most 162 · 4 bytes of memory for one tile. Since a Work-Group will be composed of three tiles,
each tile need 3 kB, hence the maximum allowed number of Work-Groups is equal to the maximum
possible amount. With this information, it is possible to calculate how many Work-Groups can reside
in each CU and the total amount of Work-Group that can execute concurrently across the GPU by
multiplying by the number of CUs in the GPU. Figures 7 and 8 show the results for the SGMM
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kernel experiments. In subfigures 7a and 8a it is possible to observe the comparison between the
profiled execution time and the execution time obtained from the model. It is possible to observe
that the results of the model closely matches experimental for both devices. The performance-
breakdown results can be observed in subfigures 7b for the APU and 8b for the Nvidia card. The
performance breakdown graph for this kernel shows the positive effect the increase of tile size has on
performance [8], correctly reflecting that effect in the graphs. Additionally, when the Work-Group
size is large and close to the maximum possible, the PUT show a noticeable increment, a detail that
is observed in both GPUs. This is due to the increase in the computational load compared to the
memory transfer load ameliorated by the increase of Work-Group size, a situation that is observed
in either architecture.

4.2 Fast Fourier Transform

The Fast Fourier Transform FFT is our second case study for our model. In this case the kernel
is show in Listing 4.2. This kernel computes the Fourier Transform. For the FFT kernel we can
observe that there several memory transfers involved in the computation, but most of them involve
values that are classified as private memory variables. This has two consequences, this values do
not need to be transfered from slow memory spaces, but at the same time, they increase the register
count for the kernel. As discussed previously, when a kernel requires a large number of registers, the
amount of in-flight wavefronts that the device is capable of execute, decreases. Figures 9a and 10a
show the comparison between the real values and the values obtained using the model for the FFT
kernel in the APU and the GTX660 respectively. The x axis represents Work-Group size, in powers
of 2 as required by the algorithm and y represents the execution time in ms. The graph shows
how the execution time changes for different values of Work-Group size and that the model closely
matches the profiled data. Figures 9b and 10b show the results Regarding the breakdown of perfor-
mance into the MPFs. We can observe again the positive effects of increasing the Work-Group size
until a certain value is reached, because unlike the SGMM case, the highest value does not achieve
the best performance. Observing the performance breakdown graph, it is possible to note that the
amount estimated for PUT increase considerably. Because the Work-Group size increase, the regis-
ters needed to service all the generated Work-Items increases as well. This results in a detriment in
the concurrency level which in turn causes the increase in the PUT that we can observe in the graphs.

Listing 2: Fast Fourier Transform Kernel code

unsigned int gid = get global id(0);
unsigned int nid = get global id(1);
int butterflySize = 1 << (iter−1);
int butterflyGrpDist = 1 << iter;
int butterflyGrpNum = n >> iter;
int butterflyGrpBase = (gid >> (iter−1))∗(butterflyGrpDist);
int butterflyGrpOffset = gid & (butterflySize−1);
int a = nid ∗ n + butterflyGrpBase + butterflyGrpOffset;
int b = a + butterflySize;
int l = butterflyGrpNum ∗ butterflyGrpOffset;
float2 xa, xb, xbxx, xbyy, wab, wayx, wbyx, resa, resb;
xa = x[a];
xb = x[b];
xbxx = xb.xx;
xbyy = xb.yy;
wab = as float2(as uint2(w[l]) ˆ (uint2)(0x0, flag));
wayx = as float2(as uint2(wab.yx) ˆ (uint2)(0x80000000, 0x0));
wbyx = as float2(as uint2(wab.yx) ˆ (uint2)(0x0, 0x80000000));
resa = xa + xbxx∗wab + xbyy∗wayx;
resb = xa − xbxx∗wab + xbyy∗wbyx;
x[a] = resa;
x[b] = resb;
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(a) Execution time. (b) Breakdown of performance.

Figure 9: Experiment results of the FFT kernel on the APU.

(a) Execution time. (b) Breakdown of performance.

Figure 10: Experiment results of the FFT kernel on the GTX660
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(a) Execution time on the APU

(b) Execution time on the GTX660

Figure 11: Reduction kernel results

4.3 Reduction

Reduction is a vector operation, the input is a vector of length N, and the objective is to add
the values of each independent vector element successively until a single output result is obtained.
Reduction if not computational heavy, but it involves a high number of data transfers. The GPU
implementation of this process presents several design challenges in regard of the type of memory
used to store intermediate results, the Work-Item indexing strategy, etc. Each strategy will produce
different performance results. Listing 4.3 shows the reduction kernel code.

Listing 3: Reduction

sdata[tid] = 0;
// Reduce multiple elements per thread, strided by grid size
while (i < n){

sdata[tid] += g idata[i] + g idata[i+blockSize];
i += gridSize;

}
barrier(CLK LOCAL MEM FENCE);
// do reduction in shared mem
for (unsigned int s = blockSize / 2; s > 0; s >>= 1){

if (tid < s){
sdata[tid] += sdata[tid + s];

}
barrier(CLK LOCAL MEM FENCE);
// Write result back to global memory
if (tid == 0){

g odata[get group id(0)] = sdata[0];
}

The results obtained in the reduction kernel experiments with a vector size of 1 million elements
can be observed in Figure 11. Figure 11a shows the results for the APU and in Figure 11b the
results for the GTX660 are shown. It is possible to see that even in kernels that perform a simple
operation like reduction both devices show different behavior when modifying the Work-Group size
and that both of them exhibit a different optimal Work-Group size, the APU shows the minimum
execution time at a work-size of 64 and the GTX660 at 128 elements per Work-Group. Because
for this case study the experiment incorporated a large number of trials, Figures 12 and 13 show
a sample from the whole experiment value. This is to make possible to observe the breakdown of
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(a) Execution time.
(b) Performance-breakdown.

Figure 12: Reduction kernel results on the APU

(a) Execution time. (b) Performance-breakdown

Figure 13: Reduction kernel results on the GTX660

performance. From the definition of the operation and the kernel code it is possible to understand
that this kernel does not involve a large number of computations, but the intensive work is about
transferring data. This is reflected in the results we can observe in Figure 12b for the APU and
Figure 13b for the Nvidia card, the performance-breakdown revealed by the LPBM shows that the
value of PUT is very low, almost zero. Another important point to note is that the amount that
corresponds to S2PT is larger than G2ST. Because the kernel is using local memory to perform the
reduction operations, the time spent transferring data from and to global memory is reduced, and
this is reflected in the performance breakdown formula.

5 Related Work

When an application is developed, the main reason GPU is preferred over CPU for computation
is GPU’s high performance paired with a higher energy consumption efficiency. Thus, it is natural
that a larger share of the research effort have been invested towards application development, to
demonstrate the usefulness of GPUs and the expansion of the range of applications where GPU is
a good option for accelerate computations. Companies like Nvidia and AMD focus all their efforts
into the improvement of the hardware and the GPU architectural details, whereas users of the
technology are mainly interested in developing applications. On the other hand, the effort devoted
to performance modeling and analysis tools is not as prominent. Whilst there are several works on
the literature regarding performance models for GPU, it is worth mentioning that a large share of
them focus on the CUDA programing model and hence applicable only to Nvidia GPUs [19, 4, 2, 11].
Furthermore, many of them make use of hardware performance counters and specific characteristics
of the GPU architecture. The drawback of such approach is that the models and tools can only be
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applied to Nvidia GPUs and there is no warranty that they might be valid for future generations
hardware. However, this studies provide insight about the inner workings of Nvidia GPUs that serve
as a base for understanding the general architecture of the GPU device, allowing us to extract this
insights and applying it to our own model.

In [24], the authors present a micro-benchmark derived model that works to identify the bottle-
necks of kernel programs in the Nvidia’s GeForce 200 series. The authors present a model based on
the GPU native instruction set that achieves a low error rate. However, the disadvantage of this
approach is that cannot be applied to devices other than the GeForce 200 series.

In [15] the authors relate to the lack of a GPU performance model and recognize the difficulties
it derives like the possibility of evaluate the suitability of the GPU to solve a particular problem.
Likewise, [12] address the importance of having access to a modeling framework recognizing the
fact that, for GPU programs, developers should devote large amounts of time to write a program
that produce the correct results, and utilizing the hardware to its best performance its a more time-
consuming task. The result of the aforementioned works is a framework to generate predictive models
that allows the comparison between GPU and CPU performance in a per-application base. We chose
instead to focus the analysis in the GPU architecture, since we believe that at this point it is clear
that if the task exhibits a good amount of parallelism, the GPU will present better performance
than CPU.

Additionally, the authors base their modeling strategies in performance counters and other met-
rics that are available in the CUDA programming model. The disadvantage of this fact is only
GPU produced by Nvidia support CUDA. Other authors build their models based exclusively on
the CUDA programing In 2009, Hong et al. [11] presented a study on GPU power consumption
and performance modeling. In their study, the authors demonstrate the development of an ana-
lytical model based on an abstraction of Nvidia Fermi architecture and then execute the related
experiments to validate the model. In contrast, we first design and execute the set of experiments
that provide us with the execution times that will serve as input for our model. Then we make
use of our model to decompose the costs of the three mayor performance predictors (floating-point
computations, Shared-to-Private and Global-to-Shared memory transfer costs), while maintaining a
device-independent approach by identifying the most important aspects of a kernel program execu-
tion as it is processed in general by any GPU device.

In [14], the author proposes a model for execution-less performance modeling for linear algebra
algorithms in CPU machines. The authors develops their model focusing on L1 cache misses,
and analyze the correspondence between their model and the experimental results obtained in a
Barcelona AMD CPU and a Intel Penryn. Contrary to the CPU where the cache is transparent to
the programmer, the memory hierarchy is explicitly managed by the programmer in the GPU. For
that reason, our model output, a Performance Breakdown Graph shows how much of the execution
time is being spent between the various level of the GPU memory hierarchy.

In [23] the author discuss the effects of factors such as sequential code, barriers cache coherence
and scheduling in general shared memory multiprocessors. The author parts from the Amdahl’s law
and analyze shared memory systems (GPUs belong to this classification) to derive several models,
one for each separate factor. Our approach is instead combine the most important factors into a
single equation using a special case of Shared memory system and apply then the LSM method to
evaluate the impact of each factor.

6 Concluding Remarks

We have developed and tested a Linear Breakdown Performance Model for GPU devices. We
originally developed the model to be used with the AMD’s Accelerated Processing Unit since Our
original motivation was to investigate a performance model for that particular device that has
the characteristic of being a Integrated GPU which overcomes the most important drawback of
the GPGPU technology, i.e. the need to transfer data between the GPU memory and the main
memory of the host computer. Nonetheless after applying the same methodology to experimental
data obtained from a Nvidia GPU, we obtained promising results and demonstrated that the LPBM
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could be used for both, integrated and discrete GPUs. These shows that the model is capable of
capture the hardware characteristics of different types of GPU and offer an accurate breakdown
model. We built a frame that facilitates its use as a optimization assistance tool. Starting from
the source host and kernel code, the different modules that make up the framework analyze the
GPU program and deliver the Performance-Breakdown graph. In future improvements we plan to
extend the scope of the model to performance-affecting factors that might have an important role
such as partition camping. At the present stage, the model can be used to analyze single kernel
functions which uses a data-parallel decomposition of the problem, this is due to the focus on the
Work-Group analysis. For the next step we plan to perform kernel developments test supported
by the LBPM framework where. Starting from a simple kernel that lacks optimizations, we first
extract the breakdown of performance to posteriorly observe where the execution of the kernel is
spending the most time. Once the bottleneck is identified, a optimization aimed to relieve that
particular bottleneck will be applied. This constitutes a LPBM pass. A second pass will reveal the
effects of the optimization not only for the execution time, but also for each MPF, which will provide
users with additional insight about the kernel program that will be aimed to reduce the time spent
in optimization cycles. As future work the model will be tested with more benchmark programs
involving routines that involve more complex execution flow, including but not limited to N-body
simulation algorithms, sorting algorithms, etc. One more aspect of the future work on this research
is using more GPU devices with different characteristics; for example a Radeon HD discrete card.
The GPU cores on the APU chip are of the Radeon HD family, it follows that a discrete card of
the same family of hardware will provide valuable information about the effects of different memory
technologies and different program behavior. This will allow to collect more data on the effects of
hardware characteristics on the performance of kernel code, as well as provide an opportunity to
increase the understanding of the effects of architectural designs and optimization effects on them.
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