
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 5, Number 1, pages 180–199, January 2015

Identification and Elimination of Platform-Specific Code Smells in High Performance Computing
Applications

Chunyan Wang

Graduate School of Information Sciences, Tohoku University
6-6-01, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8579, Japan

Shoichi Hirasawa

Graduate School of Information Sciences, Tohoku University
6-6-01, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8579, Japan

Hiroyuki Takizawa

Graduate School of Information Sciences, Tohoku University
6-6-01, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8579, Japan

and

Hiroaki Kobayashi

Cyberscience Center, Tohoku University
6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan

Received: August 1, 2014
Revised: November 3, 2014

Accepted: December 3, 2014
Communicated by Akihiro Fujiwara

Abstract

A code smell is a code pattern that might indicate a code or design problem, which makes
the application code hard to evolve and maintain. Automatic detection of code smells has been
studied to help users find which parts of their application codes should be refactored. However,
code smells have not been defined in a formal manner. Moreover, existing detection tools are
designed mainly for object-oriented applications, but rarely provided for high performance com-
puting (HPC) applications. HPC applications are usually optimized for a particular platform
to achieve a high performance, and hence have special code smells called platform-specific code
smells (PSCSs). The purpose of this work is to develop a code smell alert system to help users
find PSCSs of HPC applications to improve the performance portability across different plat-
forms. This paper presents a PSCS alert system that is based on an abstract syntax tree (AST)
and XML. Code patterns of PSCSs are defined in a formal way using the AST information rep-
resented in XML. XML Path Language (XPath) is used to describe those patterns. A database
is built to store the transformation recipes written in XSLT files for eliminating detected PSCSs.
The recall and precision evaluation results obtained by using real applications show that the
proposed system can detect potential PSCSs accurately. The evaluation on performance porta-
bility of real applications demonstrates that eliminating PSCSs leads to significant performance

180

International Journal of Networking and Computing

changes and therefore the code portions with detected PSCSs have to be refactored to improve
the performance portability across multiple platforms.

Keywords: platform-specific code smell, XML representation, HPC

1 Introduction

In the field of high performance computing (HPC), the main concern is to fully utilize the potential of
a specific target platform, which is determined by the hardware, the operating system, the compiler
and the runtime libraries. In the case where an HPC application is optimized for a specific platform,
it may become unable to run efficiently on other platforms. Namely, the performance is not portable;
the performance portability of the application is low. When an application is ported to a new
platform, hence, it is necessary to optimize the application again for the new platform. To lower
such a software maintenance cost, therefore, an HPC application should be refactored so as to
improve its performance portability.

The most common way to determine how to refactor an application code is to identify a code
smell. A code smell is any part of an application code that potentially causes a design problem,
which degrades the application maintainability. Common examples of code smells include duplicated
code segments and long methods [1]. Refactoring tools to remove code smells have been developed to
improve the readability, understandability and maintainability [2]. However, an HPC application is
optimized for a particular platform, and the optimized code portions are sometimes considered code
smells according to their conventional definitions. Hence, removing such code smells might degrade
the performance. This paper refers to such optimized code portions as platform-specific code smells
(PSCSs). A PSCS is a code pattern that is beneficial for some platforms but potentially harmful
for other platforms.

Cong et al. [3] observed that performance analysis for identifying code smells requires in-depth
knowledge of the application algorithm and the platform architecture. It remains challenging and
time-consuming even for experienced users. It requires tremendous efforts to identify PSCSs and
optimize an application for every target platform to achieve high performance portability. Therefore,
there is a growing need for a supportive tool to detect PSCSs for evolving HPC applications.

Code smells have been studied in the research field of software engineering, and less attention is
paid to PSCSs that are special code smells in HPC applications. Thus, studies on code smells have
mainly discussed only software designs and architectures, and not considered platform-dependent
aspects of an application. Although most of the conventional code smells are designed for object-
oriented programming languages, many important HPC applications are written in C or Fortran.
Furthermore, these code smells are mostly defined by textual description, which is informal. As a
result, detection usually depends on manual inspection. It could be a tedious, time-consuming and
error-prone task to find code smells with human intuition, especially when the application code is
large. Therefore, we have to express the definitions of code smells in a formal way to identify PSCSs
in HPC applications systematically.

The purpose of this work is to develop a code smell alert system for HPC applications to help
users find PSCSs that potentially degrade performance portability across different platforms. The
proposed PSCS alert system is based on an abstract syntax tree (AST) and Extensible Markup
Language (XML) [4]. PSCS patterns are defined in a formal way using AST information repre-
sented in XML. XML Path Language (XPath) [5] is used to describe these patterns in a formal
and standard way. A database is built to store the transformation recipes for eliminating detected
PSCSs. Extensible Stylesheet Language Transformations (XSLT) [6] is used to write the transfor-
mation recipes. The recall and precision evaluation results demonstrate that the proposed system
accurately detects PSCSs. The observation of compiler messages before and after eliminating PSCSs
demonstrates that the detected PSCSs have a significant impact on utilization of the target platform.
Performance evaluations of real applications that are originally optimized for a specific system are
performed on different platforms. After eliminating PSCSs, these applications can get speedup on
the target platforms. Therefore, these results demonstrate that the proposed system can accurately
find code patterns, which are sensitive to the performance of a particular platform and hence should

181

Identification and Elimination of PSCSs in HPC Applications

be refactored for high performance portability.
The rest of this paper is organized as follows. Section II reviews the related work of code smell

description and detection. Section III proposes a PSCS alert system, and discusses how to detect
these PSCSs automatically. Section IV shows the evaluation results obtained using real applications.
Finally, Section V gives concluding remarks.

2 Related Work

In this section, we review the related work of code smell description and the formal description for
object-oriented applications, and then introduce code smell detection techniques and detection tools.

2.1 Code Smell Description

Several researches have been done on code smells. Fowler [1] identified 22 code smells and associated
each of them with refactoring transformations that may improve the structure of code. Mantyla et
al. [7] used a subjective taxonomy to categorize code smells identified in Fowler’s book. Garcia
et al. [8] described four representative architectural smells with textual descriptions. Ratzinger et
al. [9] exploited historical data extracted from repositories, and pointed out that certain design
fragments in software architectures can have a negative impact on system maintainability. They
defined “change smell” as some parts of an application that are frequently modified at the same
time. Then, they proposed an approach to detecting such change smells to improve the evolvability
of an application.

However, since these code smells are defined informally, users have to manually identify where
to refactor and which refactoring should be applied. It could cost tremendous efforts to find the
code smells with human intuition especially when the application code is large. In the following
subsection, we will introduce related researches about formal descriptions of code smells.

2.2 Formal Description for Object-Oriented Applications

Some researchers used XML to represent source codes and their intermediate objects, and showed
that XML can be used as a portable source code representation since it is independent of program-
ming languages. Putro et al. [10] proposed to represent program code forms as an XML format
consisting of grammar, token stream (TS) and AST. Using information taken from a source code,
TSs and ASTs, they proved the usability of this approach by using a code smell detector [11].
Slinger [12] used an AST-based detection to identify a number of code smells in Eclipse. Primitive
code smells can be found directly in the source code by an analyser, and more complicated code
smells can be derived by utilizing the smell aspect repository and Grok scripts [13]. As every com-
pilation unit is fully parsed and analysed, AST represents the entire structure of the source code.
Therefore, the design model generated by the AST-based approach is more precise.

However, conventional code smells are mainly described for object-oriented programming. The
definitions of special code smells in HPC applications have not been established so far.

2.3 Detection Techniques

Travassos et al. [14] proposed an approach to the code smell detection based on manual inspection
and reading techniques. However, manual inspection of the code to identify code smells based only
on text-based description is a time-consuming and error-prone process. This detection technique
does not scale to a large application code easily.

Longest common subsequence (LCS) is used in string matching when a program is represented
as a text string [15]. The similarity-based heuristics string matching can detect the textual clones,
but it is insufficient to detect all possible semantic code smells.

Some researches for detection of semantic clones used AST-based detection techniques. Yang
developed an AST differencing algorithm [16]. Given a pair of two functions (fT , fR), the algorithm
creates two ASTs, T and R, then uses the LCS algorithm, and matches their subtrees recursively.

182

International Journal of Networking and Computing

This type of tree matching respects the parent-child relationship as well as the order of sibling nodes.
As a result, it is sensitive to changes in nested blocks and control structures because tree roots must
be matched at every level.

Hunt and Tichy [17] used syntactic information to guide string level differencing. Their 3-way
merging tool parses a program into a language neutral form, compares token strings using the LCS
algorithm, and finds syntactic changes using structural information from the parsing.

Neamtiu et al. [18] proposed an algorithm that tracks simple changes of variables, types, and
functions based on an AST representation. Neamtiu’s algorithm assumes that function names are
relatively stable over time and match the ASTs of functions with the same name; the algorithm
traverses two ASTs in parallel and incrementally adds one-to-one mappings as long as the ASTs
have the identical structure. In contrast to Yang’s algorithm, Neamtiu’s algorithm cannot compare
structurally different ASTs.

Every detection technique is an implementation of some pseudo equivalence functions. The more
heuristics are used, the better the detection technique will work. Usually the detection techniques
are based on the computation of different kinds of metrics. Fontana et al. [19] proposed a machine
learning-based approach that computes a large set of metrics covering different aspects of the code
to detect code smells.

All these detection techniques have contributed significantly to multi-version program analysis.
However, they are either insufficient to detect all structural differences or sensitive to changes in
nested blocks. Hence, none is sufficient to detect platform-specific code smells. Moreover, none of
them provides a formal description of code smells.

2.4 Detection Tools

Some tools have been developed for the automatic detection of code smells. Most of the tools such
as [20–22] can only analyze a specific language and do not take code structural information, which
is related to the performance of an HPC application, into consideration.

Moha et al. [23] defined an approach that allows the specification and automatic detection of code
and design smells. Their work is supported by a domain specific language for specifying four design
smells using high-level abstractions, and automatically generated their detection algorithms using
predefined code templates. However, this code smell detection focuses on the analysis of source code
structures, and disregards the platform design information. Thus, it often cannot identify PSCSs.

Cong et al. [3] proposed a rule-based approach to code smells discovery for performance analysis.
Each rule is composed of performance metrics that are collected from existing performance tools
and compilers. Since some rules are based on the metrics from runtime information such as runtime
memory access analysis (intercepting loads / stores to the buffer at runtime), it may take a long time
to obtain the information. Accordingly, fast and efficient detection of PSCSs based on static code
analysis is desired.

3 PSCS Alert System

This section first describes the overview of the proposed PSCS alert system, and then discusses the
PSCS description and the process of PSCS detection in detail.

Our PSCS alert system takes an AST-based approach to representing code smells in a formal
style with a clear hierarchy. PSCS patterns are defined in a formal and standard format using XML
based on AST information. Figure 1 shows the overview of our PSCS alert system. We assume
that the system first parses the original application code to build an AST [24]. This instance of
an AST is then converted to an XML document whose elements correspond to Fortran language
constructs. In our system, XPath is used for pattern matching to identify potential PSCS patterns
in the XML document. Finally, the list of identified PSCS patterns is displayed for users. The
PSCS alert system provides an interactive user interface to allow a user to use her/his knowledge for
limiting the number of identified patterns, which need to be manually checked. The static analyses
performed over ASTs and XML trees allow the proposed system to detect PSCSs efficiently before
the application execution.

183

Identification and Elimination of PSCSs in HPC Applications

Figure 1: Framework of the proposed PSCS alert system.

Figure 2: Loop body for Source Code of a Triangular Loop.

3.1 Platform-Specific Code Smell Description

In this work, we focus on typical PSCSs that are found in real applications [25, 26] and given by
expert knowledge [27, 28]. Considering OpenACC programming [29], PSCSs used in this paper are
listed in Table 1. Those code patterns are obviously harmful for platforms, in which OpenACC is
used in GPU programming. Therefore, some code refactorings such as simply avoiding the code
pattern, i,e., eliminating the code smell, are required to improve the performance portability across
multiple platforms including the OpenACC-based platform.

It is not easy to directly find the PSCS patterns in the source code. Using an AST, hence, the
identification of a specific code pattern is considered as a tree matching. In the system, an AST
is represented as an XML document because XML is a standard way to express a data tree. By
utilizing XML, various XML-related technologies are available to handle the AST.

Some of the PSCSs in Table 1 are considered as variants of the triangular loop pattern. Hence,
we use the triangular loop as an example to explain how to derive our PSCS specifications. Figure 2
shows the source code of a typical triangular loop that is considered as a PSCS. In this source code,
index variable i is used to determine the lower bound of the inner loop. When using OpenACC
to parallelize this loop nest for GPUs, the OpenACC compiler copies out the entire A array from
device to host and in the process copies garbage values into the lower triangle of the host copy of
A [27]. OpenACC users should be aware of triangular loops, even though they may not degrade the
performance in other platforms. Accordingly, a triangular loop is a PSCS.

Figure 3 shows the tree-structured XML document that represents the AST of the triangular
loop in Figure 2. The XML document in Figure 3 can be illustrated as a tree shown in Figure 4.
In Figure 4, the subtree enclosed in the dotted frame represents a triangular loop PSCS pattern.
Therefore, if this pattern is found in an AST, we can find a PSCS.

184

International Journal of Networking and Computing

Figure 3: XML of Triangular Loop in Figure 2.

Figure 4: The XML tree structure for the triangular loop in Figure 2. The subtree enclosed in dotted frame
indicates a triangular loop PSCS.

185

Identification and Elimination of PSCSs in HPC Applications

Table 1: Platform-Specific Code Smells

PSCS Name Description
Triangular Loop The number of iterations of the inner loop depends on the value of

the outer loop’s loop variable.
Live-out Scalars A scalar variable updated within a loop is reused or referenced after

the loop is called a “live-out” scalar, because correct execution may
depend on the last value it was assigned in a serial execution of the
loop(s).

Once-used Array Data Some loops will fail to offload because parallelization is inhibited by
arrays that must be privatized for correct parallel execution. In an
iterative loop, data that is used only during a particular iteration but
is not initialized prior to the region and is re-initialized prior to any
use after the region can be seen as a once-used array data.

Computed Index Computed index may be used for computations on multi-dimensional
arrays that have been linearized. If the original loop with a computed
index into the linearized array is compiled, compiler will give infor-
mation like “Parallelization would require privatization of array.”

Variable Length Loop The length of the loop is variable, not known until run.
Common Subexpression There is another occurrence of the expression whose evaluation always

precedes this one. Such an expression is a common subexpression.
Loop Invariant If a quantity is computed inside a loop during every iteration, and its

value is the same for each iteration, it can vastly improve efficiency
to hoist it outside the loop and compute its value just once before
the loop begins.

3.2 PSCS Pattern Matching Process

XPath is the W3C standard language for expressing traversal and navigation in XML trees. This
paper uses XPath expression to specify PSCS patterns in a source code. In this subsection, we will
explain the pattern matching process using XPath expressions for a typical PSCS, Variable Length
Loop.

The nested DO loops shown in Figure 5 are considered as Variable Length Loop PSCS because
the length of the inner loop is not known in advance; i.e., the bound expressions are computed by
loop statements within its outer loop or depend on the index variable of its outer loop.

To detect the above situations with one detection algorithm, we assume that the loop length is
variable and the loop thus contains Variable Length Loop PSCS if any index variable or any updated
variable is used in bound expressions of the inner loops.

We select all the variable reference expressions in a particular loop nest using the following XPath
expression.

// Funct i onDe f in i t i on / BasicBlock /FortranDo [1] / / VarRefExp

We select all the loop control variable reference expressions of the specified loop nest using the
following expression. Here, symbol “.” selects the current node.

// Funct i onDe f in i t i on / BasicBlock /FortranDo [1] / (. / AssignOp/VarRefExp [1]
| . / / FortranDo/AssignOp/VarRefExp [1])

We select all the detected variable expressions in the specified loop body using the following
XPath expression.

// Funct i onDe f in i t i on / BasicBlock /FortranDo [1] / / ExprStatement //VarRefExp

Hence, we select all the bound expressions of loops by removing loop control index variable
expressions and variable expressions in the loop body from all variable reference expressions using
the following XPath expression.

186

International Journal of Networking and Computing

Figure 5: The Variable Length Loop PSCS code sample in Numerical Turbine [25].

// Funct i onDe f in i t i on / BasicBlock /FortranDo [1] / (. / / VarRefExp
except ((. / AssignOp/VarRefExp [1] | . / / FortranDo/AssignOp/VarRefExp [1])
| . / / ExprStatement //VarRefExp))

Predicate “except” selects all of a given node set, except for certain nodes.
Then, we select all the left-hand side variable expressions in loop statements and loop control

index variable expressions using the following XPath expression.

// Funct i onDe f in i t i on / BasicBlock /FortranDo [1] / / (. / / AssignOp/VarRefExp [1]
| . / / ExprStatement/AssignOp/PntrArrRefExp/VarRefExp)

To check if the index variables or left-hand side variables in loop statements appear in the bound
expressions of loop nest, we use the following XPath expression.

(// Funct i onDe f in i t i on / BasicBlock /FortranDo [1] / (. / / VarRefExp except
((. / AssignOp/VarRefExp [1] | . / / FortranDo/AssignOp/VarRefExp [1])
| . / / ExprStatement //VarRefExp))) [@name =//Funct i onDe f in i t i on / BasicBlock
/FortranDo [1] / / (. / / AssignOp/VarRefExp [1] | . / / ExprStatement/AssignOp
/PntrArrRefExp/VarRefExp)/@name]

It returns the loop bound expressions if the bound expression has the same “name” attribute
with a left-hand side variable. If the above XPath expression returns a non-empty node set, there
is a Variable Length Loop PSCS in the specified loop nest.

We use the “for” statement to check each loop nest in the XML document of the source code
using the following XPath expression.

f o r $ i in //FortranDo ,
$ j in $ i / (. / / VarRefExp except ((. / AssignOp/VarRefExp [1]
| . / / FortranDo/AssignOp/VarRefExp [1]) | . / / ExprStatement //VarRefExp)) ,

$k in $ i // (. // AssignOp/VarRefExp [1]
| . / / ExprStatement/AssignOp/PntrArrRefExp/VarRefExp)

re turn (i f ($ j /@name=$k/@name) then $ j e l s e n u l l)

We can define the Variable Length Loop PSCS using the above XPath expression. Definitions
of the seven PSCSs are shown in Table 2.

187

Identification and Elimination of PSCSs in HPC Applications

XML is a well-designed and widely used data format for the representation of a data structure
such as an abstract syntax tree. The XML-based pattern matching allows us to describe PSCS
patterns in a formal way using XPath expressions, and thus detect PSCS patterns in a systematic
way. The AST information represented in an XML format enables the proposed pattern matching
to use syntactic information so as to produce more accurate results. XPath provides fast XML
searching processing. With our PSCS alert system, existing PSCSs of a program can be detected
correctly and quickly before actually running the program. Use of such a standard technology is very
important to assure the future-proofness of the code pattern representation. Hence, the proposed
system can be robust during the long life span of an HPC application. The abbreviated syntax of
XPath is more compact than its full syntax, and allows XPath to be written and read easily using
intuitive and, in many cases, familiar characters and constructs. The full syntax of XPath is more
verbose, but allows for more options to be specified, and is more descriptive. Thus, compared with
other techniques in the literature, users can define their own patterns using XPath expressions with
less effort.

Table 2: Definitions of PSCSs using XPath expressions

PSCS Name XPath Expression
Triangular Loop for $i in //FortranDo, $j in $i//FortranDo/(VarRefExp[1]|AssignOp/

VarRefExp[2]) return $j[@name=$i/AssignOp/VarRefExp[1]/@name]
Live-out Scalars for $i in //FortranDo, $j in //ExprStatement/AssignOp/VarRef-

Exp, $k in $i//PreprocessingInfo/text() return $j[not(contains($k,
$j/@name))]

Once-used Array Data for $i in //FortranDo, $j in $i//ExprStatement, $k in $j,
$m in $j/AssignOp/PntrArrRefExp/VarRefExp, $n in $k/As-
signOp//VarRefExp, $l in $i//PreprocessingInfo/text() return
(if($m/@name=$n/@name[not(contains($l, ’private’))]) then $m else
null)

Computed Index for $i in //FortranDo, $j in $i//ExprStatement/AssignOp/VarRef-
Exp[1]/@name, $k in $i//ExprStatement/AssignOp/PntrArrRefEx-
p//VarRefExp/@name return (if($j=$k) then $k else null)

Variable Length Loop for $i in //FortranDo, $j in $i/(.//VarRefExp except
((./AssignOp/VarRefExp[1]|.//FortranDo/AssignOp/VarRefExp[1])|
.//ExprStatement//VarRefExp)), $k in $i //(.//AssignOp/Var Ref-
Exp[1] |.//ExprStatement/AssignOp/PntrArrRefExp/VarRefExp)
return (if($j/@name=$k/@name) then $j else null)

Common Subexpression for $i in //FortranDo//FortranDo[not(.//FortranDo)], $j in
$i//ExprStatement/AssignOp//(MultiplyOp|AddOp|SubtractOp|Di-
videOp), $k in ($i//ExprStatement/AssignOp//(MultiplyOp|AddOp|
SubtractOp|DivideOp) except $j) return (if(deep-equal($j, $k) and
count($j//(MultiplyOp|AddOp|SubtractOp|DivideOp))>=2) then
($j, $k) else null)

Loop Invariant for $i in //FortranDo//FortranDo[not(.//FortranDo)], $j
in $i//ExprStatement, $k in $j/following-sibling::*, $m in
$j/AssignOp/(MultiplyOp|AddOp|SubtractOp|DivideOp), $n in
$k/AssignOp/(MultiplyOp|AddOp|SubtractOp|DivideOp) return(if
(deep-equal($m, $n) and count($m/AssignOp/(MultiplyOp|AddOp
|SubtractOp|DivideOp)>=2)) then $m else null)

4 Evaluation

In this section, we first evaluate the effectiveness of the proposed alert system, and then evaluate
performance changes before and after eliminating these PSCSs. In practical uses, various code

188

International Journal of Networking and Computing

refactorings will be applied to the code portions of detected PSCSs for high performance portability.
A typical example is to use #ifdef to change the code portions to be compiled for individual platforms.
However, in the performance evaluation, a code is refactored so as to simply eliminate detected
PSCSs and to make the code portions not harmful to an OpenACC-based platform. This will
allow the platform to achieve a higher performance. The purpose of the performance evaluation
is to demonstrate that the detected PSCSs really affect the performance of an OpenACC-based
platform and hence the proposed system can alert performance-sensitive code patterns in large-scale
application codes.

4.1 Evaluation of the PSCS Alert System

In Section 4.1, we evaluate the effectiveness of the proposed alert system using seven PSCSs and two
real applications, Numerical Turbine [25] and MSSG-A (Multi-Scale Simulator for the Geoenviron-
ment - Atmosphere Model) [26]. Those two applications have been developed for a vector supercom-
puter, NEC SX-9. In their source codes, thus, there exist a lot of PSCSs harmful to OpenACC-based
platforms.

We assume that when the AST of a source code has an identical subtree with a predefined AST
of the PSCS, the source code is considered to have a PSCS. We validate the proposed alert system
from the following aspects:

1. Comprehensive (recall). The predefined pattern should work for general use. All true PSCSs
in application codes that have been predefined by our PSCS alert system should be detected,
that is to say, the PSCS alert system has a recall of 100%.

2. Correctness (precision). Considering the trade-off between precision and recall, we assume
that the detection method is better than the random choice one. Therefore, we assume that
50% of the detected PSCSs should be the true PSCSs with respect to recall 100%.

3. Impact. By eliminating the detected PSCSs, the modified application should perform better
than the original one to utilize the target platforms.

We validate the results of the proposed alert system by analysing the pre-identified PSCSs and
detected PSCSs in the context of the systems. The pre-identified PSCSs have been identified by
the authors and experts who have migrated real applications to GPU computing platforms based on
the application code reading and profiling results. Validation of the detected PSCSs is performed
by application engineers to identify whether a detected PSCS is actually a pre-identified PSCS or
not. As with the work of Moha [23], the measures of precision and recall are introduced to evaluate
the proposed alert system. We use the recall to assess the number of detected PSCSs among the
pre-identified PSCSs, and use the precision to assess the number of PSCSs identified among the
detected PSCSs. Equations (1) and (2) are used to calculate the recall and precision.

recall =
|{Detected PSCSs}|

|{Pre− identified PSCSs}|
. (1)

precision =
|{Identified PSCSs}|
|{Detected PSCSs}|

. (2)

4.1.1 Precision and Recall on Numerical Turbine

We perform the evaluation of the proposed alert system on Numerical Turbine [25], which is a 3-D
flow calculation application. Variable Length Loop PSCS listed in Table 1 appears frequently in a
subroutine named EXPLICIT of Numerical Turbine, which consumes 53.49% of the total execution
time. We applied the XPath expression for detecting Variable Length Loop PSCS illustrated in
Section III to the XML document transformed from the source file.

Table 3 presents the recall and precision of the detection of the PSCSs listed in Table 1 in the
kernel loops of Numerical Turbine. In the table, “Pre-identified PSCSs” refers to the PSCSs in the

189

Identification and Elimination of PSCSs in HPC Applications

Table 3: Precision and Recall on Numerical Turbine

PSCSs
Pre-identified Detected Identified Precision Recall
PSCSs PSCSs PSCSs (%) (%)

Triangular Loop 0 0 0 - -
Live-out Scalars 0 0 0 - -

Once-used Array Data 0 0 0 - -
Computed Index 1 1 1 100 100

Variable Length Loop 13 13 13 100 100
Common Subexpression 0 0 0 - -

Loop Invariant 0 0 0 - -

Table 4: Precision and Recall on MSSG-A

PSCSs
reisnre2

Pre-identified Detected Identified Precision Recall
PSCSs PSCSs PSCSs (%) (%)

Variable Length Loop 5 4 4 100 80
Common Subexpression 0 0 0 - -

Loop Invariant 0 0 0 - -
Computed Index 6 9 6 66.7 100

PSCSs
tracer

Pre-identified Detected Identified Precision Recall
PSCSs PSCSs PSCSs (%) (%)

Variable Length Loop 25 25 25 100 100
Common Subexpression 23 7 7 100 30.4

Loop Invariant 7 7 7 100 100
Computed Index 0 0 0 - -

application code that have been identified by authors and experts, “Detected PSCSs” refers to the
PSCSs detected by the proposed alert system, and “Identified PSCSs” refers to the detected PSCS
that is identified to be a pre-identified PSCS. The PSCS pattern matching process is finished in less
than three seconds, even though the source file consists of 16K lines of code.

The recall ratio of our alert system is 100% for each PSCS. We specify the XPath expression
for each PSCS for general use and assess its impact on precision. The Variable Length Loop PSCS
exists in 13 loops while the entire kernel contains 15 loops. We get a perfect precision ratio of 100%
for Variable Length Loop PSCS. The evaluation results in Table 3 clearly show that the proposed
PSCS alert system also has high precision ratios for the other PSCSs existing in the application.
This indicates that our predefined PSCS patterns are general enough for practical uses.

We use “-” to indicate for those PSCSs that are not found in Numerical Turbine. Other six
predefined PSCSs are not detected in this application.

4.1.2 Results on MSSG-A

Table 4 shows the precision and recall of the PSCSs listed in Table 1 on MSSG-A [26]. MSSG is
a coupled non-hydrostatic atmosphere-ocean-land global circulation model. It has been developed
for the purpose of promoting advanced projection/prediction simulation. The MSSG application
contains overall 276K lines of code, of which 189K lines form the atmosphere model part, called
MSSG-A. We applied the proposed PSCS alert system on two subroutines (reisnre2 and tracer) of
MSSG-A that take most of the computation time.

As shown in Table 4, four kinds of PSCSs are detected in the MSSG-A subrotuines and the
proposed alert system can achieve high precision and recall ratios for most of PSCSs in MSSG-A.
Therefore, these results clearly demonstrate that XPath can correctly express most PSCSs.

190

International Journal of Networking and Computing

(a) Example AST for the first assignment (b) Example AST for the second assignment)

Figure 6: Example ASTs with subtree forms a clone

A single exception is the recall for Common Subexpression, which is as low as only 30.4%. This
is because the AST-based detection can only find the identical subtree, but cannot find clone codes
when the subtrees or nodes that are derived from the same root forms clone codes. As an example,
suppose the following assignment statements and their corresponding ASTs in Figure 6.

fxp(−2) = 0.5 DP ∗ (0.5 DP ∗ (vl(i− 2, j, k) + vl(i− 1, j, k))

+vlmax) ∗ rq(i− 2, j, k, n) ∗ dphi ∗ dzs.

fxm(−2) = 0.5 DP ∗ (0.5 DP ∗ (vl(i− 2, j, k) + vl(i− 1, j, k))

−vlmax) ∗ rq(i− 2, j, k, n) ∗ dphi ∗ dzs.

Then, we can see that there are two common subexpressions existed in the two assignment
statements:

0.5 DP ∗ (vl(i− 2, j, k) + vl(i− 1, j, k)),

0.5 DP ∗ rq(i− 2, j, k, n) ∗ dphi ∗ dzs.

However, the AST-based detection takes the codes that have identical subtrees as common subex-
pressions, and hence finds only

0.5 DP ∗ (vl(i− 2, j, k) + vl(i− 1, j, k)),

191

Identification and Elimination of PSCSs in HPC Applications

as Common Subexpression PSCS, while obviously

0.5 DP ∗ rq(i− 2, j, k, n) ∗ dphi ∗ dzs,

is also a Common Subexpression PSCS.
Even if all the pre-identified PSCSs can be identified based on code reading and profiling results,

the alert system may fail in identifying some of the pre-identified PSCSs because of the limitation
of the AST-based method used in the proposed system. The AST-based detection method misses
some of code clones, which are formed by several AST nodes derived from the same root. The
proposed system does not deform an expression. Therefore, it cannot find common subexpressions
that appear as a result of expression deformation. To find such a subexpression, more advanced
analysis will be required as discussed in [30].

4.1.3 Changes in Compiler Messages by Eliminating PSCSs

The results shown in Sections 4.1.1 and 4.1.2 demonstrate that the proposed PSCS alert system has
high precision and recall ratios for detecting predefined PSCSs. As a PSCS potentially degrades
the performance portability, removal of the PSCS is expected to improve the performance on other
platforms, for which the original application code is not optimized. We evaluate the impact of
eliminating the detected PSCSs on the performance of real applications by observing the compiler
messages of the two real applications. The compiler used in the evaluation is the PGI compiler
12.10, and the “-acc” option is used to enable OpenACC directives on GPU accelerators. CUDA 5.0
and NVIDIA GPU Tesla C2070 with compute capabilities 2.0 are used in the experiment. Table 5
shows the observation results.

In Table 5, each row presents the code modification and compiler information changes for a
specific PSCS. Column “Original code snippets” shows that the code contains a PSCS, and the
column “Modified code snippet” shows the code where a PSCS is eliminated. The elimination of
detected PSCSs in a large-scale application code would require in-depth knowledge of the platform
and the application. Since we already know how to eliminate these predefined PSCSs, we build a
database to store the transformation recipe of eliminating PSCSs to help users remove PSCSs. The
detected PSCSs can be eliminated by applying the transformation recipes to the XML documents
of the application codes. The transformation recipes for the elimination of five PSCSs: Triangular
Loop, Live-out Scalars, Once-used Array Data, Computed Index and Variable Length Loop are
provided in this work. The transformation recipes for the elimination of Common Subexpression
and Loop Invariant PSCSs are not provided since common subexpression elimination (CSE) and
loop-invariant code motion are usually performed by compilers. However, as a compiler performs an
optimization when the cost / benefit analysis proves that it is worthwhile. Common Subexpression
and Loop Invariant PSCSs still exist in the application code in some cases. Therefore, we will explore
the general transformation recipes for eliminating Common Subexpression and Loop Invariant PSCSs
in the future work.

Table 5: Compiler message changes before and after eliminating PSCSs

PSCS Original code snip-
pet

Compiler mes-
sage

Modified code snip-
pet

Compiler mes-
sage

Triangular
Loop

!$acc kernels loop
do i=1,M
do j=i,N
A(i,j)=i+j
end do
end do

(Execution
results may be
wrong)
Loop is paral-
lelizable
Accelerator ker-
nel generated
Loop is paral-
lelizable

!$acc kernels loop
copy(A)
do i=1,M
do j=i,N
A(i,j)=i+j
end do
end do

Loop is paral-
lelizable
Accelerator ker-
nel generated
Loop is paral-
lelizable

table continued on next page

192

International Journal of Networking and Computing

continued from previous page

PSCS Original code snip-
pet

Compiler mes-
sage

Modified code snip-
pet

Compiler mes-
sage

Live-out
Scalars

!$acc kernels loop
do i = 1, N
do j = 1, N
do k = 1, N
idx = B(i,k)*C(k,j)
end do
A(i,j) = idx
enddo
enddo
B(1,1)=idx

Loop is paral-
lelizable
Inner sequential
loop scheduled
on accelerator
Accelerator ker-
nel generated
Accelerator
restriction: in-
duction variable
live-out from
loop: idx

!$acc kernels loop
do i = 1, N
!$acc do private(idx)
do j = 1, N
do k = 1, N
idx = B(i,k)*C(k,j)
end do
A(i,j) = idx
enddo
enddo
B(1,1)=idx

Loop is paral-
lelizable
Loop is paral-
lelizable
Accelerator ker-
nel generated

Once-
used
Array
Data

!$acc kernels loop
do i = 1, M
do j = 1, N
do jj = 1, 10
tmp(jj) = jj
end do
A(i,j) = sum(tmp)
enddo
enddo

Parallelization
would require
privatization of
array ’tmp(:)’
Sequential loop
scheduled on
host
Loop is paral-
lelizable
Accelerator ker-
nel generated

!$acc kernels loop
do i = 1, M
!$acc loop pri-
vate(tmp)
do j = 1, N
do jj = 1, 10
tmp(jj) = jj
end do
A(i,j) = sum(tmp)
enddo
enddo

Loop is paral-
lelizable
Loop is paral-
lelizable
Loop is paral-
lelizable
Accelerator ker-
nel generated
Loop is paral-
lelizable
Accelerator ker-
nel generated

Computed
Index

!$acc kernels loop
do i=1,M
do j=1,N
idx=((i-1)*M)+j
A(idx)=B(i,j)
end do
end do

Parallelization
would require
privatization of
array ’a(:,:1)’
Accelerator
scalar kernel
generated
Parallelization
would require
privatization of
array ’a(:,:1)’

!$acc kernels loop
do i=1,M
do j=1,N
A(i,j)=B(i,j)
end do
end do

Loop is paral-
lelizable
Loop is paral-
lelizable
Accelerator ker-
nel generated

Variable
Length
Loop

DO 200 M=1,MF
DO 200 K=1,KF
DO 200 J=1,JF
DO 200
L=lstart,lend
II1 = IS(L)
II2 = II1+1
IIF = IT(L)
DO 200 I=II2,IIF
200 CONTINUE

Loop carried
reuse of ’qll’
prevents paral-
lelization
Loop carried
reuse of ’qrr’
prevents paral-
lelization
Inner sequential
loop scheduled
on accelerator

DO 200 M=1,MF
DO 200 K=1,KF
DO 200 J=1,JF
DO 200 I=1,INUM
DO 200
L=lstart,lend

200 CONTINUE

Loop is paral-
lelizable
Accelerator ker-
nel generated

table continued on next page

193

Identification and Elimination of PSCSs in HPC Applications

continued from previous page

PSCS Original code snip-
pet

Compiler mes-
sage

Modified code snip-
pet

Compiler mes-
sage

Common
Subex-
pression

!$acc kernels
DO m=1,MF
DO k=1,JF
DO j=1,KF
DO i=1,INUM
uxi(i,j,k,m)=
(qrr(i,j,k,m)+
u(i,j,k,m))*u(i,j,k,m)
*dphi*dzs*j
uxi(i,j,k,m)=
(qll(i,j,k,m)-
u(i,j,k,m))*u(i,j,k,m)
*dphi*dzs*j
ENDDO
ENDDO
ENDDO
ENDDO
!$acc end kernels

(# of computa-
tion in innermost
loop for each it-
eration in opencl
kernel)
Int: 34 add, 24
multiply
Double: 2 add, 8
multiply

!$acc kernels
DO m=1,MF
DO k=1,JF
DO j=1,KF
DO i=1,INUM
tmp=u(i,j,k,m)*dphi
*dzs*j
uxi(i,j,k,m)=
(qrr(i,j,k,m)+
u(i,j,k,m))*tmp
uxi(i,j,k,m)=
(qll(i,j,k,m)-
u(i,j,k,m))*tmp
ENDDO
ENDDO
ENDDO
ENDDO
!$acc end kernels

(# of computa-
tion in innermost
loop for each it-
eration in opencl
kernel)
Int: 29 add, 21
multiply
Double: 2 add, 5
multiply

Loop In-
variant

!$acc kernels
DO m=1,MF
DO k=1,JF
DO j=1,KF
DO i=1,INUM
uxi(i,j,k,m)=
(qrr(i,j,k,m)+
u(i,j,k,m))*u(i,j,k,m)
*dphi*dzs*j
uxi(i,j,k,m)=
(qll(i,j,k,m)-
u(i,j,k,m))*u(i,j,k,m)
*dphi*dzs*j
ENDDO
ENDDO
ENDDO
ENDDO
!$acc end kernels

(# of computa-
tion in innermost
loop for each it-
eration in opencl
kernel)
Int: 32 add, 24
multiply
Double: 4 add, 8
multiply

!$acc kernels
DO m=1,MF
DO k=1,JF
DO j=1,KF
tmp=dphi*dzs*j
DO i=1,INUM
uxi(i,j,k,m)=
(qrr(i,j,k,m)
+u(i,j,k,m))*u(i,j,k,m)
*tmp
uxi(i,j,k,m)=
(qll(i,j,k,m)-
u(i,j,k,m))*u(i,j,k,m)
*tmp
ENDDO
ENDDO
ENDDO
ENDDO
!$acc end kernels

(# of computa-
tion in innermost
loop for each it-
eration in opencl
kernel)
Int: 32 add, 24
multiply
Double: 2 add, 4
multip

The original program with Triangular Loop PSCS may generate wrong computation results. This
is because when the compiler copies out the entire array data from the device to the host, it copies
garbage values into the lower triangle of the host copy in this process. An OpenACC copy clause
can be specified on the accelerator region boundary to guarantee that the correct code is generated.

By removing Live-out Scalars, the compiler message is changed from “Accelerator restriction:
induction variable live-out from loop: idx” to “Loop is parallelizable.” When the scalar variable
“idx” is used for debugging purpose, privatizing this scalar variable will be helpful to generate a
much more efficient, fully-parallel kernel. However, we have to notice that the value printed out for
“idx” in the print statement will be different from that in a sequential execution of the program.

The compiler message for the program that contains Once-used Array Data changed from “Par-
allelization would require privatization of array ’A(:)’, sequential loop scheduled on host” to “Loop
is parallelizable.” Arrays that are initialized prior to any use after the region can be declared private.
An OpenACC directive “!$acc do private()” can provide the compiler with the information necessary

194

International Journal of Networking and Computing

to successfully compile the nested loop into a fully parallel kernel for execution on a GPU.
The compiler messages of the code snippet in Numerical Turbine that contains Variable Length

Loop PSCS are also illustrated in Table 5. This application is originally developed for NEC SX-9.
When running it on GPUs, the variable length loop becomes a PSCS and it has to be eliminated.
By eliminating PSCSs, the compiler message changes from “Accelerator scalar kernel generated”
to “Loop is parallelizable.” This compiler message change indicates that we can better utilize the
accelerator by executing the application in parallel and thus improve the performance.

Common Subexpression PSCS occurs multiple times in MSSG-A. Common subexpression elimi-
nation refers to the process of detecting multiple occurrences of the same computation and replacing
them with a single occurrence. Instead of generating a code to compute the common subexpression
two times, the compiler generates the code, places the result in a register, and reuses it. When com-
piled with the PGI compiler, the compiler messages for the code snippets before and after common
subexpression elimination are the same. To check whether the generated kernel changed or not, we
use CAPS Many-core Compiler (Version 3.3.4) with the option “hmpp –openacc -target OpenCL
gfortran -O3” to look into the detail of the generated OpenCL kernel. We compared the numbers
of arithmetic operators in the innermost loop for each iteration before and after eliminating PSCSs.
The statistics data show that the arithmetic operators after eliminating the common subexpression
are reduced, which means a benefit when the application scales.

We also observed the generated OpenCL kernel of the code snippets in MSSG-A that contain
the Loop Invariant PSCS. We eliminate the Loop Invariant PSCS by hoisting the loop invariant out
of the innermost loop, and then obtain a significant reduction in the number of arithmetic operators
in the innermost loop for each iteration.

These compiler messages and OpenCL kernel information demonstrate that the PSCS patterns
predefined in the proposed alert system actually change the codes generated by the OpenACC
compiler, and hence are performance-sensitive. Accordingly, our alert system is useful to find
performance-sensitive code patterns in large-scale application codes.

4.2 Effects of Eliminating PSCSs on Performance Portability of Applica-
tions

To prove that the proposed alert system can actually identify the PSCSs that degrade performance
portability, we have examined the impact of eliminating the detected PSCSs on the performance of
real applications, Numerical Turbine and MSSG-A, by measuring the speedup ratios of code excerpts
before and after eliminating PSCSs. Note that the three PSCSs, Triangular Loop, Live-out Scalars
and Once-used Array Data can be detected using the proposed alert system. However, they do not
exist in these two real applications. Therefore, test programs are used in the evaluation.

4.2.1 Experimental Setup

Real applications, Numerical Turbine and MSSG-A, are originally optimized for a vector system.
In the evaluation, we examine the performance changes on other systems by eliminating detected
PSCSs. Test programs in [27] are used to evaluate the PSCSs that do not appear in the two real
applications. The system configurations used in the following evaluation are listed in Table 6.

4.2.2 Experimental Results and Discussion

The evaluation results are shown in Figure 7. The vertical axis shows the speedup ratio against the
original program after eliminating PSCSs. The horizontal axis shows the platforms listed in Table 6.
The speedup ratio of the Original Program on each platform is 1.

Figure 7 shows that the performance of Platform 1 is almost unchanged by eliminating Triangular
Loop, Live-out Scalars, Once-used Array Data, Common Subexpression and Loop Invariant. On the
other hand, the performance of each GPU platform is usually increased by their elimination, even
though eliminating Variable Length Loop reduces the performance of Platform 2 in the evaluation.
From these results, it is obvious that detected PSCSs are code patterns that clearly affect the
performance, and hence eliminating those PSCSs leads to performance improvement of GPUs.

195

Identification and Elimination of PSCSs in HPC Applications

Table 6: System Configurations

Platform CPU GPU Compiler

1 Intel Xeon CPU E5-695 v2 – Intel compiler ifort 14.0.2

2 Intel Core i7 920 NVIDIA Tesla C1060 PGI compiler 12.10

3 Intel Core i7 930 NVIDIA Tesla C2070 PGI compiler 12.10

4 Intel Core i7 920 NVIDIA Tesla K20 PGI compiler 12.10

(a) Results for Triangular Loop. (b) Results for Live-out Scalars. (c) Results for Once-used Array Data.

(d) Results for Computed Index. (e) Results for Variable Length Loop.

(f) Results for Common Subexpression. (g) Results for Loop Invariant.

Figure 7: Speedup ratios by eliminating PSCSs.

Although the seven PSCSs do not usually affect the performance of Intel CPUs, they have to be
eliminated for the platforms using OpenACC for NVIDIA GPUs. Therefore, the proposed system
can alert users to performance-sensitive code patterns in large-scale applications. The code portions
with detected PSCSs can be refactored to improve the performance portability across multiple
platforms.

196

International Journal of Networking and Computing

As shown in Figures 7(d) and (e), eliminating Computed Index PSCS and Variable Length Loop
PSCS lead to performance degradation on the original platform that they are optimized for, even
though performance improvement could be obtained on other platforms with different GPUs. With
those code patterns, it is difficult to keep the performance portability among multiple platforms.
OpenACC is designed for code portability across multiple platforms, but the performance is not
actually portable. Thus, some additional mechanisms are required to make the performance portable.
For example, an extensible programming framework named Xevolver [24] can evolutionarily improve
the application so as to have high performance portability without messing up the original code,
because it can transform an application code in different ways for individual platforms. The Xevolver
could be a promising tool to develop applications with high performance portability.

5 Conclusions

In this paper, we present a PSCS alert system for detecting the code patterns of platform-specific
code smells by using the syntactic information represented by XML-based ASTs. PSCSs that have
clear patterns could be expressed and thus identified by the proposed alert system. The evaluation
results using real applications demonstrate that the proposed PSCS alert system has high recall and
precision ratios for detecting PSCSs referred to in this research. Accordingly, it is clear that an
XML-based approach is one portable and promising way to describe PSCS patterns.

As we already know how to remove a PSCS, we build a database of the transformation recipes for
eliminating the predefined PSCS patterns with the help of Xevolver. The transformation recipes are
written in XSLT files. Thereby, the proposed alert system can give users suggestions of how to remove
the detected PSCSs by applying the transformation recipes to the XML files of the application codes.
The general transformation recipes for the elimination of Common Subexpression and Loop Invariant
PSCSs will be discussed in our future work. The performance evaluation results demonstrate that the
detected PSCSs really affect the performance of an OpenACC-based platform and hence the proposed
system can alert performance-sensitive code patterns in large-scale application codes. Therefore, the
proposed system provides a good starting point for improving performance portability.

Acknowledgment

This work was partially supported by JST CREST “An Evolutionary Approach to Construction of
a Software Development Environment for Massively-Parallel Heterogeneous Systems” and Grant-in-
Aid for Scientific Research (B) # 25280041. The authors are grateful to Prof. Ryusuke Egawa and
Prof. Kazuhiko Komatsu for providing instance list for optimizing HPC applications. The authors
also thank Prof. Satoru Yamamoto and Dr. Keiko Takahashi for providing their application codes,
Numerical Turbine and MSSG.

References

[1] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman
Publishing Co. Inc., 1999.

[2] Tom Mens and Tom Tourwé. A survey of software refactoring. Software Engineering, IEEE
Transactions on, 30(2):126–139, 2004.

[3] Guojing Cong, I-Hsin Chung, Hui-Fang Wen, D. Klepacki, H. Murata, Y. Negishi, and
T. Moriyama. A systematic approach toward automated performance analysis and tuning.
Parallel and Distributed Systems, IEEE Transactions on, 23(3):426–435, March 2012.

[4] Tim Bray, Jean Paol, C. M. Sperberg-McQueen, Eve Maler, and Franois Yergeau. Extensible
markup language (XML) 1.0 (fifth edition). http://www.w3.org/TR/REC-xml/, November
2008.

197

Identification and Elimination of PSCSs in HPC Applications

[5] A. Berglund, S. Boag, D. Chamberlin, M. Fernández, M. Kay, J. Robie, and J. Siméon. Xml
path language (xpath) 2.0 (second edition). http://www.w3.org/TR/xpath20/, January 2011.

[6] Michael Kay. Xsl transformations (xslt) version 3.0, w3c last call working draft 2. http:

//www.w3.org/TR/xslt-30/, October 2014.

[7] M. Mantyla, J. Vanhanen, and C. Lassenius. A taxonomy and an initial empirical study of bad
smells in code. International Conference on Software Maintenance, 2003(ICSM 2003), 381-384,
2003.

[8] Garcia Joshua, Popescu Daniel, Edwards George, and Medvidovic Nenad. Identifying archi-
tectural bad smells. In Proceedings of the 2009 European Conference on Software Maintenance
and Reengineering, CSMR ’09, pages 255–258, Washington, DC, USA, 2009.

[9] Jacek Ratzinger and Michael Fischer. Improving evolvability through refactoring. In In MSR
05: Proceedings of the 2005 international workshop on Mining software repositories, pages 1–5,
2005.

[10] H.P. Putro and I Liem. Xml representations of program code. In Electrical Engineering and
Informatics (ICEEI), 2011 International Conference on, pages 1–6, July 2011.

[11] H.P. Putro. Code smell detection in source code in ast representation with by rules detection
approach. Master’s thesis, Institut Teknologi Bandung, Bandung, Indonesia, 2011.

[12] Stefan Slinger. Code smell detection in eclipse. Master’s thesis, Delft University of Technology,
2005.

[13] R.C. Holt. Structural manipulations of software architecture using tarski relational algebra.
In Reverse Engineering, 1998. Proceedings. Fifth Working Conference on, pages 210–219, Oct
1998.

[14] G. Travassos, F. Shull, M. Fredericks, and V.R. Basili. Detecting defects in object-oriented
designs: Using reading techniques to increase software quality. Proc. 14th Conf. Object Oriented
Programming, Systems, Languages, and Applications, pages 47–56, 1999.

[15] A. Apostolico and Z. Galil. Pattern matching algorithms. Technical report, Oxford University
Press, UK, 1997.

[16] W. Yang. Identifying syntactic differences between two programs. Software-Practice and Expe-
rience, pages 739–755, 1991.

[17] J. J. Hunt and W. F. Extensible language-aware merging. In Software Maintenance, 2002.
Proceedings. International Conference on, pages 511–520, 2002.

[18] Iulian Neamtiu and Including Bind. Understanding source code evolution using abstract syntax
tree matching. In Proceedings of the 2005 international workshop on Mining software reposito-
ries, pages 2–6, 2005.

[19] F.A. Fontana, M. Zanoni, A. Marino, and M.V. Mantyla. Code smell detection: Towards a
machine learning-based approach. In Software Maintenance (ICSM), 2013 29th IEEE Interna-
tional Conference on, pages 396–399, Sept 2013.

[20] Pmd. http://pmd.sourceforge.net/, 2014.

[21] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of extract method refactoring
opportunities for the decomposition of methods. Journal of Systems and Software, 84(10):1757
– 1782, 2011.

[22] C. Marinescu, R. Marinescu, P. F. Mihancea, and R. Wettel. iplasma: An integrated platform
for quality assessment of object-oriented design. In In ICSM (Industrial and Tool Volume, pages
77–80. Society Press, 2005.

198

International Journal of Networking and Computing

[23] N. Moha, Y. Gueheneuc, L. Duchien, and A Le Meur. Decor: A method for the specification and
detection of code and design smells. IEEE Transactions on Software Engineering, 36(1):20–36,
2010.

[24] Hiroyuki Takizawa, Shoichi Hirasawa, and Hiroaki Kobayashi. Xevolver: an xml-based pro-
gramming framework for software evolution. SC13, November 2013.

[25] Satoshi Miyake, Satoru Yamamoto, Yasuhiro Sasao, Kazuhiro Momma, Toshihiro Miyawaki,
and Hiroharu Ooyama. Unsteady flow effect on nonequilibrium condensation in 3-d low pressure
steam turbine stages. In In ASME Turbo Expo 2013, volume 5B: Oil and Gas Applications;
Steam Turbines, San Antonio, Texas, USA, June 2013.

[26] Takahashi Keiko, Azami Akira, Tochihara Yuki, Kubo Yoshiyuki, Itakura Ken’ichiKen’ichi,
Goto Koji, Kataumi Kenryo, Takahara Hiroshi, Isobe Yoko, Okura Satoru, Fuchigami Hi-
romitsu, Yamamoto Jun-ichi, Takei Toshifumi, Tsuda Yoshinori, and Watanabe Kunihiko.
World-highest resolution global atmospheric model and its performance on the earth simu-
lator. In State of the Practice Reports, SC ’11, pages 21:1–21:12, New York, NY, USA, 2011.
ACM.

[27] The Portland Group PGI. 11 tips for maximizing performance with openacc directives in
fortran. https://www.pgroup.com/resources/openacc_tips_fortran.htm, 2013.

[28] Ryusuke Egawa. An hpc refactoring catalog; guidelines to bridge the gap between hpc systems.
In Special Session: Legacy HPC Application Migration 2013 (LHAM) (held in conjunction with
IEEE MCSoC-13), Tokyo, September 27 2013.

[29] Michael Wolfe. The openacc application programming interface, version 2.0. http://www.

openacc-standard.org/, June, 2013.

[30] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using abstract syntax suffix
trees. In Reverse Engineering, 2006. WCRE’06. 13th Working Conference on, pages 253–262,
2006.

199

