Performance Optimization Strategies for WRF Physics Schemes Used in Weather Modeling

T.A.J. Ouermi, Robert M. Kirby, Martin Berzins


Performance optimization in the petascale era and beyond in the exascale era has and will require modifications of legacy codes to take advantage of new architectures with large core counts and SIMD units. The Numerical Weather Prediction (NWP) physics codes considered here are optimized using thread-local structures of arrays (SOA). High-level and low-level optimization strategies are applied to the WRF Single-Moment 6-Class Microphysics Scheme (WSM6) and Global Forecast System (GFS) physics codes used in the NEPTUNE forecast code. By building on previous work optimizing WSM6 on the Intel Knights Landing (KNL), it is shown how to further optimize WMS6 and GFS physics, and GFS radiation on Intel KNL, Haswell, and potentially on future micro-architectures with many cores and SIMD vector units. The optimization techniques used herein employ thread-local structures of arrays (SOA), an OpenMP directive, OMP SIMD, and minor code transformations to enable better utilization of SIMD units, increase parallelism, improve locality, and reduce memory traffic. The optimized versions of WSM6, GFS physics, GFS radiation run 70, 27, and 23 faster (respectively) on KNL and 26, 18 and 30 faster (respectively) on Haswell than their respective original serial versions. Although this work targets WRF physics schemes, the findings are transferable to other performance optimization contexts and provide insight into the optimization of codes with complex physical models for present and near-future architectures with many core and vector units.


Parallel; Optimization; Physics Schemes; Numerical Weather Prediction; Structure of Arrays

Full Text:



  • There are currently no refbacks.