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Abstract

The paper is devoted to Time Division Multiple Access Link Scheduling Protocols in wireless
sensor networks for full duplex (two-way) communication, where each sensor is scheduled on an
incident link as a transmitter and as a receiver in two different time slots. We formulate the
full duplex link scheduling problem (FDLSP) as distance-2 edge coloring in bi-directed graphs
and prove tighter lower and upper bounds for the FDLSP problem. We formulate the FDLSP
problem as an integer linear program (ILP). Then, we present two ∆-approximation distributed
algorithms for growth bounded graphs (GBG), for modeling the sensor networks, and for general
graphs, ∆ being the maximum node degree in the network. The first algorithm is a synchronous
∆-approximation algorithm based on finding maximal independent sets. The second is an asyn-
chronous ∆-approximation depth first search (DFS) based algorithm. The maximal independent
set based algorithm requires only O(∆log∗n) communication rounds (where n is the number of
processors in the network) in growth bounded graphs. For general graphs, the maximal inde-
pendent set based algorithm requires O(∆4 +∆3log∗n) communication rounds, improving upon
the previous best known algorithm with O(n∆2 +n2m) communication rounds (where m is the
number of links in the network). The asynchronous DFS based algorithm requires only O(n)
communication rounds for both general and growth bounded graphs. The simulations show that
the proposed algorithms assign on average equal or fewer number of time slots compared to the
best known distributed algorithm while being significantly faster.

Keywords: Distributed Algorithms, Scheduling, TDMA, Sensor Networks

0This is an extended version of our APDCM/IPDPS workshop paper [1].
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1 Introduction

Our model of a sensor network consists of a set of stationary sensors which cooperate together in
gathering data from their surrounding environment, the data then are sent to a base station or
forwarded to other sensors for further processing. Sensors are small processing units with a sensing
unit, a transceiver to transmit/receive data, and equipped with a battery as its power source, but
the battery has limited lifetime. The processing in sensor devices consumes much less energy than
transmitting data to a base station or to other sensors. In order to maximize utilization of the
battery life time, instead of sending data directly to the base station or to other designated receipts,
the sensors form a multi hop network where data is sent over a series of intermediate sensors to
reach the intended receiver in timely and energy efficient manner.

TDMA MAC Link Scheduling. Sensor networks use the wireless medium to transmit/receive
data, thus a Medium Access Control (MAC) protocol is required to ensure transmission of data.
Due to collision in dynamic MAC protocols such as ALOHA, retransmission may be required to
deliver data. Retransmission results in decreasing the battery life time of the sensors. Krumke et al.
in [12] proposed to use Time Division Multiple Access protocol (TDMA MAC) to avoid collision.
In TDMA MAC protocols, time is divided into equal intervals, called frames, and each time frame
is divided into equal time slots. Broadcast scheduling protocol assigns time to sensors, on the other
hand link scheduling protocol assigns time to links, i.e., a pair of sensors to send and receive. To
allow flow of information in two directions in the network, from sensors to base station/sensors and
from base station/sensors back to sensors, full duplex communication is required.

As noted in [8], link scheduling has the following advantages over broadcast scheduling. In
broadcast scheduling, none of the distance-2 neighbors can transmit during the same time slot,
while it is possible in link scheduling. Also link scheduling better conserves power since each sensor
in broadcast scheduling switches on its transceiver even if it is not the intended receiver of its
neighbor’s message.

Hidden Terminal Problem. Both link and broadcast scheduling in sensor networks must take
into account the hidden terminal problem. The hidden terminal problem exists when distance-2
neighbors are transmitting during the same time slot, where the intermediate sensor between the
transmitting sensors receives interfering signal even if the receiving sensor is supposed to receive only
from one of the transmitting sensors. In Figure 1, sensor v receives a signal from sensor u, but since
sensor w is also transmitting during the same time, v also receives another signal from w, therefore,
v receives two interfering signals. In broadcast scheduling, distance-2 neighbors are not allowed to
transmit during the same time slot to avoid the hidden terminal problem; only distance-3 neighbors
can transmit simultaneously. In link scheduling, not only distance-3 neighbors are permitted to
transmit simultaneously, even distance-1 and distance-2 neighbors also can transmit simultaneously
in certain situations: the hidden terminal problem does not exists if distance-1 neighbors are both
transmitting simultaneously or receiving simultaneously; also distance-2 neighbors can transmit
simultaneously if the intermediate node between them is not intended to be a receiver in that time
slot. This advantage of link scheduling allows for concurrent transmission during a single time slot
more than broadcast scheduling.

u v w x

w interferes with u

w sends to x

φ

w sends to x

φ

u sends to v

φ

Figure 1: The Hidden Terminal Problem

Full Duplex Link Scheduling Problem (FDLSP): Given a sensor network, FDLSP problem
is to find a full duplex link scheduling taking in account the hidden terminal problem using minimum
number of time slots.

Network Model. Unit disk graphs (UDG) is one of the most common models for modeling
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sensors networks. In unit disk graphs, the sensors are points in the Euclidean plane and two sensors
are neighbors (share a link) if their Euclidean distance is less than or equal to 1. This implies
that sensors have identical transmission range. But, this does not reflect the reality since there
are factors such as mobility and available battery power which affect the transmission range of the
sensors. Thus, recently, new geometrical models have been studied in sensors network community
that better model sensor networks in realty. These models include quasi unit disk graphs and unit
ball graphs. Such models capture more realistic scenarios concerning connectivity based on distance
[21]. All of the aforementioned models are members of a larger graph family called growth bounded
graphs (GBG) [21]. Growth bounded graphs assume only a limit on the number of independent nodes
in a neighborhood (an independent node is a node that all of its neighbors are not independent).
More formally, a graph G is growth bounded if there is a polynomially bounding function f(r),
such that the number of independent nodes that are at shortest distance r from a node is given
by f(r) [21]. In this paper, we model and analyze the sensor network as growth bounded graphs.
We use UDG for our experiments, because it is not known how to generate GBG in practice, while
theoretical analysis of the algorithms remains valid for UDG.

Communication Model. In this paper, we develop algorithms for two distributed commu-
nication models, namely synchronous and asynchronous message passing models. In both models,
the communication network is modeled as an undirected graph (V,E), where the set of nodes V
represents processors of the network and the set of links E represents bidirectional non-interfering
communication channels, where we assume the existence of a protocol to carry out the communi-
cation among the nodes in the network correctly. Each node has a distinct identity. In a single
round a node carries out some computations, sends message to its neighbors and receives messages
from of its neighbors. In the synchronous message passing model for distributed computing [5, 11],
each node sends/receives to/from all of its neighbors in every communication round, and the com-
munication rounds are synchronized. If we assume that each round takes one time unit, then the
time complexity of the algorithm is the number of time units taken from start to completion. In
the asynchronous message passing model for distributed computing, communication rounds are not
synchronized, i.e., the time complexity of algorithm is the worst-case number of time units from
start to completion [4].

Contribution. In this paper, our contribution includes the following:

� Formulating FDLSP as distance-2 edge coloring in bi-directed graphs.

� Proving a new lower bound for the number of time slots required for FDLSP, which is
max(2(δ+largest cluster size+ no.of edges in largest joint clique size)) that is tighter than
previous lower bound of 2∆, ∆ being the maximum node degree in the network and δ being a
given node degree.

� Proving an upper bound on the number of time slots, which is 2∆2, and the existence of
∆-approximation algorithm for the FDLSP problem.

� Problem formulation of FDLSP as an integer linear program.

� A synchronous ∆-approximation distributed maximal independent set based fast algorithm for
FDLSP, which requires O(∆log∗n) communication rounds in growth bounded graphs, ∆ being
the maximum node degree, and O(∆4 + ∆3log∗n) communication rounds in general graphs,
compared to the best known algorithm for FDLSP problem which requires O(n2m + nm∆)
communication rounds.

� An asynchronous ∆-approximation distributed DFS-based algorithm for FDLSP which im-
proves the communication rounds from previous a previous algorithm [8] with O(n2m+nm∆)
communication rounds to O(n) and reduces the average number of time slots in practice.

� Implementation and experimental comparison with a distributed edge coloring algorithm from
[8] showing the same number of time slots on average for the maximal independent set based
algorithm while significantly reducing the communication complexity.
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In this extended version of our paper [1], we prove tighter lower bounds for the number of time
slots required for FDLSP problem. Also, we formulate the FDLSP problem as a linear program and
provide experiments for testing the ILP with our algorithms. Also, we prove that our algorithms
are ∆-approximation for the FDLSP problem.

The rest of the paper is organized as follows: Section 2 presents related work in channel/link
assignment. Section 3 formulates FDLSP problem, and prove bounds on the number of required
time slots for the problem. In Section 4, we present an ILP for FDLSP problem. In Section 5, we
present a maximal independent set based distributed algorithm for FDLSP problem. In Section 6, an
analysis of the algorithm is presented. Section 7 presents an asynchronous DFS based algorithm for
FDLSP. Section 8 describes our simulation settings and the experimental results. Section 9 provides
conclusions and future work.

2 Related Work

In this section, we present some proposed solutions in the literature that are related to channel/link
assignment, and we show how those solutions are different from our algorithms. Both centralized
and distributed TDMA algorithms are proposed in the literature. We first present the centralized
algorithms. In [20] the author provides a unified framework for a set of broadcast and link scheduling
protocols. For link scheduling protocol, the author presents a centralized half duplex edge coloring
solution such that the hidden terminal problem is taken into account. The author also considers full
duplex problem in the sense that a sensor can transmit and receive at the same time using multiple
frequencies. In contrast, our solution considers the full duplex problem over a single frequency in the
network. In [22], the proposed solution assumes that sensors can operate on different frequencies.
In [23], the proposed solution is for broadcast scheduling based on distance-1 edge coloring. As
mentioned earlier, broadcast scheduling allows for less concurrency of transmission as compared to
link scheduling [8]. In [6], full duplex link scheduling assignment in centralized setting is presented,
where the network is modeled as a bi-directed graph and time slots are assigned to links based on
coloring. Although authors consider the link scheduling problem, but their solution permits multiple
outgoing links to be assigned the same color. Observe that coloring more than one outgoing link
with the same color reduces the number of colors in a single time frame, but a sensor transmits over
only one outgoing link in a single time frame, and each of the remaining outgoing links with the
same color is scheduled in another time frame.

For distributed systems, in [8], the closest to our work, a distributed algorithm is presented that
solves the full duplex channel assignment problem. The algorithm first edge-colors the graph with
at most ∆ + 1 colors. Then, a distributed DFS algorithm assigns directions to edges to obtain the
full duplex schedule. Converting a coloring of an undirected graph to a valid coloring with directions
while considering the hidden terminal problem is not possible directly. So, the algorithm then injects
more colors in the graph to obtain a valid link scheduling. The O(n∆2+n2m) communication rounds
of the algorithm in [8] is high because of the first phase of distributed coloring. In [9], authors solve
the full duplex link scheduling problem for acyclic networks only, where the time complexity of their
algorithms is O(polylog(n)). Fault tolerant distance-2 vertex coloring algorithms is proposed in [15]
and [10] for the half duplex channel assignment problem.

There are different models for sensor networks, such as unit disk graphs [7], quasi unit disk
graphs [13] (both belong to growth bounded graphs family), and signal-to-interference-plus-noise
ratio (SINR) model [3, 18, 17] (it belongs to the physical or fading channel models [19]). All the
mentioned models are geometric models, where they better model the sensor network connectivity
in practice. According to [3], SINR model is the best model to represent sensor networks, but yet
the SINR model has not been studied sufficiently from algorithmic point of view. In SINR model,
a message is received correctly by a receiver only if the received signal strength divided by the
interfering strength of current simultaneous transmissions is above the reception threshold. We can
observe that considering the SINR model for distributed algorithms is not viable currently, where
sensors must have full knowledge of the network to communicate correctly. In [17], the authors
present a distributed algorithm that enables any unit disk graph algorithm to operate under the
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SINR model correctly by emulation. We, thus, consider the FDLSP under growth bounded graphs
model because of the aforementioned reasons.

3 Graph Theoretical Formulation of FDLSP

In this section, we define distance-2 edge coloring problem and prove bounds for required number of
time slots and the existence of an approximation algorithm for FDSLP problem. Also, we formulate
the full duplex link scheduling problem (FDLSP) as a distance-2 edge coloring. Our proposed
solution is to edge-color the graph taking the hidden terminal problem into account. Since we need
to provide a valid schedule for full duplex communication, we start by representing the undirected
sensor network graph G = (V,E) as a bi-directed graph. The following definitions are needed for
problem formulation:

Definition 1. A bi-directed graph is a directed graph in which for each arc (u,v) there exists its
opposite arc (v,u).

If arc (u, v) is assigned color c, then, in the time slot c, node u transmits and node v receives
from node u.

Definition 2. Given a bi-directed graph G, a distance-2 edge coloring assigns colors to edges
such that no two edges have the same color if they share an endpoint or if one’s head is adjacent to
the tail of another.

Coloring in Figure 2 is feasible since v and w can send messages u and x or receive from u and
x respectively. But, (u, v) and (w, x) can not have the same color since w will interfere with u’s
message.

The full duplex link scheduling problem (FDLSP) is equivalent to the following:

Bi-directed Distance-2 Edge Coloring Problem. Given a bi-directed graph G = (V,E),
find a distance-2 edge coloring with the minimum number of colors.

u v w x

φ

αϕ

βα

φ

Figure 2: Feasible distance-2 edge coloring

We know that any graph can be edge-colored by ∆ or ∆ + 1 colors by Vizing’s theorem. In
order to edge-color a bi-directed graph, we need 2∆ or 2(∆ + 1) colors. But, since we need to avoid
the hidden terminal problem in FDLSP, more than 2(∆ + 1) colors may be needed for a feasible
assignment for FDLSP.

The link scheduling problem is an NP-complete problem [2]. Thus, FDSLP is NP-complete, and
we can hope only for an approximation algorithms. We now prove new lower and upper bounds on
the number of colors in any FDLSP solution.

3.1 Lower Bound

In this subsection we provide a new tighter lower bound for the FDLSP problem that is not presented
in our paper [1]. As discussed earlier and due to [8], the minimum number of colors required to
distance-2 color a bi-directed graph G is 2∆ at least. While this holds true for trees, note that if we
have a clique of size 3 or more, or cycles, then 2∆ colors are not sufficient. We prove a tighter lower
bound for the FDLSP problem. First, we need the following definitions to facilitate the proofs.

Definition 3. A Cluster node v is the set of all cliques of size 3 containing node v such that all
the cliques share a common edge. Node v is called the cluster center.

For example, in Figure 3, there are two clusters for cluster center v. The first cluster contains
three cliques: vwx, vwr, vwz. The second cluster contains two cliques: vxw, vxr. The first cluster’s
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Figure 3: Clusters of node V

common edge is (v, w), and the second cluster’s common edge is (v, x). The first cluster size is 3;
the second cluster size is 2.

Note that any node w may belong to at most two clusters of a specific cluster center v. A cluster
size is the number of cliques of size 3 in the cluster, and a node’s cluster size is the size of the largest
cluster of that node.

Definition 4. An outer edge of a clique belonging to a cluster of node v is the edge that does
not have node v as an end point.

For example, in Figure 3, the outer edges of the largest cluster of cluster center v are (x,w),
(w, r), and (w, z).

Definition 5. A joint edge of a given cluster of node v is an edge that connects two cluster
nodes, but the formed clique do not belong to the given cluster.

For example, in Figure 3, joint edge (x, r) connects nodes x and r, but the clique vxr do not
belong to the largest cluster which contains three other cliques.

Definition 6. A joint clique of cluster of node v is a clique that is formed by joint edges of the
given cluster.

Lemma 1. An outer edge of a clique in a cluster can not be colored with a color used by an edge
incident on the cluster center.

Proof. Without loss of generality, consider outer edge (w, x) of clique (v, x, w) in the cluster of node
v in Figure 4. Clearly, edge (w, x) can not be colored with a color used by an edge incident on
both x and v, or on w and v. Also, edge (w, x) can not be colored with color used by edge (v, u),
because node x will receive two interfering signals from nodes w and v. Moreover, edge (w, x) can
not be colored with color used by edge (u, v), because node v will receive two interfering signals from
nodes w and u. Similar arguments will prevent edge (x,w) to be colored with a color used any edge
incident on node v. Hence, the proof holds.

Lemma 2. Outer edges of two cliques belonging to the same cluster can not be colored with the same
color.

Proof. By definition, two cliques belonging to the same cluster share an edge; thus, their outer edges
must share an endpoint. Hence, they can not be colored with the same color.

Lemma 3. Two outer edges of two cliques that do not belong the same cluster of some node can be
colored with the same color.

Proof. If two cliques do not belong to the same cluster of some node, then their directed distance is
more than 2; thus, they can be colored with the same color.

Lemma 4. A joint edge can not be colored by a color that is used by an edge incident on a cluster
center, nor an outer edge of the same cluster.
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Figure 4: Cluster of node V

Proof. Note that a joint edge forms a clique of size 3 with two edges incident on the cluster center.
Also, a joint edge forms a clique of size 3 with two outer edges. The proof then is similar to the
proof of Lemma 1 since we get the same configuration as in Figure 4.

Lemma 5. A joint edge can not be colored by a color that is used by a joint edge that belongs to the
same joint clique.

The proof is obvious, and hence is omitted.

Theorem 1. A lower bound for a bi-directed graph G to be distance-2 edge colored is max(2(δ+largest
cluster size+ no.of edges in largest joint clique size)) colors.

Proof. The proof follows by Lemmas 1 through 5.

The lower bound provided here is not tight; to see why consider the graph in Figure 5. Assume
that the edges of the graph are joint edges (we excluded cluster edges for simplicity.) Note that the
number of edges in the largest joint clique size is 3. But, this graph requires more than 6 colors (we
double the number of colors when we consider the bi-directed graph), it requires 10 colors to take
FDLSP problem into account.

Figure 5: Two joint cliques of size 3

3.2 An Upper Bound

Lemma 6. Any bi-directed graph G with the maximum out-degree ∆ requires at most 2∆2 colors to
distance-2 edge-color graph G.

Proof. Let directed edge (u, v) from bi-directed graph G has color c (see Fig 6). Count the number
of edges that if colored with color c, then a conflict in distance-2 edge coloring exists. Observe that
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Figure 6: Maximum number of colors

the edges that have conflicts in color with edge (u, v) belong to three categories, edges incident on
both nodes u and v, outgoing edges from the neighbors of node v and incoming edges to neighbors
of node u. We know that the sum of the edges of both nodes u and v equals to 4∆−3 at most (there
are two common directed edges belong to both u and v, and we subtract the edge (u, v) also). Also,
there are (∆ − 1)(∆ − 1) = ∆2 − 2∆ + 1 outgoing edges at most from any neighbor of node v and
∆2 − 2∆ + 1 incoming edge at most to any neighbor of node u (note that we exclude edges incident
on u and v because they are considered previously). Summing up those quantities gives 2∆2 − 1
edges in total.

Now, construct conflict graph G′ = (V ′, E′) where the set of vertices V ′ represents the set of
directed edges in G, and there is an edges between two vertices in G′ if there is a distance-2 edge-
coloring conflict between the two directed edges represented by the two vertices in G′. Clearly, the
maximum degree in G′ is 2∆2 − 1. A greedy vertex coloring algorithm exists which assigns at most
2∆2 colors to vertices of the conflict graph G′ [16]. That is, a bi-directed graph G requires at most
2∆2 colors for distance-2 edge coloring.

Theorem 2. For any bi-directed graph G with the maximum out-degree ∆, there exists a determin-
istic ∆-approximation algorithm that distance-2 edge color the graph G.

Proof. Any bi-directed graph can be greedily distance-2 edge colored by at most 2∆2 colors by
Lemma 6. Since the lower bound is at least 2∆, dividing the upper by the lower bound, such a
greedy algorithm achieves ∆-approximation.

Note. In complete graphs, observe that since every node is connected to every other node, then,
if more than one node transmits in the graph during the same time slot, the hidden terminal problem
exists. Thus, in complete graphs, the feasible assignment assigns a unique color for each link in the
bi-directed graph, where the number of edges in bi-directed complete graph is ∆2 +∆. On the other
hand, edges in even cycles requires only 4 colors for the FDSLP and edges in odd cycles requires 6
colors only [8].

4 ILP Formulation

We present an integer linear program (ILP) for the FDLSP problem, which was not presented in
our previous paper [1]. ILP is helpful to test small size instances of the FDLSP problem to get
the optimal solution. Our objective in the ILP is to minimize the used colors in the graph, so we
maximize the concurrent transmissions carried on in a single time slot, i.e., minimize the required
number of time slots.

Variables:

Cj =

{
1 if color j is used
0 otherwise

62



International Journal of Networking and Computing

Figure 7: ILP Constraints 4, 5 and 6

X(u,v)j =

{
1 if arc (u, v) has color j
0 otherwise

Objective: ∑
Cj → Minimize

Constraints:

(1) ∀j, (u, v) ∈ E : Cj ≥ X(u,v)j

(2) ∀j, (u, v), (w, u), (v, z) ∈ E : X((w,u),j) +X((v,z),j) ≤ 1,

(3) ∀(u, v) ∈ E :
∑N

j=1X((u,v),j) = 1,

(4) ∀u ∈ V , (u, v), (u,w) ∈ E : X((u,v),j) +X((u,w),j) ≤ 1,
(5) ∀u ∈ V , (u, v), (w, u) ∈ E : X((u,v),j) +X((w,u),j) ≤ 1,
(6) ∀u ∈ V , (v, u), (w, u) ∈ E : X((v,u),j) +X((w,u),j) ≤ 1,

Constraint (1) requires jth color, Cj , to be counted in the objective only if it is used. Constraint
(2) takes into account the hidden terminal problem where it prevents a node to be transmitter while
its adjacent node is receiver in the same time slot (color). Constraint (3) ensures that each edge is
colored with a single color. The last three constraints are to ensure that each incident edge to the
same node gets a unique color, where constraint 4 prevents two outgoing links originating from the
same node to have the same color, constraint 5 prevents one outgoing link and another incoming
link adjacent to the same node to have the same color, and constraint 6 prevents two incoming links
to the same node to have the same color. See Figure 7 for constraints 4, 5, and 6.

5 Distributed Maximal Independent Set Based Algorithm
(DistMIS)

In this section we present a synchronous maximal independent set (MIS) based distributed algorithm
for FDLSP. Our algorithm approach is based on a distributed node-coloring algorithm presented
in [21]: our algorithm computes iteratively an MIS, and then another secondary MIS; nodes in
secondary MIS then colors their incident edges. A detailed explanation follows. A set of nodes
S ⊆ V is said to be independent in graph G if no two nodes u, v ∈ S are neighbors in G. An
independent set S is maximal if S is not a subset of any other MIS set, i.e., if u ∈ V −S, then S∪{u}
is not an independent set. We use the terms independent and dominant for independent nodes, and
dominated for non-independent nodes. We define the following to facilitate the description of the
algorithm:

distG(u,w) is the length of the shortest path between nodes u and w in graph G.
Nr(v) be the node neighborhood, which is the set of nodes that can be reached by a shortest path

of length at most r from node v.
To compute the MIS, our algorithm can use any existing synchronous distributed algorithm for

computing MIS. To the best of our knowledge, the fastest algorithm for computing MIS in GBG is due
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Algorithm 1 Distributed Maximal Independent Set Based Algorithm (DistMIS)

Require: G(V,E): bi-directed graph
1: for all u ∈ V in parallel do
2: repeat
3: compute an MIS set S
4: H ← S
5: repeat
6: G′ := (S,E′) where E′ = {(u, v)|u, v ∈ S ∧ distG(u, v) ≤ 3}
7: compute secondary MIS set S′ in graph G′

8: if u ∈ S′ then
9: color edges incident on u greedily

10: broadcast color assignment to its neighbors
11: end if
12: S ← S − S′
13: S′ ← φ
14: until S is empty
15: G← G−H
16: until G is empty
17: end for

to Schneider et. al [21], which is optimal, that it computes MIS in GBG in O(log∗n) communication
rounds. The MIS algorithm in [21] is uniform and local, i.e., it only requires knowledge of local
neighborhood processes. Our algorithm requires that each node has distance-2 knowledge to compete
for an MIS and to color its incident edges with valid color. Distance-2 knowledge of node v implies
that node v have knowledge of the colors of each edge incident on any node u ∈ N2(v), and the
status of nodes incident on those edges. When a node gets the turn to color its edges, it does so in a
greedy manner. After a node edge-colors its incident edges, it broadcasts the edge color assignment
to its distance-2 neighborhood. Note, if an incident edge on a node is already colored by a neighbor,
the node does not change the color of the edge, it proceeds and colors the edges that are not yet
colored taking into account the colors of all its incident edges.

Our algorithm consists of two consecutive phases that are repeated till all the nodes in the graph
get the turn to color their incident edges. In the first phase, a maximal independent set S from
graph G is formed. Before the second phase, the nodes in S form a new graph G′ = (S,E′) where
E′ = {(u, v)|u, v ∈ S ∧ distG(u, v) ≤ 3}. In the second phase a new MIS S′ from graph G′ is
formed. (We call set S′ a secondary MIS to facilitate the description of the algorithm). Nodes in S
will compete to form secondary MIS S′, then nodes in secondary MIS S′ color their incident edges
simultaneously. Note that if two nodes on distance-3 or less are coloring their incident edges, then
there may be a conflict in coloring, that is why we form secondary MIS S′. The nodes in S′ are
excluded from S, a new graph G′ is formed and a new secondary MIS S′ is formed, and the nodes
in the new secondary MIS S′ color their incident edges. This process is repeated till all the nodes
in S join some secondary MIS S′ and color their incident edges. After that, the nodes in MIS S are
excluded from G, i.e., G← G−S. The previous phases are repeated till all the nodes in new G join
some MIS S and color their incident edges. Algorithm distMIS is given in Algorithm 1.

It may seem that the required distance-2 knowledge for coloring is relatively high, but distance-
2 knowledge is required to color an edge with feasible color in FDSLP, i.e., distance-2 knowledge
is lower bound on the knowledge to produce feasible schedule for FDSLP. It is possible to bypass
distance-2 knowledge requirement and color with distance-1 knowledge only by randomization. We
have attempted a randomized algorithm for the FDSLP, but it produced longer schedule with speed
that is close to the independent set based algorithm.

Distance-3 nodes will be competing in the second phase of the algorithm to join the secondary
MIS S′. But, only the independent nodes from set S will be active in the second phase of the
algorithm, and will exchange information concerning computing the secondary MIS set, not coloring.
Other nodes will be just bridges to carry out the communication among the competing nodes. In
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GBG, number of independent nodes in a neighborhood is bounded, hence distance-3 knowledge is
of constant size for the second phase.

6 Algorithm Analysis

In this section we provide algorithm analysis and correctness proofs.

Theorem 3. Algorithm distMIS computes feasible link assignment for FDSLP.

Proof. Note that the algorithm terminates only after each node joins some MIS set S and then joins
a secondary MIS set S′ and color its incident edges. Also, since any two nodes coloring their incident
edges simultaneously must belong to the same secondary MIS, thus they are at least distance-4 apart
from each other; observe that any edges that are colored simultaneously maintains correct FDSLP
coloring even if they are colored with the same color. Moreover, each node requires distance-2
knowledge, and it is sufficient to color any edge with feasible color (avoiding the hidden terminal
problem). Thus, from the previous arguments the theorem follows.

Lemma 7. For any undirected graph G = (V,E) with maximum degree ∆, there is at most ∆ + 1
disjoint maximal independent set such that the union of the sets is the set of nodes V of graph G.

Proof. Let sets S1, S2, ..., Si, ..., Sk be disjoint maximal independent sets of graph G, such that
1 ≤ i ≤ k and Si ∩ Sj = φ for any i 6= j. We now prove that

⋃k
i=1 Si = V and k ≤ ∆ + 1. Without

loss of generality, for any node v ∈ V with maximum degree ∆, we know that node v is either an
independent node or incident to at least one independent node in any maximal independent set Si.
Thus, if node v belongs to Si, then, for any disjoint maximal independent set Sj (i 6= j), Sj must
contain at least one of node v’s neighbors. And since node v has ∆ neighbors, and each disjoint
maximal independent set for graph G must contain at least one of node v’s neighbors, then there
is at most ∆ set of such disjoint maximal independent sets. Summing up the quantities, we get at
most ∆ + 1 disjoint maximal independent set for any graph G with maximum node degree ∆ and
the union of the sets is V . Hence, the proof follows.

Recall that our algorithm computes first a maximal independent set S, then computes secondary
maximal independent set S′. After the nodes in S′ color their incident edges, the nodes of S′ are
excluded, and another secondary MIS is computed. This is repeated till all the nodes in S join some
secondary MIS S′. We now conclude and prove the number of required secondary MIS such that
every node in MIS S belong to one of the secondary MIS sets.

Lemma 8. For any maximal independent set S for graph G, the number of required disjoint sec-
ondary MIS sets to contain all the nodes in S is O(1) in growth bounded graphs.

Proof. We know that in growth bounded graphs the number of independent nodes in a neighborhood
Nr(v) is given by the function f(r), where f(r) is a polynomial bounding function [21]. Since, in
distMIS algorithm, secondary MIS is computed among distance-3 neighborhood, i.e., r = 3, observe
that f(r) is a constant; i.e., the number of required disjoint secondary MIS sets to contain all the
nodes in S is constant (O(1)). Hence, the proof follows.

Theorem 4. Algorithm distMIS requires O(∆log∗n) communication rounds in growth bounded
graphs.

Proof. Algorithm distMIS computes at most O(∆) disjoint MIS by Lemma 7. And it computes O(1)
secondary MIS for each disjoint MIS set S by Lemma 8. And, since we use the MIS distributed
algorithm in [21] which requires O(log∗n) rounds, distMIS algorithm requires O(∆log∗n) rounds.
Hence the proof follows.

We now show that our algorithm distMIS is ∆-approximation for the FDLSP problem, which
was not presented in our previous paper [1]. In order to do so, we first present a sequential ∆ + 1
greedy node-coloring algorithm. Then, we show that our algorithm distMIS imitates the greedy
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algorithm operation in coloring the line graph obtained from the original graph. Recall that the line
graph is constructed with nodes as the links of the original graph and the links between two nodes
exist if there is a conflict between the edges if colored with the same color in the original graph, as
shown in Lemma 6. Thus we show that our algorithm distMIS is a ∆-approximation for the FDLSP
problem, as shown by Theorem 2.

Let algorithm greedyColor be a greedy algorithm that works as follows: given a graph G with
maximum node degree ∆ and ∆+1 distinct colors, greedily pick any uncolored node v from G, color
node v with a color c such that no neighbor of node v is colored with c. Continue till all the nodes
in graph G are colored and terminate.

Lemma 9. Given a graph G with maximum node degree ∆, algorithm greedyColor node-colors graph
G with at most ∆ + 1 colors and terminates correctly.

Proof. Since the maximum node degree in graph G is ∆, any picked uncolored node v in graph G
can be colored with color c from the given ∆ + 1 colors such that no other neighbor of v is colored
with, because if each neighbor of v is colored with a distinct color among the ∆ + 1 given colors,
then there is one available color that is not used yet and can be used to color v. Hence, the proof
follows.

Lemma 10. Algorithm distMIS is ∆-approximation for the FDLSP problem.

Proof. First, we show that at some round r, if all colored edges in previous rounds are colored such
that FDLSP problem does not exist, then for any two distinct non-adjacent edges e1 and e2 that are
colored in round r, if edges e1 and e2 are colored with color c, there is no conflict in distance-2 edge
coloring. Note that any two nodes v and u in some secondary MIS S′ are at distance 4 at least, and
thus edges e1 and e2 are at distance 3 at least from each other. Thus, coloring e1 and e2 with the
same color does not violate distance-2 edge-coloring.

Since any two non-adjacent edges that are colored simultaneously in the same round do not
have conflict in coloring, i.e., we can say that coloring non-adjacent edges takes place sequentially,
and thus coloring the line graph obtained from the original graph is carried sequentially just as
the greedyColor sequential algorithm. Also, we showed in Lemma 6 that 2∆2 colors at most are
required to distance-2 edge-color a bi-directed graph. Hence, by Theorem 2, algorithm distMIS is
∆-approximation.

We conclude and prove the time complexity of our MIS based distributed algorithm in general
graphs. Recall that the algorithm computes secondary MIS set among distance-3 nodes; assume
that the time complexity of the algorithm is some polynomial function O(q(G)). We can reduce the
complexity O(q(G)) by factor ∆ as follows: instead of computing secondary MIS among distance-3
nodes, compute the secondary MIS among distance-2 nodes; then nodes in the secondary MIS colors
their outgoing edges only; observe that the color assignment in this algorithm is still correct since
there will be no conflict in simultaneous coloring. Note that we reduced the number of competing
nodes in secondary MIS by ∆ (because we excluded distance-3 nodes from the competition). Our
simulations on general graphs are conducted on the second proposed version.

Theorem 5. Algorithm distMIS requires O(∆4+∆3log∗n) communication rounds in general graphs.

Proof. Algorithm distMIS computes at most O(∆) disjoint MIS by Lemma 7. And it computes at
most ∆3 secondary MIS for each disjoint MIS set, since there is at most ∆3 MIS node at distance-2
from any node v. Moreover, the fastest MIS distributed algorithm [14] requires O(∆ + log∗n) com-
munication rounds in general graphs, distMIS algorithm requires O(∆4 + ∆3log∗n) communication
rounds. Hence the proof follows.

Space complexity is O(∆2 ∗ log∆2); this may seem high space complexity, but it is unavoidable
since the upper bound on colors is (2∆2) and a color is represented using log∆2 bits. Note that in
practice the space required is much less than O(∆2 ∗ log∆2). Message complexity is O(m∆log∗n)
for GBG, and O(m∗ (∆4 + ∆3log∗n)) for general graphs, since each node sends to and receives from
each of its neighbors and since the model is synchronous.
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We provide now a general overview of the distributed algorithm D-MGC presented in [8], and a
proof sketch of the time complexity in order to compare our algorithm with D-MGC algorithm, which
is, to the best of our knowledge, the fastest algorithm for the FDLSP problem. Note that the D-MGC
algorithm is asynchronous. The D-MGC algorithm consists of two phases, namely distributed edge-
coloring and sign (direction) assignment. In the edge-coloring phase, edges are colored first greedily
using available colors, which are (∆+1) colors. A node colors its incident edges exclusively when all
of its 2-hop neighbors with higher ID are finished edge-coloring their incident edges; some edges will
be uncolored since ∆ + 1 colors are available only. In order to color the uncolored edges, each node
constructs a data structure called fan (we omit its description). Then each node constructs a path
called a cd-path, where a cd-path is a maximal path of alternating colors c and d along the path with
some specific properties. If a cd-path is found, the path is inverted, i.e., the colors along the path
are alternated. Inverting cd-paths helps in coloring uncolored edges with the available ∆ + 1 colors.
The length of the longest cd-path is n − 1, thus, the number of communication rounds required to
invert a cd-path is O(n). If more than one cd-path to be inverted are overlapping, then one cd-path
inversion only proceeds, the rest are locked. Locks are acquired over all the paths; to acquire locks
over all overlapping paths, up to O(n2) communication rounds are required (since the underlying
model is asynchronous). Hence, inverting a single cd-path requires up to O(n2) communication
rounds in the worst case. Also, since there is at most O(m) cd-path to be inverted (each edge may
be the starting point of a cd-path), there are at most O(n2m) communication rounds required for
first phase at most. Note that we omitted the description and the proof sketch of the edge-coloring
part of the first phase because it requires less communication rounds, that is O(n2∆) at most.

Only ∆ + 1 colors are used in the first phase of algorithm D-MGC. In order to obtain a distance-
2 edge-color direction assignment, each edge in the undirected graph of the underlying network is
assigned a valid direction that does not violate distance-2 edge-color requirements. Thus, each node
is considered either a sender or a receiver over each of its incident edges. Then, the number of
colors obtained are doubled and the directions are reversed to get a full duplex distance-2 edge color
assignment. In order to assign direction for each edge, each node starts a DFS tree to assign direction
for each specific edge with color c. Each DFS tree requires O(m) communication rounds. Since each
node may have an edge with specific color c, then there is at most n DFS trees evoked for color c by
the communication network nodes. But, only one DFS tree for each color succeeds and the rest are
ignored based on highest ID. Hence, there are at most O(nm) communication rounds required to
find a valid direction assignment for each color. Hence, there are at most O(nm∆) communication
rounds required to find a valid direction assignment for all the colors in th communication network.
Note that because of the existence of cycles, a valid direction assignment may not be possible with
the given ∆ + 1 colors, thus, more colors are injected to color the edges with valid distance-2 edge-
color assignment in the communication graph and more communication rounds are required. By
the previous discussion, the number of communication rounds required by algorithm D-MGC are
O(n2m + nm∆) at most. Thus, our algorithm requires significantly less communication rounds in
general graphs.

7 A DFS-Based Algorithm

In this section we present a (DFS) based algorithm for FDLSP. We assume the asynchronous mes-
sage passing model, where the algorithm works also for the synchronous model (but the message
complexity will be higher in the synchronous model). In the DFS-based algorithm, presented in
Algorithm 2, a designated node in the network starts the computation, this designated node will be
the root of the DFS traversal tree. The root starts coloring its incident edges, then it passes the
token to one of its unvisited neighbors with maximum degree (each node keeps a record of previously
visited nodes). When a node receives the token, it asks its neighbors to send their distance-2 edge
color assignment; colors its incident edges; informs all of its neighbors about its color assignment;
then passes the token to one of its unvisited neighbors with the maximum degree afterward. This
continues till the token reaches a node that has no unvisited neighbor, this node sends the token
back to the sender after coloring its edges. If a node receives the token back, it sends the token to
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one of its unvisited neighbors with the maximum degree. This continues till all the nodes in the
graph get the token and color their incident edges. Note, if an incident edge to a node is already
colored by a neighbor, the node does not change the color of the edge, it proceeds and colors the
edges that are not yet colored taking into account the colors of all its incident edges. Observe that
the network nodes are visited in a depth first search order.

Algorithm 2 Distributed DFS Algorithm (DFS)

Require: G(V,E): bi-directed graph
1: wait for token from parent
2: ask neighbors for distance-2 edge color assignment
3: receive edge color assignment of distance-2 neighbors
4: distance-2 edge-colors incident edges
5: broadcast edge color assignment
6: while this node has at least one unvisited neighbor do
7: send(token) to unvisited neighbor v with max degree
8: wait for token from neighbor v
9: end while

10: send token back to parent

The correctness of the algorithm is obvious, since only one node is allowed to color exclusively in
the network to avoid conflicts and since each node has a full knowledge about its distance-2 neighbors’
color assignment before coloring. The communication complexity is O(n) since a distributed DFS
tree can be constructed in O(n) rounds by keeping record of visited neighbors and removing a
neighbor from the record in case that neighbor asks about edge color assignment (it means that it has
received the token to color already). The communication complexity is much less than the D-MGC
algorithm in [8] which is (n2m+ nm∆) communication rounds. Space complexity is O(∆2 ∗ log∆2)
messages as discussed in Section 6. On the other hand, message complexity for DFS is O(m) message
since the algorithm works in an asynchronous environment and each edge carries constant number
of messages in total.

In Section 5, we proved that our DistMIS algorithm is ∆-approximation by showing that our
DistMIS algorithm imitates a greedy sequential coloring algorithm. It is straight forward to show that
our DFS algorithm also imitates the sequential greedy coloring algorithm, thus it is ∆-approximation
algorithm for the FDLSP problem.

8 Simulation Settings and Experimental Results

We first present and compare the results obtained for input graphs using the ILP and our depth
first based algorithm (DFS). We do not compare the ILP with our distributed maximal independent
set based algorithm (distMIS), because on such small instances the MIS based algorithm operates
sequentially, just like the DFS. Both the ILP and the DFS algorithm assign 2∆ colors for input tree
graphs. For complete bipartite graphs Kn,m, the optimal number of colors for the link scheduling
problem is more than 2∆ colors for most cases as shown using the ILP. On the other hand the DFS
algorithm assigns the optimal colors in some cases, and assigns more colors on some other tested
instances of the complete bipartite graphs. See Table 1.

Our distributed MIS-based (distMIS) and depth first search based (DFS) algorithms are com-
pared to the algorithm from [8] (D-MGC). In our simulations, we test the three algorithms on both
unit disk graphs and general graphs to show the effectiveness of our approach in both of the cases.
Recall that unit disk graphs belong to bounded growth graphs family. We generated UDG for our
simulations because, to the best of our knowledge, it is unknown how to generate general growth
bounded graphs; also our theoretical analysis of the algorithm still applies on UDG.

We generated four different sets of random unit disk graphs; each set has 75 random unit disk
graphs with 50, 100, 200 and 300 nodes count each. In order to generate UDG graphs, we first
specify the side length of the squared area plan, and then we place the nodes in the squared plan
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Input Graph No. of Colors
ILP DFS Algorithm

K2,2 4 4
K3,3 9 10
K4,4 15 18
K4 12 12
K5 20 20

Table 1: ILP vs. Distributed DFS Algorithm on Complete bipartite and Complete graphs

randomly. After that we connect the nodes with links based on the distance between each two nodes;
if distance is less than or equal to some distance d (transmission radius), then there is link between
the two nodes. Note that it is not possible to fix the number of edges in UDG, but we can only fix
the side length of the squared area plan and the transmission radius. Of each set with fixed number
of nodes, we generated three different sets with different side length of the squared area plan (15, 17,
and 20), and if two nodes are at distance less than or equal to 0.5 from each other (radius ≤ 0.5),
then there is a link between the two nodes (the unit length in our sample is 0.5). With multiple
varying side length of the squared area plan, we generate both sparse and dense graphs.

For the general graph case, we generated 50 random graphs with multiple node counts, where
for each node count we alter the number of edges in order to get sparse to dense graphs. For the
sake of brevity, we present only two node counts, 200 and 500 nodes, and we vary the number of
edges for each node count; our distMIS algorithm for general graphs case is the algorithm proposed
in Section 6.

In the UDG case, the results are presented in Figure 8 with squared area plan’s side length 15, in
Figure 9 with squared area plan’s side length 17, and in Figure 10 with squared area plan’s side length
20. In Figures 8, 9 and 10, the horizontal axis represents the number of nodes of the generated
UDG graphs and the average degree of the nodes in the undirected graph separated by comma;
the vertical axis represents number of generated time slots for FDLSP problem in logarithmic scale
of base 10 in order to contain upper and lower bounds properly in the plot; we provide the lower
bound and the upper bound of time slots in the plots drawn from the theoretical analysis in order
to show the effectiveness of our algorithms in practice. We found that generally our distMIS and
DFS algorithms produced slightly fewer time slots for each graph size than D-MGC in most of the
cases in UDGs.

In the general graphs case, the results are presented in Figures 11 with 200 nodes, and in Figure 12
with 500 nodes. The horizontal axis represents the number of edges of the generated general graphs
and the average degree of the nodes in the undirected graph separated by commas; the vertical axis
represents number of generated time slots for FDLSP problem in logarithmic scale of base 10. Also,
we provide the lower bound and the upper bound of time slots in the plots, beside the algorithms
time slot numbers, drawn from the theoretical analysis in order to show the effectiveness of our
algorithms in practice. Note that our DFS algorithm consistently produces 25% fewer time solts
than D-MGC, and our distMIS algorithm also produces fewer time solts than algorithm D-MGC.

Although the number of time slots assigned by our algorithms distMIS and DFS compared
to D-MGC algorithm are very close in the UDG case, our distMIS (DFS) algorithm has lower
time complexity in both general graphs, which is O(∆4 + ∆3log∗n) (O(n)), and in UDG, which is
O(∆log ∗ n) (O(n)) compared to O(n∆2 + n2m) for D-MGC algorithm in general graphs (authors
do not provide analysis in UDG). This is illustrated by Figure 13 for UDG case, where the x-axis
represents the number of edges of a graph with a fixed number of nodes (100, 200 and 300 nodes),
and the y-axis represents the number of rounds taken by our algorithm distMIS. Note that although
nodes in distMIS algorithm need to communicate with neighbors on distance-3 (this requires 3 rounds
instead of 1 for the competition phase to compute secondary MIS set, where 3 rounds is counted in
the presented number of rounds), our distMIS algorithm requires much less than n rounds taking
into consideration the hidden constants of the communication complexity. Also,the communication
complexity for the general graphs case is represented in Figure 14 and in Figure 15, where the x-
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Figure 8: Time slot assignment in UDG: plan area = 15x15

Figure 9: Time slot assignment in UDG: plan area = 17x17

Figure 10: Time slot assignment in UDG: plan area = 20x20

Figure 11: Time slot assignment in general graphs: 200 nodes
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Figure 12: Time slot assignment in general graphs: 500 nodes

Figure 13: Number of communication rounds required by distMIS with varying number of edges in
UDG.

Figure 14: Number of communication rounds required by distMIS with varying number of edges in
general graphs.
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Figure 15: Number of communication rounds required by distMIS with varying number of edges in
general graphs.

axis represents the number of edges of a graph with a fixed number of nodes (500 and 200 nodes
respectively), and the y-axis represents the number of rounds taken by our algorithm distMIS.

Due to [2], the FDSLP problem is NP-complete; hence, we can only provide an upper bound,
2∆2, and an approximation ratio. But no precise formula for the number of colors in the sparse or
the dense case can be provided accurately. To the best of our knowledge, we provide a tighter upper
bound for the problem (due to [20] it is of order O(∆2) but not exact as we show). Also, the lower
bound provided in [8] applies for acyclic graphs only; we provide a tighter lower bound that applies
to all instances of graphs.

9 Conclusion

Full duplex link scheduling problem in wireless sensor networks FDLSP has been considered. The
problem is formulated as distance-2 edge coloring a bi-directed graph such that the hidden terminal
problem is avoided. Then, two distributed algorithms for FDSLP are presented. The first is a
synchronous MIS based distributed algorithm and the second is an asynchronous distributed DFS
based algorithm. Both of the algorithms have lower time complexity than the best known algorithm
for the FDSLP problem in both growth bounded graphs and general graphs. Theoretical analysis
and simulation results show the effectiveness of our approach compared to the best known algorithms
for FDSLP problem.

In future work we consider fault-tolerance algorithms for DFSLP problem, where new sensors
may join the network, or existing sensors may move or fail. And as a result, some of the links may
disappear or new links may be established among the sensors in the network. Developing a fault
tolerant algorithm for DFSLP is quite challenging task, since low energy consumption is crucial for
the life time of the sensor network. In other words, the fault tolerant algorithm must incur low
communication and computation cost to make the FDLSP assignment schedule feasible in the light
of the new changes in the network topology.
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